/* Copyright (c) 2003-2004, Roger Dingledine * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson. * Copyright (c) 2007-2021, The Tor Project, Inc. */ /* See LICENSE for licensing information */ /** * \file smartlist.c * * \brief Higher-level functions for the "smartlist" resizeable array * abstraction. * * The functions declared here use higher-level functionality than those in * smartlist_core.c, and handle things like smartlists of different types, * sorting, searching, heap-structured smartlists, and other convenience * functions. **/ #include "lib/container/smartlist.h" #include "lib/err/torerr.h" #include "lib/malloc/malloc.h" #include "lib/defs/digest_sizes.h" #include "lib/ctime/di_ops.h" #include "lib/string/compat_ctype.h" #include "lib/string/compat_string.h" #include "lib/string/util_string.h" #include "lib/string/printf.h" #include "lib/log/util_bug.h" #include #include /** Append the string produced by tor_asprintf(pattern, ...) * to sl. */ void smartlist_add_asprintf(struct smartlist_t *sl, const char *pattern, ...) { va_list ap; va_start(ap, pattern); smartlist_add_vasprintf(sl, pattern, ap); va_end(ap); } /** va_list-based backend of smartlist_add_asprintf. */ void smartlist_add_vasprintf(struct smartlist_t *sl, const char *pattern, va_list args) { char *str = NULL; tor_vasprintf(&str, pattern, args); tor_assert(str != NULL); smartlist_add(sl, str); } /** Reverse the order of the items in sl. */ void smartlist_reverse(smartlist_t *sl) { int i, j; void *tmp; tor_assert(sl); for (i = 0, j = sl->num_used-1; i < j; ++i, --j) { tmp = sl->list[i]; sl->list[i] = sl->list[j]; sl->list[j] = tmp; } } /** If there are any strings in sl equal to element, remove and free them. * Does not preserve order. */ void smartlist_string_remove(smartlist_t *sl, const char *element) { int i; tor_assert(sl); tor_assert(element); for (i = 0; i < sl->num_used; ++i) { if (!strcmp(element, sl->list[i])) { tor_free(sl->list[i]); sl->list[i] = sl->list[--sl->num_used]; /* swap with the end */ i--; /* so we process the new i'th element */ sl->list[sl->num_used] = NULL; } } } /** Return true iff sl has some element E such that * !strcmp(E,element) */ int smartlist_contains_string(const smartlist_t *sl, const char *element) { int i; if (!sl) return 0; for (i=0; i < sl->num_used; i++) if (strcmp((const char*)sl->list[i],element)==0) return 1; return 0; } /** If element is equal to an element of sl, return that * element's index. Otherwise, return -1. */ int smartlist_string_pos(const smartlist_t *sl, const char *element) { int i; if (!sl) return -1; for (i=0; i < sl->num_used; i++) if (strcmp((const char*)sl->list[i],element)==0) return i; return -1; } /** If element is the same pointer as an element of sl, return * that element's index. Otherwise, return -1. */ int smartlist_pos(const smartlist_t *sl, const void *element) { int i; if (!sl) return -1; for (i=0; i < sl->num_used; i++) if (element == sl->list[i]) return i; return -1; } /** Return true iff sl has some element E such that * !strcasecmp(E,element) */ int smartlist_contains_string_case(const smartlist_t *sl, const char *element) { int i; if (!sl) return 0; for (i=0; i < sl->num_used; i++) if (strcasecmp((const char*)sl->list[i],element)==0) return 1; return 0; } /** Return true iff sl has some element E such that E is equal * to the decimal encoding of num. */ int smartlist_contains_int_as_string(const smartlist_t *sl, int num) { char buf[32]; /* long enough for 64-bit int, and then some. */ tor_snprintf(buf,sizeof(buf),"%d", num); return smartlist_contains_string(sl, buf); } /** Return true iff the two lists contain the same strings in the