1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
|
/* Copyright (c) 2003-2004, Roger Dingledine
* Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
* Copyright (c) 2007-2021, The Tor Project, Inc. */
/* See LICENSE for licensing information */
/**
* \file smartlist.c
*
* \brief Higher-level functions for the "smartlist" resizeable array
* abstraction.
*
* The functions declared here use higher-level functionality than those in
* smartlist_core.c, and handle things like smartlists of different types,
* sorting, searching, heap-structured smartlists, and other convenience
* functions.
**/
#include "lib/container/smartlist.h"
#include "lib/err/torerr.h"
#include "lib/malloc/malloc.h"
#include "lib/defs/digest_sizes.h"
#include "lib/ctime/di_ops.h"
#include "lib/string/compat_ctype.h"
#include "lib/string/compat_string.h"
#include "lib/string/util_string.h"
#include "lib/string/printf.h"
#include "lib/log/util_bug.h"
#include <stdlib.h>
#include <string.h>
/** Append the string produced by tor_asprintf(<b>pattern</b>, <b>...</b>)
* to <b>sl</b>. */
void
smartlist_add_asprintf(struct smartlist_t *sl, const char *pattern, ...)
{
va_list ap;
va_start(ap, pattern);
smartlist_add_vasprintf(sl, pattern, ap);
va_end(ap);
}
/** va_list-based backend of smartlist_add_asprintf. */
void
smartlist_add_vasprintf(struct smartlist_t *sl, const char *pattern,
va_list args)
{
char *str = NULL;
tor_vasprintf(&str, pattern, args);
tor_assert(str != NULL);
smartlist_add(sl, str);
}
/** Reverse the order of the items in <b>sl</b>. */
void
smartlist_reverse(smartlist_t *sl)
{
int i, j;
void *tmp;
tor_assert(sl);
for (i = 0, j = sl->num_used-1; i < j; ++i, --j) {
tmp = sl->list[i];
sl->list[i] = sl->list[j];
sl->list[j] = tmp;
}
}
/** If there are any strings in sl equal to element, remove and free them.
* Does not preserve order. */
void
smartlist_string_remove(smartlist_t *sl, const char *element)
{
int i;
tor_assert(sl);
tor_assert(element);
for (i = 0; i < sl->num_used; ++i) {
if (!strcmp(element, sl->list[i])) {
tor_free(sl->list[i]);
sl->list[i] = sl->list[--sl->num_used]; /* swap with the end */
i--; /* so we process the new i'th element */
sl->list[sl->num_used] = NULL;
}
}
}
/** Return true iff <b>sl</b> has some element E such that
* !strcmp(E,<b>element</b>)
*/
int
smartlist_contains_string(const smartlist_t *sl, const char *element)
{
int i;
if (!sl) return 0;
for (i=0; i < sl->num_used; i++)
if (strcmp((const char*)sl->list[i],element)==0)
return 1;
return 0;
}
/** If <b>element</b> is equal to an element of <b>sl</b>, return that
* element's index. Otherwise, return -1. */
int
smartlist_string_pos(const smartlist_t *sl, const char *element)
{
int i;
if (!sl) return -1;
for (i=0; i < sl->num_used; i++)
if (strcmp((const char*)sl->list[i],element)==0)
return i;
return -1;
}
/** If <b>element</b> is the same pointer as an element of <b>sl</b>, return
* that element's index. Otherwise, return -1. */
int
smartlist_pos(const smartlist_t *sl, const void *element)
{
int i;
if (!sl) return -1;
for (i=0; i < sl->num_used; i++)
if (element == sl->list[i])
return i;
return -1;
}
/** Return true iff <b>sl</b> has some element E such that
* !strcasecmp(E,<b>element</b>)
*/
int
smartlist_contains_string_case(const smartlist_t *sl, const char *element)
{
int i;
if (!sl) return 0;
for (i=0; i < sl->num_used; i++)
if (strcasecmp((const char*)sl->list[i],element)==0)
return 1;
return 0;
}
/** Return true iff <b>sl</b> has some element E such that E is equal
* to the decimal encoding of <b>num</b>.
