diff options
author | Jordan <me@jordan.im> | 2022-03-17 09:43:29 -0700 |
---|---|---|
committer | Jordan <me@jordan.im> | 2022-03-17 09:43:29 -0700 |
commit | 66bfe530b4fd5cb9755337ce718df26ee81f1b77 (patch) | |
tree | 9dfc8a79183b8bffc12db5a92f957e3bfd37d4f2 /vendor/golang.org/x/crypto | |
parent | 2f0b35e3c25bc4394f3288e1baa77d250cb510ed (diff) | |
download | keep-66bfe530b4fd5cb9755337ce718df26ee81f1b77.tar.gz keep-66bfe530b4fd5cb9755337ce718df26ee81f1b77.zip |
misc: go get -u ./... ; go mod vendor
Diffstat (limited to 'vendor/golang.org/x/crypto')
27 files changed, 1499 insertions, 2207 deletions
diff --git a/vendor/golang.org/x/crypto/internal/poly1305/bits_compat.go b/vendor/golang.org/x/crypto/internal/poly1305/bits_compat.go new file mode 100644 index 0000000..45b5c96 --- /dev/null +++ b/vendor/golang.org/x/crypto/internal/poly1305/bits_compat.go @@ -0,0 +1,40 @@ +// Copyright 2019 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +//go:build !go1.13 +// +build !go1.13 + +package poly1305 + +// Generic fallbacks for the math/bits intrinsics, copied from +// src/math/bits/bits.go. They were added in Go 1.12, but Add64 and Sum64 had +// variable time fallbacks until Go 1.13. + +func bitsAdd64(x, y, carry uint64) (sum, carryOut uint64) { + sum = x + y + carry + carryOut = ((x & y) | ((x | y) &^ sum)) >> 63 + return +} + +func bitsSub64(x, y, borrow uint64) (diff, borrowOut uint64) { + diff = x - y - borrow + borrowOut = ((^x & y) | (^(x ^ y) & diff)) >> 63 + return +} + +func bitsMul64(x, y uint64) (hi, lo uint64) { + const mask32 = 1<<32 - 1 + x0 := x & mask32 + x1 := x >> 32 + y0 := y & mask32 + y1 := y >> 32 + w0 := x0 * y0 + t := x1*y0 + w0>>32 + w1 := t & mask32 + w2 := t >> 32 + w1 += x0 * y1 + hi = x1*y1 + w2 + w1>>32 + lo = x * y + return +} diff --git a/vendor/golang.org/x/crypto/internal/poly1305/bits_go1.13.go b/vendor/golang.org/x/crypto/internal/poly1305/bits_go1.13.go new file mode 100644 index 0000000..ed52b34 --- /dev/null +++ b/vendor/golang.org/x/crypto/internal/poly1305/bits_go1.13.go @@ -0,0 +1,22 @@ +// Copyright 2019 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +//go:build go1.13 +// +build go1.13 + +package poly1305 + +import "math/bits" + +func bitsAdd64(x, y, carry uint64) (sum, carryOut uint64) { + return bits.Add64(x, y, carry) +} + +func bitsSub64(x, y, borrow uint64) (diff, borrowOut uint64) { + return bits.Sub64(x, y, borrow) +} + +func bitsMul64(x, y uint64) (hi, lo uint64) { + return bits.Mul64(x, y) +} diff --git a/vendor/golang.org/x/crypto/internal/poly1305/mac_noasm.go b/vendor/golang.org/x/crypto/internal/poly1305/mac_noasm.go new file mode 100644 index 0000000..f184b67 --- /dev/null +++ b/vendor/golang.org/x/crypto/internal/poly1305/mac_noasm.go @@ -0,0 +1,10 @@ +// Copyright 2018 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +//go:build (!amd64 && !ppc64le && !s390x) || !gc || purego +// +build !amd64,!ppc64le,!s390x !gc purego + +package poly1305 + +type mac struct{ macGeneric } diff --git a/vendor/golang.org/x/crypto/internal/poly1305/poly1305.go b/vendor/golang.org/x/crypto/internal/poly1305/poly1305.go new file mode 100644 index 0000000..4aaea81 --- /dev/null +++ b/vendor/golang.org/x/crypto/internal/poly1305/poly1305.go @@ -0,0 +1,99 @@ +// Copyright 2012 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package poly1305 implements Poly1305 one-time message authentication code as +// specified in https://cr.yp.to/mac/poly1305-20050329.pdf. +// +// Poly1305 is a fast, one-time authentication function. It is infeasible for an +// attacker to generate an authenticator for a message without the key. However, a +// key must only be used for a single message. Authenticating two different +// messages with the same key allows an attacker to forge authenticators for other +// messages with the same key. +// +// Poly1305 was originally coupled with AES in order to make Poly1305-AES. AES was +// used with a fixed key in order to generate one-time keys from an nonce. +// However, in this package AES isn't used and the one-time key is specified +// directly. +package poly1305 + +import "crypto/subtle" + +// TagSize is the size, in bytes, of a poly1305 authenticator. +const TagSize = 16 + +// Sum generates an authenticator for msg using a one-time key and puts the +// 16-byte result into out. Authenticating two different messages with the same +// key allows an attacker to forge messages at will. +func Sum(out *[16]byte, m []byte, key *[32]byte) { + h := New(key) + h.Write(m) + h.Sum(out[:0]) +} + +// Verify returns true if mac is a valid authenticator for m with the given key. +func Verify(mac *[16]byte, m []byte, key *[32]byte) bool { + var tmp [16]byte + Sum(&tmp, m, key) + return subtle.ConstantTimeCompare(tmp[:], mac[:]) == 1 +} + +// New returns a new MAC computing an authentication +// tag of all data written to it with the given key. +// This allows writing the message progressively instead +// of passing it as a single slice. Common users should use +// the Sum function instead. +// +// The key must be unique for each message, as authenticating +// two different messages with the same key allows an attacker +// to forge messages at will. +func New(key *[32]byte) *MAC { + m := &MAC{} + initialize(key, &m.macState) + return m +} + +// MAC is an io.Writer computing an authentication tag +// of the data written to it. +// +// MAC cannot be used like common hash.Hash implementations, +// because using a poly1305 key twice breaks its security. +// Therefore writing data to a running MAC after calling +// Sum or Verify causes it to panic. +type MAC struct { + mac // platform-dependent implementation + + finalized bool +} + +// Size returns the number of bytes Sum will return. +func (h *MAC) Size() int { return TagSize } + +// Write adds more data to the running message authentication code. +// It never returns an error. +// +// It must not be called after the first call of Sum or Verify. +func (h *MAC) Write(p []byte) (n int, err error) { + if h.finalized { + panic("poly1305: write to MAC after Sum or Verify") + } + return h.mac.Write(p) +} + +// Sum computes the authenticator of all data written to the +// message authentication code. +func (h *MAC) Sum(b []byte) []byte { + var mac [TagSize]byte + h.mac.Sum(&mac) + h.finalized = true + return append(b, mac[:]...) +} + +// Verify returns whether the authenticator of all data written to +// the message authentication code matches the expected value. +func (h *MAC) Verify(expected []byte) bool { + var mac [TagSize]byte + h.mac.Sum(&mac) + h.finalized = true + return subtle.ConstantTimeCompare(expected, mac[:]) == 1 +} diff --git a/vendor/golang.org/x/crypto/internal/poly1305/sum_amd64.go b/vendor/golang.org/x/crypto/internal/poly1305/sum_amd64.go new file mode 100644 index 0000000..6d52233 --- /dev/null +++ b/vendor/golang.org/x/crypto/internal/poly1305/sum_amd64.go @@ -0,0 +1,48 @@ +// Copyright 2012 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +//go:build gc && !purego +// +build gc,!purego + +package poly1305 + +//go:noescape +func update(state *macState, msg []byte) + +// mac is a wrapper for macGeneric that redirects calls that would have gone to +// updateGeneric to update. +// +// Its Write and Sum methods are otherwise identical to the macGeneric ones, but +// using function pointers would carry a major performance cost. +type mac struct{ macGeneric } + +func (h *mac) Write(p []byte) (int, error) { + nn := len(p) + if h.offset > 0 { + n := copy(h.buffer[h.offset:], p) + if h.offset+n < TagSize { + h.offset += n + return nn, nil + } + p = p[n:] + h.offset = 0 + update(&h.macState, h.buffer[:]) + } + if n := len(p) - (len(p) % TagSize); n > 0 { + update(&h.macState, p[:n]) + p = p[n:] + } + if len(p) > 0 { + h.offset += copy(h.buffer[h.offset:], p) + } + return nn, nil +} + +func (h *mac) Sum(out *[16]byte) { + state := h.macState + if h.offset > 0 { + update(&state, h.buffer[:h.offset]) + } + finalize(out, &state.h, &state.s) +} diff --git a/vendor/golang.org/x/crypto/poly1305/sum_amd64.s b/vendor/golang.org/x/crypto/internal/poly1305/sum_amd64.s index 2edae63..1d74f0f 100644 --- a/vendor/golang.org/x/crypto/poly1305/sum_amd64.s +++ b/vendor/golang.org/x/crypto/internal/poly1305/sum_amd64.s @@ -2,7 +2,8 @@ // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. -// +build amd64,!gccgo,!appengine +//go:build gc && !purego +// +build gc,!purego #include "textflag.h" @@ -54,24 +55,17 @@ ADCQ t3, h1; \ ADCQ $0, h2 -DATA ·poly1305Mask<>+0x00(SB)/8, $0x0FFFFFFC0FFFFFFF -DATA ·poly1305Mask<>+0x08(SB)/8, $0x0FFFFFFC0FFFFFFC -GLOBL ·poly1305Mask<>(SB), RODATA, $16 +// func update(state *[7]uint64, msg []byte) +TEXT ·update(SB), $0-32 + MOVQ state+0(FP), DI + MOVQ msg_base+8(FP), SI + MOVQ msg_len+16(FP), R15 -// func poly1305(out *[16]byte, m *byte, mlen uint64, key *[32]key) -TEXT ·poly1305(SB), $0-32 - MOVQ out+0(FP), DI - MOVQ m+8(FP), SI - MOVQ mlen+16(FP), R15 - MOVQ key+24(FP), AX - - MOVQ 0(AX), R11 - MOVQ 8(AX), R12 - ANDQ ·poly1305Mask<>(SB), R11 // r0 - ANDQ ·poly1305Mask<>+8(SB), R12 // r1 - XORQ R8, R8 // h0 - XORQ R9, R9 // h1 - XORQ R10, R10 // h2 + MOVQ 0(DI), R8 // h0 + MOVQ 8(DI), R9 // h1 + MOVQ 16(DI), R10 // h2 + MOVQ 24(DI), R11 // r0 + MOVQ 32(DI), R12 // r1 CMPQ R15, $16 JB bytes_between_0_and_15 @@ -109,17 +103,7 @@ flush_buffer: JMP multiply done: - MOVQ R8, AX - MOVQ R9, BX - SUBQ $0xFFFFFFFFFFFFFFFB, AX - SBBQ $0xFFFFFFFFFFFFFFFF, BX - SBBQ $3, R10 - CMOVQCS R8, AX - CMOVQCS R9, BX - MOVQ key+24(FP), R8 - ADDQ 16(R8), AX - ADCQ 24(R8), BX - - MOVQ AX, 0(DI) - MOVQ BX, 8(DI) + MOVQ R8, 0(DI) + MOVQ R9, 8(DI) + MOVQ R10, 16(DI) RET diff --git a/vendor/golang.org/x/crypto/internal/poly1305/sum_generic.go b/vendor/golang.org/x/crypto/internal/poly1305/sum_generic.go new file mode 100644 index 0000000..c942a65 --- /dev/null +++ b/vendor/golang.org/x/crypto/internal/poly1305/sum_generic.go @@ -0,0 +1,310 @@ +// Copyright 2018 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// This file provides the generic implementation of Sum and MAC. Other files +// might provide optimized assembly implementations of some of this code. + +package poly1305 + +import "encoding/binary" + +// Poly1305 [RFC 7539] is a relatively simple algorithm: the authentication tag +// for a 64 bytes message is approximately +// +// s + m[0:16] * r⁴ + m[16:32] * r³ + m[32:48] * r² + m[48:64] * r mod 2¹³⁰ - 5 +// +// for some secret r and s. It can be computed sequentially like +// +// for len(msg) > 0: +// h += read(msg, 16) +// h *= r +// h %= 2¹³⁰ - 5 +// return h + s +// +// All the complexity is about doing performant constant-time math on numbers +// larger than any available numeric type. + +func sumGeneric(out *[TagSize]byte, msg []byte, key *[32]byte) { + h := newMACGeneric(key) + h.Write(msg) + h.Sum(out) +} + +func newMACGeneric(key *[32]byte) macGeneric { + m := macGeneric{} + initialize(key, &m.macState) + return m +} + +// macState holds numbers in saturated 64-bit little-endian limbs. That is, +// the value of [x0, x1, x2] is x[0] + x[1] * 2⁶⁴ + x[2] * 2¹²⁸. +type macState struct { + // h is the main accumulator. It is to be interpreted modulo 2¹³⁰ - 5, but + // can grow larger during and after rounds. It must, however, remain below + // 2 * (2¹³⁰ - 5). + h [3]uint64 + // r and s are the private key components. + r [2]uint64 + s [2]uint64 +} + +type macGeneric struct { + macState + + buffer [TagSize]byte + offset int +} + +// Write splits the incoming message into TagSize chunks, and passes them to +// update. It buffers incomplete chunks. +func (h *macGeneric) Write(p []byte) (int, error) { + nn := len(p) + if h.offset > 0 { + n := copy(h.buffer[h.offset:], p) + if h.offset+n < TagSize { + h.offset += n + return nn, nil + } + p = p[n:] + h.offset = 0 + updateGeneric(&h.macState, h.buffer[:]) + } + if n := len(p) - (len(p) % TagSize); n > 0 { + updateGeneric(&h.macState, p[:n]) + p = p[n:] + } + if len(p) > 0 { + h.offset += copy(h.buffer[h.offset:], p) + } + return nn, nil +} + +// Sum flushes the last incomplete chunk from the buffer, if any, and generates +// the MAC output. It does not modify its state, in order to allow for multiple +// calls to Sum, even if no Write is allowed after Sum. +func (h *macGeneric) Sum(out *[TagSize]byte) { + state := h.macState + if h.offset > 0 { + updateGeneric(&state, h.buffer[:h.offset]) + } + finalize(out, &state.h, &state.s) +} + +// [rMask0, rMask1] is the specified Poly1305 clamping mask in little-endian. It +// clears some bits of the secret coefficient to make it possible to implement +// multiplication more efficiently. +const ( + rMask0 = 0x0FFFFFFC0FFFFFFF + rMask1 = 0x0FFFFFFC0FFFFFFC +) + +// initialize loads the 256-bit key into the two 128-bit secret values r and s. +func initialize(key *[32]byte, m *macState) { + m.r[0] = binary.LittleEndian.Uint64(key[0:8]) & rMask0 + m.r[1] = binary.LittleEndian.Uint64(key[8:16]) & rMask1 + m.s[0] = binary.LittleEndian.Uint64(key[16:24]) + m.s[1] = binary.LittleEndian.Uint64(key[24:32]) +} + +// uint128 holds a 128-bit number as two 64-bit limbs, for use with the +// bits.Mul64 and bits.Add64 intrinsics. +type uint128 struct { + lo, hi uint64 +} + +func mul64(a, b uint64) uint128 { + hi, lo := bitsMul64(a, b) + return uint128{lo, hi} +} + +func add128(a, b uint128) uint128 { + lo, c := bitsAdd64(a.lo, b.lo, 0) + hi, c := bitsAdd64(a.hi, b.hi, c) + if c != 0 { + panic("poly1305: unexpected overflow") + } + return uint128{lo, hi} +} + +func shiftRightBy2(a uint128) uint128 { + a.lo = a.lo>>2 | (a.hi&3)<<62 + a.hi = a.hi >> 2 + return a +} + +// updateGeneric absorbs msg into the state.h accumulator. For each chunk m of +// 128 bits of message, it computes +// +// h₊ = (h + m) * r mod 2¹³⁰ - 5 +// +// If the msg length is not a multiple of TagSize, it assumes the last +// incomplete chunk is the final one. +func updateGeneric(state *macState, msg []byte) { + h0, h1, h2 := state.h[0], state.h[1], state.h[2] + r0, r1 := state.r[0], state.r[1] + + for len(msg) > 0 { + var c uint64 + + // For the first step, h + m, we use a chain of bits.Add64 intrinsics. + // The resulting value of h might exceed 2¹³⁰ - 5, but will be partially + // reduced at the end of the multiplication below. + // + // The spec requires us to set a bit just above the message size, not to + // hide leading zeroes. For full chunks, that's 1 << 128, so we can just + // add 1 to the most significant (2¹²⁸) limb, h2. + if len(msg) >= TagSize { + h0, c = bitsAdd64(h0, binary.LittleEndian.Uint64(msg[0:8]), 0) + h1, c = bitsAdd64(h1, binary.LittleEndian.Uint64(msg[8:16]), c) + h2 += c + 1 + + msg = msg[TagSize:] + } else { + var buf [TagSize]byte + copy(buf[:], msg) + buf[len(msg)] = 1 + + h0, c = bitsAdd64(h0, binary.LittleEndian.Uint64(buf[0:8]), 0) + h1, c = bitsAdd64(h1, binary.LittleEndian.Uint64(buf[8:16]), c) + h2 += c + + msg = nil + } + + // Multiplication of big number limbs is similar to elementary school + // columnar multiplication. Instead of digits, there are 64-bit limbs. + // + // We are multiplying a 3 limbs number, h, by a 2 limbs number, r. + // + // h2 h1 h0 x + // r1 r0 = + // ---------------- + // h2r0 h1r0 h0r0 <-- individual 128-bit products + // + h2r1 h1r1 h0r1 + // ------------------------ + // m3 m2 m1 m0 <-- result in 128-bit overlapping limbs + // ------------------------ + // m3.hi m2.hi m1.hi m0.hi <-- carry propagation + // + m3.lo m2.lo m1.lo m0.lo + // ------------------------------- + // t4 t3 t2 t1 t0 <-- final result in 64-bit limbs + // + // The main difference from pen-and-paper multiplication is that we do + // carry propagation in a separate step, as if we wrote two digit sums + // at first (the 128-bit limbs), and then carried the tens all at once. + + h0r0 := mul64(h0, r0) + h1r0 := mul64(h1, r0) + h2r0 := mul64(h2, r0) + h0r1 := mul64(h0, r1) + h1r1 := mul64(h1, r1) + h2r1 := mul64(h2, r1) + + // Since h2 is known to be at most 7 (5 + 1 + 1), and r0 and r1 have their + // top 4 bits cleared by rMask{0,1}, we know that their product is not going + // to overflow 64 bits, so we can ignore the high part of the products. + // + // This also means that the product doesn't have a fifth limb (t4). + if h2r0.hi != 0 { + panic("poly1305: unexpected overflow") + } + if h2r1.hi != 0 { + panic("poly1305: unexpected overflow") + } + + m0 := h0r0 + m1 := add128(h1r0, h0r1) // These two additions don't overflow thanks again + m2 := add128(h2r0, h1r1) // to the 4 masked bits at the top of r0 and r1. + m3 := h2r1 + + t0 := m0.lo + t1, c := bitsAdd64(m1.lo, m0.hi, 0) + t2, c := bitsAdd64(m2.lo, m1.hi, c) + t3, _ := bitsAdd64(m3.lo, m2.hi, c) + + // Now we have the result as 4 64-bit limbs, and we need to reduce it + // modulo 2¹³⁰ - 5. The special shape of this Crandall prime lets us do + // a cheap partial reduction according to the reduction identity + // + // c * 2¹³⁰ + n = c * 5 + n mod 2¹³⁰ - 5 + // + // because 2¹³⁰ = 5 mod 2¹³⁰ - 5. Partial reduction since the result is + // likely to be larger than 2¹³⁰ - 5, but still small enough to fit the + // assumptions we make about h in the rest of the code. + // + // See also https://speakerdeck.com/gtank/engineering-prime-numbers?slide=23 + + // We split the final result at the 2¹³⁰ mark into h and cc, the carry. + // Note that the carry bits are effectively shifted left by 2, in other + // words, cc = c * 4 for the c in the reduction identity. + h0, h1, h2 = t0, t1, t2&maskLow2Bits + cc := uint128{t2 & maskNotLow2Bits, t3} + + // To add c * 5 to h, we first add cc = c * 4, and then add (cc >> 2) = c. + + h0, c = bitsAdd64(h0, cc.lo, 0) + h1, c = bitsAdd64(h1, cc.hi, c) + h2 += c + + cc = shiftRightBy2(cc) + + h0, c = bitsAdd64(h0, cc.lo, 0) + h1, c = bitsAdd64(h1, cc.hi, c) + h2 += c + + // h2 is at most 3 + 1 + 1 = 5, making the whole of h at most + // + // 5 * 2¹²⁸ + (2¹²⁸ - 1) = 6 * 2¹²⁸ - 1 + } + + state.h[0], state.h[1], state.h[2] = h0, h1, h2 +} + +const ( + maskLow2Bits uint64 = 0x0000000000000003 + maskNotLow2Bits uint64 = ^maskLow2Bits +) + +// select64 