same * order, or if they are both NULL. */ int smartlist_strings_eq(const smartlist_t *sl1, const smartlist_t *sl2) { if (sl1 == NULL) return sl2 == NULL; if (sl2 == NULL) return 0; if (smartlist_len(sl1) != smartlist_len(sl2)) return 0; SMARTLIST_FOREACH(sl1, const char *, cp1, { const char *cp2 = smartlist_get(sl2, cp1_sl_idx); if (strcmp(cp1, cp2)) return 0; }); return 1; } /** Return true iff the two lists contain the same int pointer values in * the same order, or if they are both NULL. */ int smartlist_ints_eq(const smartlist_t *sl1, const smartlist_t *sl2) { if (sl1 == NULL) return sl2 == NULL; if (sl2 == NULL) return 0; if (smartlist_len(sl1) != smartlist_len(sl2)) return 0; SMARTLIST_FOREACH(sl1, int *, cp1, { int *cp2 = smartlist_get(sl2, cp1_sl_idx); if (*cp1 != *cp2) return 0; }); return 1; } /** * Return true if there is shallow equality between smartlists - * i.e. all indices correspond to exactly same object (pointer * values are matching). Otherwise, return false. */ int smartlist_ptrs_eq(const smartlist_t *s1, const smartlist_t *s2) { if (s1 == s2) return 1; // Note: pointers cannot both be NULL at this point, because // above check. if (s1 == NULL || s2 == NULL) return 0; if (smartlist_len(s1) != smartlist_len(s2)) return 0; for (int i = 0; i < smartlist_len(s1); i++) { if (smartlist_get(s1, i) != smartlist_get(s2, i)) return 0; } return 1; } /** Return true iff sl has some element E such that * tor_memeq(E,element,DIGEST_LEN) */ int smartlist_contains_digest(const smartlist_t *sl, const char *element) { int i; if (!sl) return 0; for (i=0; i < sl->num_used; i++) if (tor_memeq((const char*)sl->list[i],element,DIGEST_LEN)) return 1; return 0; } /** Return true iff some element E of sl2 has smartlist_contains(sl1,E). */ int smartlist_overlap(const smartlist_t *sl1, const smartlist_t *sl2) { int i; for (i=0; i < sl2->num_used; i++) if (smartlist_contains(sl1, sl2->list[i])) return 1; return 0; } /** Remove every element E of sl1 such that !smartlist_contains(sl2,E). * Does not preserve the order of sl1. */ void smartlist_intersect(smartlist_t *sl1, const smartlist_t *sl2) { int i; for (i=0; i < sl1->num_used; i++) if (!smartlist_contains(sl2, sl1->list[i])) { sl1->list[i] = sl1->list[--sl1->num_used]; /* swap with the end */ i--; /* so we process the new i'th element */ sl1->list[sl1->num_used] = NULL; } } /** Remove every element E of sl1 such that smartlist_contains(sl2,E). * Does not preserve the order of sl1. */ void smartlist_subtract(smartlist_t *sl1, const smartlist_t *sl2) { int i; for (i=0; i < sl2->num_used; i++) smartlist_remove(sl1, sl2->list[i]); } /** Allocate and return a new string containing the concatenation of * the elements of sl, in order, separated by join. If * terminate is true, also terminate the string with join. * If len_out is not NULL, set len_out to the length of * the returned string. Requires that every element of sl is * NUL-terminated string. */ char * smartlist_join_strings(smartlist_t *sl, const char *join, int terminate, size_t *len_out) { return smartlist_join_strings2(sl,join,strlen(join),terminate,len_out); } /** As smartlist_join_strings, but instead of separating/terminated with a * NUL-terminated string join, uses the join_len-byte sequence * at join. (Useful for generating a sequence of NUL-terminated * strings.) */ char * smartlist_join_strings2(smartlist_t *sl, const char *join, size_t join_len, int terminate, size_t *len_out) { int i; size_t n = 0; char *r = NULL, *dst, *src; tor_assert(sl); tor_assert(join); if (terminate) n = join_len; for (i = 0; i < sl->num_used; ++i) { n += strlen(sl->list[i]); if (i+1 < sl->num_used) /* avoid