*/
int
smartlist_contains_int_as_string(const smartlist_t *sl, int num)
{
char buf[32]; /* long enough for 64-bit int, and then some. */
tor_snprintf(buf,sizeof(buf),"%d", num);
return smartlist_contains_string(sl, buf);
}
/** Return true iff the two lists contain the same strings in the same
* order, or if they are both NULL. */
int
smartlist_strings_eq(const smartlist_t *sl1, const smartlist_t *sl2)
{
if (sl1 == NULL)
return sl2 == NULL;
if (sl2 == NULL)
return 0;
if (smartlist_len(sl1) != smartlist_len(sl2))
return 0;
SMARTLIST_FOREACH(sl1, const char *, cp1, {
const char *cp2 = smartlist_get(sl2, cp1_sl_idx);
if (strcmp(cp1, cp2))
return 0;
});
return 1;
}
/** Return true iff the two lists contain the same int pointer values in
* the same order, or if they are both NULL. */
int
smartlist_ints_eq(const smartlist_t *sl1, const smartlist_t *sl2)
{
if (sl1 == NULL)
return sl2 == NULL;
if (sl2 == NULL)
return 0;
if (smartlist_len(sl1) != smartlist_len(sl2))
return 0;
SMARTLIST_FOREACH(sl1, int *, cp1, {
int *cp2 = smartlist_get(sl2, cp1_sl_idx);
if (*cp1 != *cp2)
return 0;
});
return 1;
}
/**
* Return true if there is shallow equality between smartlists -
* i.e. all indices correspond to exactly same object (pointer
* values are matching). Otherwise, return false.
*/
int
smartlist_ptrs_eq(const smartlist_t *s1, const smartlist_t *s2)
{
if (s1 == s2)
return 1;
// Note: pointers cannot both be NULL at this point, because
// above check.
if (s1 == NULL || s2 == NULL)
return 0;
if (smartlist_len(s1) != smartlist_len(s2))
return 0;
for (int i = 0; i < smartlist_len(s1); i++) {
if (smartlist_get(s1, i) != smartlist_get(s2, i))
return 0;
}
return 1;
}
/** Return true iff <b>sl</b> has some element E such that
* tor_memeq(E,<b>element</b>,DIGEST_LEN)
*/
int
smartlist_contains_digest(const smartlist_t *sl, const char *element)
{
int i;
if (!sl) return 0;
for (i=0; i < sl->num_used; i++)
if (tor_memeq((const char*)sl->list[i],element,DIGEST_LEN))
return 1;
return 0;
}
/** Return true iff some element E of sl2 has smartlist_contains(sl1,E).
*/
int
smartlist_overlap(const smartlist_t *sl1, const smartlist_t *sl2)
{
int i;
for (i=0; i < sl2->num_used; i++)
if (smartlist_contains(sl1, sl2->list[i]))
return 1;
return 0;
}
/** Remove every element E of sl1 such that !smartlist_contains(sl2,E).
* Does not preserve the order of sl1.
*/
void
smartlist_intersect(smartlist_t *sl1, const smartlist_t *sl2)
{
int i;
for (i=0; i < sl1->num_used; i++)
if (!smartlist_contains(sl2, sl1->list[i])) {
sl1->list[i] = sl1->list[--sl1->num_used]; /* swap with the end */
i--; /* so we process the new i'th element */
sl1->list[sl1->num_used] = NULL;
}
}
/** Remove every element E of sl1 such that smartlist_contains(sl2,E).
* Does not preserve the order of sl1.
*/
void
smartlist_subtract(smartlist_t *sl1, const smartlist_t *sl2)
{
int i;
for (i=0; i < sl2->num_used; i++)
smartlist_remove(sl1, sl2->list[i]);
}
/** Allocate and return a new string containing the concatenation of
* the elements of <b>sl</b>, in order, separated by <b>join</b>. If
* <b>terminate</b> is true, also terminate the string with <b>join</b>.
* If <b>len_out</b> is not NULL, set <b>len_out</b> to the length of
* the returned string. Requires that every element of <b>sl</b> is
* NUL-terminated string.
*/
char *
smartlist_join_strings(smartlist_t *sl, const char *join,
int terminate, size_t *len_out)
{
return smartlist_join_strings2(sl,join,strlen(join),terminate,len_out);
}
/** As smartlist_join_strings, but instead of separating/terminated with a
* NUL-terminated string <b>join</b>, uses the <b>join_len</b>-byte sequence
* at <b>join</b>. (Useful for generating a sequence of NUL-terminated
* strings.)