returns x if v == 1 and y if v == 0, in constant time. +func select64(v, x, y uint64) uint64 { return ^(v-1)&x | (v-1)&y } + +// [p0, p1, p2] is 2¹³⁰ - 5 in little endian order. +const ( + p0 = 0xFFFFFFFFFFFFFFFB + p1 = 0xFFFFFFFFFFFFFFFF + p2 = 0x0000000000000003 +) + +// finalize completes the modular reduction of h and computes +// +// out = h + s mod 2¹²⁸ +// +func finalize(out *[TagSize]byte, h *[3]uint64, s *[2]uint64) { + h0, h1, h2 := h[0], h[1], h[2] + + // After the partial reduction in updateGeneric, h might be more than + // 2¹³⁰ - 5, but will be less than 2 * (2¹³⁰ - 5). To complete the reduction + // in constant time, we compute t = h - (2¹³⁰ - 5), and select h as the + // result if the subtraction underflows, and t otherwise. + + hMinusP0, b := bitsSub64(h0, p0, 0) + hMinusP1, b := bitsSub64(h1, p1, b) + _, b = bitsSub64(h2, p2, b) + + // h = h if h < p else h - p + h0 = select64(b, h0, hMinusP0) + h1 = select64(b, h1, hMinusP1) + + // Finally, we compute the last Poly1305 step + // + // tag = h + s mod 2¹²⁸ + // + // by just doing a wide addition with the 128 low bits of h and discarding + // the overflow. + h0, c := bitsAdd64(h0, s[0], 0) + h1, _ = bitsAdd64(h1, s[1], c) + + binary.LittleEndian.PutUint64(out[0:8], h0) + binary.LittleEndian.PutUint64(out[8:16], h1) +} diff --git a/vendor/golang.org/x/crypto/internal/poly1305/sum_ppc64le.go b/vendor/golang.org/x/crypto/internal/poly1305/sum_ppc64le.go new file mode 100644 index 0000000..4a06994 --- /dev/null +++ b/vendor/golang.org/x/crypto/internal/poly1305/sum_ppc64le.go @@ -0,0 +1,48 @@ +// Copyright 2019 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +//go:build gc && !purego +// +build gc,!purego + +package poly1305 + +//go:noescape +func update(state *macState, msg []byte) + +// mac is a wrapper for macGeneric that redirects calls that would have gone to +// updateGeneric to update. +// +// Its Write and Sum methods are otherwise identical to the macGeneric ones, but +// using function pointers would carry a major performance cost. +type mac struct{ macGeneric } + +func (h *mac) Write(p []byte) (int, error) { + nn := len(p) + if h.offset > 0 { + n := copy(h.buffer[h.offset:], p) + if h.offset+n < TagSize { + h.offset += n + return nn, nil + } + p = p[n:] + h.offset = 0 + update(&h.macState, h.buffer[:]) + } + if n := len(p) - (len(p) % TagSize); n > 0 { + update(&h.macState, p[:n]) + p = p[n:] + } + if len(p) > 0 { + h.offset += copy(h.buffer[h.offset:], p) + } + return nn, nil +} + +func (h *mac) Sum(out *[16]byte) { + state := h.macState + if h.offset > 0 { + update(&state, h.buffer[:h.offset]) + } + finalize(out, &state.h, &state.s) +} diff --git a/vendor/golang.org/x/crypto/internal/poly1305/sum_ppc64le.s b/vendor/golang.org/x/crypto/internal/poly1305/sum_ppc64le.s new file mode 100644 index 0000000..58422aa --- /dev/null +++ b/vendor/golang.org/x/crypto/internal/poly1305/sum_ppc64le.s @@ -0,0 +1,182 @@ +// Copyright 2019 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +//go:build gc && !purego +// +build gc,!purego + +#include "textflag.h" + +// This was ported from the amd64 implementation. + +#define POLY1305_ADD(msg, h0, h1, h2, t0, t1, t2) \ + MOVD (msg), t0; \ + MOVD 8(msg), t1; \ + MOVD $1, t2; \ + ADDC t0, h0, h0; \ + ADDE t1, h1, h1; \ + ADDE t2, h2; \ + ADD $16, msg + +#define POLY1305_MUL(h0, h1, h2, r0, r1, t0, t1, t2, t3, t4, t5) \ + MULLD r0, h0, t0; \ + MULLD r0, h1, t4; \ + MULHDU r0, h0, t1; \ + MULHDU r0, h1, t5; \ + ADDC t4, t1, t1; \ + MULLD r0, h2, t2; \ + ADDZE t5; \ + MULHDU r1, h0, t4; \ + MULLD r1, h0, h0; \ + ADD t5, t2, t2; \ + ADDC h0, t1, t1; \ + MULLD h2, r1, t3; \ + ADDZE t4, h0; \ + MULHDU r1, h1, t5; \ + MULLD r1, h1, t4; \ + ADDC t4, t2, t2; \ + ADDE t5, t3, t3; \ + ADDC h0, t2, t2; \ + MOVD $-4, t4; \ + MOVD t0, h0; \ + MOVD t1, h1; \ + ADDZE t3; \ + ANDCC $3, t2, h2; \ + AND t2, t4, t0; \ + ADDC t0, h0, h0; \ + ADDE t3, h1, h1; \ + SLD $62, t3, t4; \ + SRD $2, t2; \ + ADDZE h2; \ + OR t4, t2, t2; \ + SRD $2, t3; \ + ADDC t2, h0, h0; \ + ADDE t3, h1, h1; \ + ADDZE h2 + +DATA ·poly1305Mask<>+0x00(SB)/8, $0x0FFFFFFC0FFFFFFF +DATA ·poly1305Mask<>+0x08(SB)/8, $0x0FFFFFFC0FFFFFFC +GLOBL ·poly1305Mask<>(SB), RODATA, $16 + +// func update(state *[7]uint64, msg []byte) +TEXT ·update(SB), $0-32 + MOVD state+0(FP), R3 + MOVD msg_base+8(FP), R4 + MOVD msg_len+16(FP), R5 + + MOVD 0(R3), R8 // h0 + MOVD 8(R3), R9 // h1 + MOVD 16(R3), R10 // h2 + MOVD 24(R3), R11 // r0 + MOVD 32(R3), R12 // r1 + + CMP R5, $16 + BLT bytes_between_0_and_15 + +loop: + POLY1305_ADD(R4, R8, R9, R10, R20, R21, R22) + +multiply: + POLY1305_MUL(R8, R9, R10, R11, R12, R16, R17, R18, R14, R20, R21) + ADD $-16, R5 + CMP R5, $16 + BGE loop + +bytes_between_0_and_15: + CMP R5, $0 + BEQ done + MOVD $0, R16 // h0 + MOVD $0, R17 // h1 + +flush_buffer: + CMP R5, $8 + BLE just1 + + MOVD $8, R21 + SUB R21, R5, R21 + + // Greater than 8 -- load the rightmost remaining bytes in msg + // and put into R17 (h1) + MOVD (R4)(R21), R17 + MOVD $16, R22 + + // Find the offset to those bytes + SUB R5, R22, R22 + SLD $3, R22 + + // Shift to get only the bytes in msg + SRD R22, R17, R17 + + // Put 1 at high end + MOVD $1, R23 + SLD $3, R21 + SLD R21, R23, R23 + OR R23, R17, R17 + + // Remainder is 8 + MOVD $8, R5 + +just1: + CMP R5, $8 + BLT less8 + + // Exactly 8 + MOVD (R4), R16 + + CMP R17, $0 + + // Check if we've already set R17; if not + // set 1 to indicate end of msg. + BNE carry + MOVD $1, R17 + BR carry + +less8: + MOVD $0, R16 // h0 + MOVD $0, R22 // shift count + CMP R5, $4 + BLT less4 + MOVWZ (R4), R16 + ADD $4, R4 + ADD $-4, R5 + MOVD $32, R22 + +less4: + CMP R5, $2 + BLT less2 + MOVHZ (R4), R21 + SLD R22, R21, R21 + OR R16, R21, R16 + ADD $16, R22 + ADD $-2, R5 + ADD $2, R4 + +less2: + CMP R5, $0 + BEQ insert1 + MOVBZ (R4), R21 + SLD R22, R21, R21 + OR R16, R21, R16 + ADD $8, R22 + +insert1: + // Insert 1 at end of msg + MOVD $1, R21 + SLD R22, R21, R21 + OR R16, R21, R16 + +carry: + // Add new values to h0, h1, h2 + ADDC R16, R8 + ADDE R17, R9 + ADDZE R10, R10 + MOVD $16, R5 + ADD R5, R4 + BR multiply + +done: + // Save h0, h1, h2 in state + MOVD R8, 0(R3) + MOVD R9, 8(R3) + MOVD R10, 16(R3) + RET diff --git a/vendor/golang.org/x/crypto/internal/poly1305/sum_s390x.go b/vendor/golang.org/x/crypto/internal/poly1305/sum_s390x.go new file mode 100644 index 0000000..62cc9f8 --- /dev/null +++ b/vendor/golang.org/x/crypto/internal/poly1305/sum_s390x.go @@ -0,0 +1,76 @@ +// Copyright 2018 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +//go:build gc && !purego +// +build gc,!purego + +package poly1305 + +import ( + "golang.org/x/sys/cpu" +) + +// updateVX is an assembly implementation of Poly1305 that uses vector +// instructions. It must only be called if the vector facility (vx) is +// available. +//go:noescape +func updateVX(state *macState, msg []byte) + +// mac is a replacement for macGeneric that uses a larger buffer and redirects +// calls that would have gone to updateGeneric to updateVX if the vector +// facility is installed. +// +// A larger buffer is required for good performance because the vector +// implementation has a higher fixed cost per call than the generic +// implementation. +type mac struct { + macState + + buffer [16 * TagSize]byte // size must be a multiple of block size (16) + offset int +} + +func (h *mac) Write(p []byte) (int, error) { + nn := len(p) + if h.offset > 0 { + n := copy(h.buffer[h.offset:], p) + if h.offset+n < len(h.buffer) { + h.offset += n + return nn, nil + } + p = p[n:] + h.offset = 0 + if cpu.S390X.HasVX { + updateVX(&h.macState, h.buffer[:]) + } else { + updateGeneric(&h.macState, h.buffer[:]) + } + } + + tail := len(p) % len(h.buffer) // number of bytes to copy into buffer + body := len(p) - tail // number of bytes to process now + if body > 0 { + if cpu.S390X.HasVX { + updateVX(&h.macState, p[:body]) + } else { + updateGeneric(&h.macState, p[:body]) + } + } + h.offset = copy(h.buffer[:], p[body:]) // copy tail bytes - can be 0 + return nn, nil +} + +func (h *mac) Sum(out *[TagSize]byte) { + state := h.macState + remainder := h.buffer[:h.offset] + + // Use the generic implementation if we have 2 or fewer blocks left + // to sum. The vector implementation has a higher startup time. + if cpu.S390X.HasVX && len(remainder) > 2*TagSize { + updateVX(&state, remainder) + } else if len(remainder) > 0 { + updateGeneric(&state, remainder) + } + finalize(out, &state.h, &state.s) +} diff --git a/vendor/golang.org/x/crypto/internal/poly1305/sum_s390x.s b/vendor/golang.org/x/crypto/internal/poly1305/sum_s390x.s new file mode 100644 index 0000000..aa9e049 --- /dev/null +++ b/vendor/golang.org/x/crypto/internal/poly1305/sum_s390x.s @@ -0,0 +1,504 @@ +// Copyright 2018 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +//go:build gc && !purego +// +build gc,!purego + +#include "textflag.h" + +// This implementation of Poly1305 uses the vector facility (vx) +// to process up to 2 blocks (32 bytes) per iteration using an +// algorithm based on the one