double-counting the last one */ n += join_len; } dst = r = tor_malloc(n+1); for (i = 0; i < sl->num_used; ) { for (src = sl->list[i]; *src; ) *dst++ = *src++; if (++i < sl->num_used) { memcpy(dst, join, join_len); dst += join_len; } } if (terminate) { memcpy(dst, join, join_len); dst += join_len; } *dst = '\0'; if (len_out) *len_out = dst-r; return r; } /** Sort the members of sl into an order defined by * the ordering function compare, which returns less then 0 if a * precedes b, greater than 0 if b precedes a, and 0 if a 'equals' b. */ void smartlist_sort(smartlist_t *sl, int (*compare)(const void **a, const void **b)) { if (!sl->num_used) return; qsort(sl->list, sl->num_used, sizeof(void*), (int (*)(const void *,const void*))compare); } /** Given a smartlist sl sorted with the function compare, * return the most frequent member in the list. Break ties in favor of * later elements. If the list is empty, return NULL. If count_out is * non-null, set it to the count of the most frequent member. */ void * smartlist_get_most_frequent_(const smartlist_t *sl, int (*compare)(const void **a, const void **b), int *count_out) { const void *most_frequent = NULL; int most_frequent_count = 0; const void *cur = NULL; int i, count=0; if (!sl->num_used) { if (count_out) *count_out = 0; return NULL; } for (i = 0; i < sl->num_used; ++i) { const void *item = sl->list[i]; if (cur && 0 == compare(&cur, &item)) { ++count; } else { if (cur && count >= most_frequent_count) { most_frequent = cur; most_frequent_count = count; } cur = item; count = 1; } } if (cur && count >= most_frequent_count) { most_frequent = cur; most_frequent_count = count; } if (count_out) *count_out = most_frequent_count; return (void*)most_frequent; } /** Given a sorted smartlist sl and the comparison function used to * sort it, remove all duplicate members. If free_fn is provided, calls * free_fn on each duplicate. Otherwise, just removes them. Preserves order. */ void smartlist_uniq(smartlist_t *sl, int (*compare)(const void **a, const void **b), void (*free_fn)(void *a)) { int i; for (i=1; i < sl->num_used; ++i) { if (compare((const void **)&(sl->list[i-1]), (const void **)&(sl->list[i])) == 0) { if (free_fn) free_fn(sl->list[i]); smartlist_del_keeporder(sl, i--); } } } /** Assuming the members of sl are in order, return a pointer to the * member that matches key. Ordering and matching are defined by a * compare function that returns 0 on a match; less than 0 if key is * less than member, and greater than 0 if key is greater then member. */ void * smartlist_bsearch(const smartlist_t *sl, const void *key, int (*compare)(const void *key, const void **member)) { int found, idx; idx = smartlist_bsearch_idx(sl, key, compare, &found); return found ? smartlist_get(sl, idx) : NULL; } /** Assuming the members of sl are in order, return the index of the * member that matches key. If no member matches, return the index of * the first member greater than key, or smartlist_len(sl) if no member * is greater than key. Set found_out to true on a match, to * false otherwise. Ordering and matching are defined by a compare * function that returns 0 on a match; less than 0 if key is less than member, * and greater than 0 if key is greater then member. */ int smartlist_bsearch_idx(const smartlist_t *sl, const void *key, int (*compare)(const void *key, const void **member), int *found_out) { int hi, lo, cmp, mid, len, diff; tor_assert(sl); tor_assert(compare); tor_assert(found_out); len = smartlist_len(sl); /* Check for the trivial case of a zero-length list */ if (len == 0) { *found_out = 0; /* We already know smartlist_len(sl) is 0 in this case */ return 0; } /* Okay, we have a real search to do */ tor_assert(len > 0); lo = 0; hi = len - 1; /* * These invariants are always true: * * For all i such that 0 <= i < lo, sl[i] < key * For all i such that hi < i <= len, sl[i] > key */ while (lo <= hi) { diff = hi - lo; /* * We want mid = (lo + hi) / 2, but that could lead to overflow, so * instead diff = hi - lo (non-negative because of loop condition), and * then hi = lo + diff, mid = (lo + lo + diff) / 2 = lo + (diff / 2). */ mid = lo + (diff / 2); cmp = compare(key, (const void**) &(sl->list[mid])); if (cmp == 0) { /* sl[mid] == key; we found it */ *found_out = 1; return mid; } else if (cmp > 0) { /* * key > sl[mid] and an index i such that sl[i] == key must * have i > mid if it exists. */ /* * Since lo <= mid <= hi, hi can only decrease on each iteration (by * being set to mid - 1) and hi is initially len - 1, mid < len should * always hold, and this is not symmetric with the left end of list * mid > 0 test below. A key greater than the right end of the list * should eventually lead to lo == hi == mid == len - 1, and then * we set lo to len below and fall out to the same exit we hit for * a key in the middle of the list but not matching. Thus, we just * assert for consistency here rather than handle a mid == len case. */ tor_assert(mid < len); /* Move lo to the element immediately after sl[mid] */ lo = mid + 1; } else { /* This should always be true in this case */ tor_assert(cmp < 0); /* * key < sl[mid] and an index i such that sl[i] == key must * have i < mid if it exists. */ if (mid > 0) { /* Normal case, move hi to the element immediately before sl[mid] */ hi = mid - 1; } else { /* These should always be true in this case */ tor_assert(mid == lo); tor_assert(mid == 0); /* * We were at the beginning of the list and concluded that every * element e compares e > key. */ *found_out = 0; return 0; } } } /* * lo > hi; we have no element matching key but we have elements falling * on both sides of it. The lo index points to the first element > key. */ tor_assert(lo == hi + 1); /* All other cases should have been handled */ tor_assert(lo >= 0); tor_assert(lo <= len); tor_assert(hi >= 0); tor_assert(hi <= len); if (lo < len) { cmp = compare(key, (const void **) &(sl->list[lo])); tor_assert(cmp < 0); } else { cmp = compare(key, (const void **) &(sl->list[len-1])); tor_assert(cmp > 0); } *found_out = 0; return lo; } /** Helper: compare two const char **s. */ static int compare_string_ptrs_(const void **_a, const void **_b) { return strcmp((const char*)*_a, (const char*)*_b); } /** Sort a smartlist sl containing strings into lexically ascending * order. */ void smartlist_sort_strings(smartlist_t *sl) { smartlist_sort(sl, compare_string_ptrs_); } /** Return the most frequent string in the sorted list sl */ const char * smartlist_get_most_frequent_string(smartlist_t *sl) { return smartlist_get_most_frequent(sl, compare_string_ptrs_); } /** Return the most frequent string in the sorted list sl. * If count_out is provided, set count_out to the * number of times that string appears. */ const char * smartlist_get_most_frequent_string_(smartlist_t *sl, int *count_out) { return smartlist_get_most_frequent_(sl, compare_string_ptrs_, count_out); } /** Remove duplicate strings from a sorted list, and free them with tor_free(). */ void smartlist_uniq_strings(smartlist_t *sl) { smartlist_uniq(sl, compare_string_ptrs_, tor_free_); } /** Helper: compare two pointers. */ static int compare_ptrs_(const void **_a, const void **_b) { const void *a = *_a, *b = *_b; if (asl in ascending order of the pointers it contains. */ void smartlist_sort_pointers(smartlist_t *sl) { smartlist_sort(sl, compare_ptrs_); } /* Heap-based priority queue implementation for O(lg N) insert and remove. * Recall that the heap property is that, for every index I, h[I] < * H[LEFT_CHILD[I]] and h[I] < H[RIGHT_CHILD[I]]. * * For us to remove items other than the topmost item, each item must store * its own index within the heap. When calling the pqueue functions, tell * them about the offset of the field that stores the index within the item. * * Example: * * typedef struct timer_t { * struct timeval tv; * int heap_index; * } timer_t; * * static int compare(const void *p1, const void *p2) { * const timer_t *t1 = p1, *t2 = p2; * if (t1->tv.tv_sec < t2->tv.tv_sec) { * return -1; * } else if (t1->tv.tv_sec > t2->tv.tv_sec) { * return 1; * } else { * return t1->tv.tv_usec - t2->tv_usec; * } * } * * void timer_heap_insert(smartlist_t *heap, timer_t *timer) { * smartlist_pqueue_add(heap, compare, offsetof(timer_t, heap_index), * timer); * } * * void timer_heap_pop(smartlist_t *heap) { * return smartlist_pqueue_pop(heap, compare, * offsetof(timer_t, heap_index)); * } */ /** @{ */ /** Functions to manipulate heap indices to find a node's parent and children. * * For a 1-indexed array, we would use LEFT_CHILD[x] = 2*x and RIGHT_CHILD[x] * = 2*x + 1. But this is C, so we have to adjust a little. */ /* MAX_PARENT_IDX is the largest IDX in the smartlist which might have * children whose indices fit inside an int. * LEFT_CHILD(MAX_PARENT_IDX) == INT_MAX-2; * RIGHT_CHILD(MAX_PARENT_IDX) == INT_MAX-1; * LEFT_CHILD(MAX_PARENT_IDX + 1) == INT_MAX // impossible, see max list size. */ #define MAX_PARENT_IDX ((INT_MAX - 2) / 2) /* If this is true, then i is small enough to potentially have children * in the smartlist, and it is save to use LEFT_CHILD/RIGHT_CHILD on it. */ #define IDX_MAY_HAVE_CHILDREN(i) ((i) <= MAX_PARENT_IDX) #define LEFT_CHILD(i) ( 2*(i) + 1 ) #define RIGHT_CHILD(i) ( 2*(i) + 2 ) #define PARENT(i) ( ((i)-1) / 2 ) /** @} */ /** @{ */ /** Helper macros for heaps: Given a local variable idx_field_offset * set to the offset of an integer index within the heap element structure, * IDX_OF_ITEM(p) gives you the index of p, and IDXP(p) gives you a pointer to * where p's index is stored. Given additionally a local smartlist sl, * UPDATE_IDX(i) sets the index of the element at i to the correct * value (that is, to i). */ #define IDXP(p) ((int*)STRUCT_VAR_P(p, idx_field_offset)) #define UPDATE_IDX(i) do { \ void *updated = sl->list[i]; \ *IDXP(updated) = i; \ } while (0) #define IDX_OF_ITEM(p) (*IDXP(p)) /** @} */ /** Helper. sl may have at most one violation of the heap property: * the item at idx may be greater than one or both of its children. * Restore the heap property. */ static inline void smartlist_heapify(smartlist_t *sl, int (*compare)(const void *a, const void *b), ptrdiff_t idx_field_offset, int idx) { while (1) { if (! IDX_MAY_HAVE_CHILDREN(idx)) { /* idx is so large that it cannot have any children, since doing so * would mean the smartlist was over-capacity. Therefore it cannot * violate the heap property by being greater than a child (since it * doesn't have any). */ return; } int left_idx = LEFT_CHILD(idx); int best_idx; if (left_idx >= sl->num_used) return; if (compare(sl->list[idx],sl->list[left_idx]) < 0) best_idx = idx; else best_idx = left_idx; if (left_idx+1 < sl->num_used && compare(sl->list[left_idx+1],sl->list[best_idx]) < 0) best_idx = left_idx + 1; if (best_idx == idx) { return; } else { void *tmp = sl->list[idx]; sl->list[idx] = sl->list[best_idx]; sl->list[best_idx] = tmp; UPDATE_IDX(idx); UPDATE_IDX(best_idx); idx = best_idx; } } } /** Insert item into