*/
char *
smartlist_join_strings2(smartlist_t *sl, const char *join,
size_t join_len, int terminate, size_t *len_out)
{
int i;
size_t n = 0;
char *r = NULL, *dst, *src;
tor_assert(sl);
tor_assert(join);
if (terminate)
n = join_len;
for (i = 0; i < sl->num_used; ++i) {
n += strlen(sl->list[i]);
if (i+1 < sl->num_used) /* avoid double-counting the last one */
n += join_len;
}
dst = r = tor_malloc(n+1);
for (i = 0; i < sl->num_used; ) {
for (src = sl->list[i]; *src; )
*dst++ = *src++;
if (++i < sl->num_used) {
memcpy(dst, join, join_len);
dst += join_len;
}
}
if (terminate) {
memcpy(dst, join, join_len);
dst += join_len;
}
*dst = '\0';
if (len_out)
*len_out = dst-r;
return r;
}
/** Sort the members of <b>sl</b> into an order defined by
* the ordering function <b>compare</b>, which returns less then 0 if a
* precedes b, greater than 0 if b precedes a, and 0 if a 'equals' b.
*/
void
smartlist_sort(smartlist_t *sl, int (*compare)(const void **a, const void **b))
{
if (!sl->num_used)
return;
qsort(sl->list, sl->num_used, sizeof(void*),
(int (*)(const void *,const void*))compare);
}
/** Given a smartlist <b>sl</b> sorted with the function <b>compare</b>,
* return the most frequent member in the list. Break ties in favor of
* later elements. If the list is empty, return NULL. If count_out is
* non-null, set it to the count of the most frequent member.
*/
void *
smartlist_get_most_frequent_(const smartlist_t *sl,
int (*compare)(const void **a, const void **b),
int *count_out)
{
const void *most_frequent = NULL;
int most_frequent_count = 0;
const void *cur = NULL;
int i, count=0;
if (!sl->num_used) {
if (count_out)
*count_out = 0;
return NULL;
}
for (i = 0; i < sl->num_used; ++i) {
const void *item = sl->list[i];
if (cur && 0 == compare(&cur, &item)) {
++count;
} else {
if (cur && count >= most_frequent_count) {
most_frequent = cur;
most_frequent_count = count;
}
cur = item;
count = 1;
}
}
if (cur && count >= most_frequent_count) {
most_frequent = cur;
most_frequent_count = count;
}
if (count_out)
*count_out = most_frequent_count;
return (void*)most_frequent;
}
/** Given a sorted smartlist <b>sl</b> and the comparison function used to
* sort it, remove all duplicate members. If free_fn is provided, calls
* free_fn on each duplicate. Otherwise, just removes them. Preserves order.
*/
void
smartlist_uniq(smartlist_t *sl,
int (*compare)(const void **a, const void **b),
void (*free_fn)(void *a))
{
int i;
for (i=1; i < sl->num_used; ++i) {
if (compare((const void **)&(sl->list[i-1]),
(const void **)&(sl->list[i])) == 0) {
if (free_fn)
free_fn(sl->list[i]);
smartlist_del_keeporder(sl, i--);
}
}
}
/** Assuming the members of <b>sl</b> are in order, return a pointer to the
* member that matches <b>key</b>. Ordering and matching are defined by a
* <b>compare</b> function that returns 0 on a match; less than 0 if key is
* less than member, and greater than 0 if key is greater then member.
*/
void *
smartlist_bsearch(const smartlist_t *sl, const void *key,
int (*compare)(const void *key, const void **member))
{
int found, idx;
idx = smartlist_bsearch_idx(sl, key, compare, &found);
return found ? smartlist_get(sl, idx) : NULL;
}
/** Assuming the members of <b>sl</b> are in order, return the index of the
* member that matches <b>key</b>. If no member matches, return the index of
* the first member greater than <b>key</b>, or smartlist_len(sl) if no member
* is greater than <b>key</b>. Set <b>found_out</b> to true on a match, to
* false otherwise. Ordering and matching are defined by a <b>compare</b>
* function that returns 0 on a match; less than 0 if key is less than member,
* and greater than 0 if key is greater then member.
*/
int
smartlist_bsearch_idx(const smartlist_t *sl, const void *key,
int (*compare)(const void *key, const void **member),
int *found_out)
{
int hi, lo, cmp, mid, len, diff;
tor_assert(sl);
tor_assert(compare);
tor_assert(found_out);
len = smartlist_len(sl);
/* Check for the trivial case of a zero-length list */
if (len == 0) {
*found_out = 0;
/* We already know smartlist_len(sl) is 0 in this case */
return 0;
}
/* Okay, we have a real search to do */
tor_assert(len > 0);
lo = 0;
hi = len - 1;
/*
* These invariants are always true:
*
* For all i such that 0 <= i < lo, sl[i] < key
* For all i such that hi < i <= len, sl[i] > key
*/
while (lo <= hi) {
diff = hi - lo;
/*
* We want mid = (lo + hi) / 2, but that could lead to overflow, so
* instead diff = hi - lo (non-negative because of loop condition), and
* then hi = lo + diff, mid = (lo + lo + diff) / 2 = lo + (diff / 2).