described in: +// +// NEON crypto, Daniel J. Bernstein & Peter Schwabe +// https://cryptojedi.org/papers/neoncrypto-20120320.pdf +// +// This algorithm uses 5 26-bit limbs to represent a 130-bit +// value. These limbs are, for the most part, zero extended and +// placed into 64-bit vector register elements. Each vector +// register is 128-bits wide and so holds 2 of these elements. +// Using 26-bit limbs allows us plenty of headroom to accommodate +// accumulations before and after multiplication without +// overflowing either 32-bits (before multiplication) or 64-bits +// (after multiplication). +// +// In order to parallelise the operations required to calculate +// the sum we use two separate accumulators and then sum those +// in an extra final step. For compatibility with the generic +// implementation we perform this summation at the end of every +// updateVX call. +// +// To use two accumulators we must multiply the message blocks +// by r² rather than r. Only the final message block should be +// multiplied by r. +// +// Example: +// +// We want to calculate the sum (h) for a 64 byte message (m): +// +// h = m[0:16]r⁴ + m[16:32]r³ + m[32:48]r² + m[48:64]r +// +// To do this we split the calculation into the even indices +// and odd indices of the message. These form our SIMD 'lanes': +// +// h = m[ 0:16]r⁴ + m[32:48]r² + <- lane 0 +// m[16:32]r³ + m[48:64]r <- lane 1 +// +// To calculate this iteratively we refactor so that both lanes +// are written in terms of r² and r: +// +// h = (m[ 0:16]r² + m[32:48])r² + <- lane 0 +// (m[16:32]r² + m[48:64])r <- lane 1 +// ^ ^ +// | coefficients for second iteration +// coefficients for first iteration +// +// So in this case we would have two iterations. In the first +// both lanes are multiplied by r². In the second only the +// first lane is multiplied by r² and the second lane is +// instead multiplied by r. This gives use the odd and even +// powers of r that we need from the original equation. +// +// Notation: +// +// h - accumulator +// r - key +// m - message +// +// [a, b] - SIMD register holding two 64-bit values +// [a, b, c, d] - SIMD register holding four 32-bit values +// xᵢ[n] - limb n of variable x with bit width i +// +// Limbs are expressed in little endian order, so for 26-bit +// limbs x₂₆[4] will be the most significant limb and x₂₆[0] +// will be the least significant limb. + +// masking constants +#define MOD24 V0 // [0x0000000000ffffff, 0x0000000000ffffff] - mask low 24-bits +#define MOD26 V1 // [0x0000000003ffffff, 0x0000000003ffffff] - mask low 26-bits + +// expansion constants (see EXPAND macro) +#define EX0 V2 +#define EX1 V3 +#define EX2 V4 + +// key (r², r or 1 depending on context) +#define R_0 V5 +#define R_1 V6 +#define R_2 V7 +#define R_3 V8 +#define R_4 V9 + +// precalculated coefficients (5r², 5r or 0 depending on context) +#define R5_1 V10 +#define R5_2 V11 +#define R5_3 V12 +#define R5_4 V13 + +// message block (m) +#define M_0 V14 +#define M_1 V15 +#define M_2 V16 +#define M_3 V17 +#define M_4 V18 + +// accumulator (h) +#define H_0 V19 +#define H_1 V20 +#define H_2 V21 +#define H_3 V22 +#define H_4 V23 + +// temporary registers (for short-lived values) +#define T_0 V24 +#define T_1 V25 +#define T_2 V26 +#define T_3 V27 +#define T_4 V28 + +GLOBL ·constants<>(SB), RODATA, $0x30 +// EX0 +DATA ·constants<>+0x00(SB)/8, $0x0006050403020100 +DATA ·constants<>+0x08(SB)/8, $0x1016151413121110 +// EX1 +DATA ·constants<>+0x10(SB)/8, $0x060c0b0a09080706 +DATA ·constants<>+0x18(SB)/8, $0x161c1b1a19181716 +// EX2 +DATA ·constants<>+0x20(SB)/8, $0x0d0d0d0d0d0f0e0d +DATA ·constants<>+0x28(SB)/8, $0x1d1d1d1d1d1f1e1d + +// MULTIPLY multiplies each lane of f and g, partially reduced +// modulo 2¹³⁰ - 5. The result, h, consists of partial products +// in each lane that need to be reduced further to produce the +// final result. +// +// h₁₃₀ = (f₁₃₀g₁₃₀) % 2¹³⁰ + (5f₁₃₀g₁₃₀) / 2¹³⁰ +// +// Note that the multiplication by 5 of the high bits is +// achieved by precalculating the multiplication of four of the +// g coefficients by 5. These are g51-g54. +#define MULTIPLY(f0, f1, f2, f3, f4, g0, g1, g2, g3, g4, g51, g52, g53, g54, h0, h1, h2, h3, h4) \ + VMLOF f0, g0, h0 \ + VMLOF f0, g3, h3 \ + VMLOF f0, g1, h1 \ + VMLOF f0, g4, h4 \ + VMLOF f0, g2, h2 \ + VMLOF f1, g54, T_0 \ + VMLOF f1, g2, T_3 \ + VMLOF f1, g0, T_1 \ + VMLOF f1, g3, T_4 \ + VMLOF f1, g1, T_2 \ + VMALOF f2, g53, h0, h0 \ + VMALOF f2, g1, h3, h3 \ + VMALOF f2, g54, h1, h1 \ + VMALOF f2, g2, h4, h4 \ + VMALOF