the heap stored in sl, where order is * determined by compare and the offset of the item in the heap is * stored in an int-typed field at position idx_field_offset within * item. */ void smartlist_pqueue_add(smartlist_t *sl, int (*compare)(const void *a, const void *b), ptrdiff_t idx_field_offset, void *item) { int idx; smartlist_add(sl,item); UPDATE_IDX(sl->num_used-1); for (idx = sl->num_used - 1; idx; ) { int parent = PARENT(idx); if (compare(sl->list[idx], sl->list[parent]) < 0) { void *tmp = sl->list[parent]; sl->list[parent] = sl->list[idx]; sl->list[idx] = tmp; UPDATE_IDX(parent); UPDATE_IDX(idx); idx = parent; } else { return; } } } /** Remove and return the top-priority item from the heap stored in sl, * where order is determined by compare and the item's position is * stored at position idx_field_offset within the item. sl must * not be empty. */ void * smartlist_pqueue_pop(smartlist_t *sl, int (*compare)(const void *a, const void *b), ptrdiff_t idx_field_offset) { void *top; tor_assert(sl->num_used); top = sl->list[0]; *IDXP(top)=-1; if (--sl->num_used) { sl->list[0] = sl->list[sl->num_used]; sl->list[sl->num_used] = NULL; UPDATE_IDX(0); smartlist_heapify(sl, compare, idx_field_offset, 0); } sl->list[sl->num_used] = NULL; return top; } /** Remove the item item from the heap stored in sl, * where order is determined by compare and the item's position is * stored at position idx_field_offset within the item. sl must * not be empty. */ void smartlist_pqueue_remove(smartlist_t *sl, int (*compare)(const void *a, const void *b), ptrdiff_t idx_field_offset, void *item) { int idx = IDX_OF_ITEM(item); tor_assert(idx >= 0); tor_assert(sl->list[idx] == item); --sl->num_used; *IDXP(item) = -1; if (idx == sl->num_used) { sl->list[sl->num_used] = NULL; return; } else { sl->list[idx] = sl->list[sl->num_used]; sl->list[sl->num_used] = NULL; UPDATE_IDX(idx); smartlist_heapify(sl, compare, idx_field_offset, idx); } } /** Assert that the heap property is correctly maintained by the heap stored * in sl, where order is determined by compare. */ void smartlist_pqueue_assert_ok(smartlist_t *sl, int (*compare)(const void *a, const void *b), ptrdiff_t idx_field_offset) { int i; for (i = sl->num_used - 1; i >= 0; --i) { if (i>0) tor_assert(compare(sl->list[PARENT(i)], sl->list[i]) <= 0); tor_assert(IDX_OF_ITEM(sl->list[i]) == i); } } /** Helper: compare two DIGEST_LEN digests. */ static int compare_digests_(const void **_a, const void **_b) { return tor_memcmp((const char*)*_a, (const char*)*_b, DIGEST_LEN); } /** Sort the list of DIGEST_LEN-byte digests into ascending order. */ void smartlist_sort_digests(smartlist_t *sl) { smartlist_sort(sl, compare_digests_); } /** Remove duplicate digests from a sorted list, and free them with tor_free(). */ void smartlist_uniq_digests(smartlist_t *sl) { smartlist_uniq(sl, compare_digests_, tor_free_); } /** Helper: compare two DIGEST256_LEN digests. */ static int compare_digests256_(const void **_a, const void **_b) { return tor_memcmp((const char*)*_a, (const char*)*_b, DIGEST256_LEN); } /** Sort the list of DIGEST256_LEN-byte digests into ascending order. */ void smartlist_sort_digests256(smartlist_t *sl) { smartlist_sort(sl, compare_digests256_); } /** Return the most frequent member of the sorted list of DIGEST256_LEN * digests in sl */ const uint8_t * smartlist_get_most_frequent_digest256(smartlist_t *sl) { return smartlist_get_most_frequent(sl, compare_digests256_); } /** Remove duplicate 256-bit digests from a sorted list, and free them with * tor_free(). */ void smartlist_uniq_digests256(smartlist_t *sl) { smartlist_uniq(sl, compare_digests256_, tor_free_); }