*/
mid = lo + (diff / 2);
cmp = compare(key, (const void**) &(sl->list[mid]));
if (cmp == 0) {
/* sl[mid] == key; we found it */
*found_out = 1;
return mid;
} else if (cmp > 0) {
/*
* key > sl[mid] and an index i such that sl[i] == key must
* have i > mid if it exists.
*/
/*
* Since lo <= mid <= hi, hi can only decrease on each iteration (by
* being set to mid - 1) and hi is initially len - 1, mid < len should
* always hold, and this is not symmetric with the left end of list
* mid > 0 test below. A key greater than the right end of the list
* should eventually lead to lo == hi == mid == len - 1, and then
* we set lo to len below and fall out to the same exit we hit for
* a key in the middle of the list but not matching. Thus, we just
* assert for consistency here rather than handle a mid == len case.
*/
tor_assert(mid < len);
/* Move lo to the element immediately after sl[mid] */
lo = mid + 1;
} else {
/* This should always be true in this case */
tor_assert(cmp < 0);
/*
* key < sl[mid] and an index i such that sl[i] == key must
* have i < mid if it exists.
*/
if (mid > 0) {
/* Normal case, move hi to the element immediately before sl[mid] */
hi = mid - 1;
} else {
/* These should always be true in this case */
tor_assert(mid == lo);
tor_assert(mid == 0);
/*
* We were at the beginning of the list and concluded that every
* element e compares e > key.
*/
*found_out = 0;
return 0;
}
}
}
/*
* lo > hi; we have no element matching key but we have elements falling
* on both sides of it. The lo index points to the first element > key.
*/
tor_assert(lo == hi + 1); /* All other cases should have been handled */
tor_assert(lo >= 0);
tor_assert(lo <= len);
tor_assert(hi >= 0);
tor_assert(hi <= len);
if (lo < len) {
cmp = compare(key, (const void **) &(sl->list[lo]));
tor_assert(cmp < 0);
} else {
cmp = compare(key, (const void **) &(sl->list[len-1]));
tor_assert(cmp > 0);
}
*found_out = 0;
return lo;
}
/** Helper: compare two const char **s. */
static int
compare_string_ptrs_(const void **_a, const void **_b)
{
return strcmp((const char*)*_a, (const char*)*_b);
}
/** Sort a smartlist <b>sl</b> containing strings into lexically ascending
* order. */
void
smartlist_sort_strings(smartlist_t *sl)
{
smartlist_sort(sl, compare_string_ptrs_);
}
/** Return the most frequent string in the sorted list <b>sl</b> */
const char *
smartlist_get_most_frequent_string(smartlist_t *sl)
{
return smartlist_get_most_frequent(sl, compare_string_ptrs_);
}
/** Return the most frequent string in the sorted list <b>sl</b>.
* If <b>count_out</b> is provided, set <b>count_out</b> to the
* number of times that string appears.
*/
const char *
smartlist_get_most_frequent_string_(smartlist_t *sl, int *count_out)
{
return smartlist_get_most_frequent_(sl, compare_string_ptrs_, count_out);
}
/** Remove duplicate strings from a sorted list, and free them with tor_free().
*/
void
smartlist_uniq_strings(smartlist_t *sl)
{
smartlist_uniq(sl, compare_string_ptrs_, tor_free_);
}
/** Helper: compare two pointers. */
static int
compare_ptrs_(const void **_a, const void **_b)
{
const void *a = *_a, *b = *_b;
if (a<b)
return -1;
else if (a==b)
return 0;
else
return 1;
}
/** Sort <b>sl</b> in ascending order of the pointers it contains. */
void
smartlist_sort_pointers(smartlist_t *sl)
{
smartlist_sort(sl, compare_ptrs_);
}
/* Heap-based priority queue implementation for O(lg N) insert and remove.
* Recall that the heap property is that, for every index I, h[I] <
* H[LEFT_CHILD[I]] and h[I] < H[RIGHT_CHILD[I]].
*
* For us to remove items other than the topmost item, each item must store
* its own index within the heap. When calling the pqueue functions, tell
* them about the offset of the field that stores the index within the item.
*
* Example:
*
* typedef struct timer_t {
* struct timeval tv;
* int heap_index;
* } timer_t;
*
* static int compare(const void *p1, const void *p2) {
* const timer_t *t1 = p1, *t2 = p2;
* if (t1->tv.tv_sec < t2->tv.tv_sec) {
* return -1;
* } else if (t1->tv.tv_sec > t2->tv.tv_sec) {
* return 1;
* } else {
* return t1->tv.tv_usec - t2->tv_usec;
* }
* }
*
* void timer_heap_insert(smartlist_t *heap, timer_t *timer) {
* smartlist_pqueue_add(heap, compare, offsetof(timer_t, heap_index),
* timer);
* }
*
* void timer_heap_pop(smartlist_t *heap) {
* return smartlist_pqueue_pop(heap, compare,
* offsetof(timer_t, heap_index));
* }
*/
/** @{ */
/** Functions to manipulate heap indices to find a node's parent and children.
*
* For a 1-indexed array, we would use LEFT_CHILD[x] = 2*x and RIGHT_CHILD[x]
* = 2*x + 1. But this is C, so we have to adjust a little. */
/* MAX_PARENT_IDX is the largest IDX in the smartlist which might have
* children whose indices fit inside an int.
* LEFT_CHILD(MAX_PARENT_IDX) == INT_MAX-2;
* RIGHT_CHILD(MAX_PARENT_IDX) == INT_MAX-1;
* LEFT_CHILD(MAX_PARENT_IDX + 1) == INT_MAX // impossible, see max list size.
*/
#define MAX_PARENT_IDX ((INT_MAX - 2) / 2)
/* If this is true, then i is small enough to potentially have children
* in the smartlist, and it is save to use LEFT_CHILD/RIGHT_CHILD on it. */
#define IDX_MAY_HAVE_CHILDREN(i) ((i) <= MAX_PARENT_IDX)
#define LEFT_CHILD(i) ( 2*(i) + 1 )
#define RIGHT_CHILD(i) ( 2*(i) + 2 )
#define PARENT(i) ( ((i)-1) / 2 )
/** @} */
/** @{ */
/** Helper macros for heaps: Given a local variable <b>idx_field_offset</b>
* set to the offset of an integer index within the heap element structure,
* IDX_OF_ITEM(p) gives you the index of p, and IDXP(p) gives you a pointer to
* where p's index is stored. Given additionally a local smartlist <b>sl</b>,
* UPDATE_IDX(i) sets the index of the element at <b>i</b> to the correct
* value (that is, to <b>i</b>).
*/
#define IDXP(p) ((int*)STRUCT_VAR_P(p, idx_field_offset))
#define UPDATE_IDX(i) do { \
void *updated = sl->list[i]; \
*IDXP(updated) = i; \
} while (0)
#define IDX_OF_ITEM(p) (*IDXP(p))
/** @} */
/** Helper. <b>sl</b> may have at most one violation of the heap property:
* the item at <b>idx</b> may be greater than one or both of its children.
* Restore the heap property. */
static inline void
smartlist_heapify(smartlist_t *sl,
int (*compare)(const void *a, const void *b),
ptrdiff_t idx_field_offset,
int idx)
{
while (1) {
if (! IDX_MAY_HAVE_CHILDREN(idx)) {
/* idx is so large that it cannot have any children, since doing so
* would mean the smartlist was over-capacity. Therefore it cannot
* violate the heap property by being greater than a child (since it
* doesn't have any). */
return;
}
int left_idx = LEFT_CHILD(idx);
int best_idx;
if (left_idx >= sl->num_used)
return;
if (compare(sl->list[idx],sl->list[left_idx]) < 0)
best_idx = idx;
else
best_idx = left_idx;
if (left_idx+1 < sl->num_used &&
compare(sl->list[left_idx+1],sl->list[best_idx]) < 0)
best_idx = left_idx + 1;
if (best_idx == idx) {
return;
} else {
void *tmp = sl->list[idx];
sl->list[idx] = sl->list[best_idx];
sl->list[best_idx] = tmp;
UPDATE_IDX(idx);
UPDATE_IDX(best_idx);
idx = best_idx;
}
}
}
/** Insert <b>item</b> into the heap stored in <b>sl</b>, where order is
* determined by <b>compare</b> and the offset of the item in the heap is
* stored in an int-typed field at position <b>idx_field_offset</b> within
* item.
*/
void
smartlist_pqueue_add(smartlist_t *sl,
int (*compare)(const void *a, const void *b),
ptrdiff_t idx_field_offset,
void *item)
{
int idx;
smartlist_add(sl,item);
UPDATE_IDX(sl->num_used-1);
for (idx = sl->num_used - 1; idx; ) {
int parent = PARENT(idx);
if (compare(sl->list[idx], sl->list[parent]) < 0) {
void *tmp = sl->list[parent];
sl->list[parent] = sl->list[idx];
sl->list[idx] = tmp;
UPDATE_IDX(parent);
UPDATE_IDX(idx);
idx = parent;
} else {
return;
}
}
}
/** Remove and return the top-priority item from the heap stored in <b>sl</b>,
* where order is determined by <b>compare</b> and the item's position is
* stored at position <b>idx_field_offset</b> within the item. <b>sl</b> must
* not be empty. */
void *
smartlist_pqueue_pop(smartlist_t *sl,
int (*compare)(const void *a, const void *b),
ptrdiff_t idx_field_offset)
{
void *top;
tor_assert(sl->num_used);
top = sl->list[0];
*IDXP(top)=-1;
if (--sl->num_used) {
sl->list[0] = sl->list[sl->num_used];
sl->list[sl->num_used] = NULL;
UPDATE_IDX(0);
smartlist_heapify(sl, compare, idx_field_offset, 0);
}
sl->list[sl->num_used] = NULL;
return top;
}
/** Remove the item <b>item</b> from the heap stored in <b>sl</b>,
* where order is determined by <b>compare</b> and the item's position is
* stored at position <b>idx_field_offset</b> within the item. <b>sl</b> must
* not be empty. */
void
smartlist_pqueue_remove(smartlist_t *sl,
int (*compare)(const void *a, const void *b),
ptrdiff_t idx_field_offset,
void *item)
{
int idx = IDX_OF_ITEM(item);
tor_assert(idx >= 0);
tor_assert(sl->list[idx] == item);
--sl->num_used;
*IDXP(item) = -1;
if (idx == sl->num_used) {
sl->list[sl->num_used] = NULL;
return;
} else {
sl->list[idx] = sl->list[sl->num_used];
sl->list[sl->num_used] = NULL;
UPDATE_IDX(idx);
smartlist_heapify(sl, compare, idx_field_offset, idx);
}
}
/** Assert that the heap property is correctly maintained by the heap stored
* in <b>sl</b>, where order is determined by <b>compare</b>. */
void
smartlist_pqueue_assert_ok(smartlist_t *sl,
int (*compare)(const void *a, const void *b),
ptrdiff_t idx_field_offset)
{
int i;
for (i = sl->num_used - 1; i >= 0; --i) {
if (i>0)
tor_assert(compare(sl->list[PARENT(i)], sl->list[i]) <= 0);
tor_assert(IDX_OF_ITEM(sl->list[i]) == i);
}
}
/** Helper: compare two DIGEST_LEN digests. */
static int
compare_digests_(const void **_a, const void **_b)
{
return tor_memcmp((const char*)*_a, (const char*)*_b, DIGEST_LEN);
}
/** Sort the list of DIGEST_LEN-byte digests into ascending order. */
void
smartlist_sort_digests(smartlist_t *sl)
{
smartlist_sort(sl, compare_digests_);
}
/** Remove duplicate digests from a sorted list, and free them with tor_free().
*/
void
smartlist_uniq_digests(smartlist_t *sl)
{
smartlist_uniq(sl, compare_digests_, tor_free_);
}
/** Helper: compare two DIGEST256_LEN digests. */
static int
compare_digests256_(const void **_a, const void **_b)
{
return tor_memcmp((const char*)*_a, (const char*)*_b, DIGEST256_LEN);
}
/** Sort the list of DIGEST256_LEN-byte digests into ascending order. */
void
smartlist_sort_digests256(smartlist_t *sl)
{
smartlist_sort(sl, compare_digests256_);
}
/** Return the most frequent member of the sorted list of DIGEST256_LEN
* digests in <b>sl</b> */
const uint8_t *
smartlist_get_most_frequent_digest256(smartlist_t *sl)
{
return smartlist_get_most_frequent(sl, compare_digests256_);
}
/** Remove duplicate 256-bit digests from a sorted list, and free them with
* tor_free().
*/
void
smartlist_uniq_digests256(smartlist_t *sl)
{
smartlist_uniq(sl, compare_digests256_, tor_free_);
}
|