f2, g0, h2, h2 \ + VMALOF f3, g52, T_0, T_0 \ + VMALOF f3, g0, T_3, T_3 \ + VMALOF f3, g53, T_1, T_1 \ + VMALOF f3, g1, T_4, T_4 \ + VMALOF f3, g54, T_2, T_2 \ + VMALOF f4, g51, h0, h0 \ + VMALOF f4, g54, h3, h3 \ + VMALOF f4, g52, h1, h1 \ + VMALOF f4, g0, h4, h4 \ + VMALOF f4, g53, h2, h2 \ + VAG T_0, h0, h0 \ + VAG T_3, h3, h3 \ + VAG T_1, h1, h1 \ + VAG T_4, h4, h4 \ + VAG T_2, h2, h2 + +// REDUCE performs the following carry operations in four +// stages, as specified in Bernstein & Schwabe: +// +// 1: h₂₆[0]->h₂₆[1] h₂₆[3]->h₂₆[4] +// 2: h₂₆[1]->h₂₆[2] h₂₆[4]->h₂₆[0] +// 3: h₂₆[0]->h₂₆[1] h₂₆[2]->h₂₆[3] +// 4: h₂₆[3]->h₂₆[4] +// +// The result is that all of the limbs are limited to 26-bits +// except for h₂₆[1] and h₂₆[4] which are limited to 27-bits. +// +// Note that although each limb is aligned at 26-bit intervals +// they may contain values that exceed 2²⁶ - 1, hence the need +// to carry the excess bits in each limb. +#define REDUCE(h0, h1, h2, h3, h4) \ + VESRLG $26, h0, T_0 \ + VESRLG $26, h3, T_1 \ + VN MOD26, h0, h0 \ + VN MOD26, h3, h3 \ + VAG T_0, h1, h1 \ + VAG T_1, h4, h4 \ + VESRLG $26, h1, T_2 \ + VESRLG $26, h4, T_3 \ + VN MOD26, h1, h1 \ + VN MOD26, h4, h4 \ + VESLG $2, T_3, T_4 \ + VAG T_3, T_4, T_4 \ + VAG T_2, h2, h2 \ + VAG T_4, h0, h0 \ + VESRLG $26, h2, T_0 \ + VESRLG $26, h0, T_1 \ + VN MOD26, h2, h2 \ + VN MOD26, h0, h0 \ + VAG T_0, h3, h3 \ + VAG T_1, h1, h1 \ + VESRLG $26, h3, T_2 \ + VN MOD26, h3, h3 \ + VAG T_2, h4, h4 + +// EXPAND splits the 128-bit little-endian values in0 and in1 +// into 26-bit big-endian limbs and places the results into +// the first and second lane of d₂₆[0:4] respectively. +// +// The EX0, EX1 and EX2 constants are arrays of byte indices +// for permutation. The permutation both reverses the bytes +// in the input and ensures the bytes are copied into the +// destination limb ready to be shifted into their final +// position. +#define EXPAND(in0, in1, d0, d1, d2, d3, d4) \ + VPERM in0, in1, EX0, d0 \ + VPERM in0, in1, EX1, d2 \ + VPERM in0, in1, EX2, d4 \ + VESRLG $26, d0, d1 \ + VESRLG $30, d2, d3 \ + VESRLG $4, d2, d2 \ + VN MOD26, d0, d0 \ // [in0₂₆[0], in1₂₆[0]] + VN MOD26, d3, d3 \ // [in0₂₆[3], in1₂₆[3]] + VN MOD26, d1, d1 \ // [in0₂₆[1], in1₂₆[1]] + VN MOD24, d4, d4 \ // [in0₂₆[4], in1₂₆[4]] + VN MOD26, d2, d2 // [in0₂₆[2], in1₂₆[2]] + +// func updateVX(state *macState, msg []byte) +TEXT ·updateVX(SB), NOSPLIT, $0 + MOVD state+0(FP), R1 + LMG msg+8(FP), R2, R3 // R2=msg_base, R3=msg_len + + // load EX0, EX1 and EX2 + MOVD $·constants<>(SB), R5 + VLM (R5), EX0, EX2 + + // generate masks + VGMG $(64-24), $63, MOD24 // [0x00ffffff, 0x00ffffff] + VGMG $(64-26), $63, MOD26 // [0x03ffffff, 0x03ffffff] + + // load h (accumulator) and r (key) from state + VZERO T_1 // [0, 0] + VL 0(R1), T_0 // [h₆₄[0], h₆₄[1]] + VLEG $0, 16(R1), T_1 // [h₆₄[2], 0] + VL 24(R1), T_2 // [r₆₄[0], r₆₄[1]] + VPDI $0, T_0, T_2, T_3 // [h₆₄[0], r₆₄[0]] + VPDI $5, T_0, T_2, T_4 // [h₆₄[1], r₆₄[1]] + + // unpack h and r into 26-bit limbs + // note: h₆₄[2] may have the low 3 bits set, so h₂₆[4] is a 27-bit value + VN MOD26, T_3, H_0 // [h₂₆[0], r₂₆[0]] + VZERO H_1 // [0, 0] + VZERO H_3 // [0, 0] + VGMG $(64-12-14), $(63-12), T_0 // [0x03fff000, 0x03fff000] - 26-bit mask with low 12 bits masked out + VESLG $24, T_1, T_1 // [h₆₄[2]<<24, 0] + VERIMG $-26&63, T_3, MOD26, H_1 // [h₂₆[1], r₂₆[1]] + VESRLG $+52&63, T_3, H_2 // [h₂₆[2], r₂₆[2]] - low 12 bits only + VERIMG $-14&63, T_4, MOD26, H_3 // [h₂₆[1], r₂₆[1]] + VESRLG $40, T_4, H_4 // [h₂₆[4], r₂₆[4]] - low 24 bits only + VERIMG $+12&63, T_4, T_0, H_2 // [h₂₆[2], r₂₆[2]] - complete + VO T_1, H_4, H_4 // [h₂₆[4], r₂₆[4]] - complete + + // replicate r across all 4 vector elements + VREPF $3, H_0, R_0 // [r₂₆[0], r₂₆[0], r₂₆[0], r₂₆[0]] + VREPF $3, H_1, R_1 // [r₂₆[1], r₂₆[1], r₂₆[1], r₂₆[1]] + VREPF $3, H_2, R_2 // [r₂₆[2], r₂₆[2], r₂₆[2], r₂₆[2]] + VREPF $3, H_3, R_3 // [r₂₆[3], r₂₆[3], r₂₆[3], r₂₆[3]] + VREPF $3, H_4, R_4 // [r₂₆[4], r₂₆[4], r₂₆[4], r₂₆[4]] + + // zero out lane 1 of h + VLEIG $1, $0, H_0 // [h₂₆[0], 0] + VLEIG $1, $0, H_1 // [h₂₆[1], 0] + VLEIG $1, $0, H_2 // [h₂₆[2], 0] + VLEIG $1, $0, H_3 // [h₂₆[3], 0] + VLEIG $1, $0, H_4 // [h₂₆[4], 0] + + // calculate 5r (ignore least significant limb) + VREPIF $5, T_0 + VMLF T_0, R_1, R5_1 // [5r₂₆[1], 5r₂₆[1], 5r₂₆[1], 5r₂₆[1]] + VMLF T_0, R_2, R5_2 // [5r₂₆[2], 5r₂₆[2], 5r₂₆[2], 5r₂₆[2]] + VMLF T_0, R_3, R5_3 // [5r₂₆[3], 5r₂₆[3], 5r₂₆[3], 5r₂₆[3]] + VMLF T_0, R_4, R5_4 // [5r₂₆[4], 5r₂₆[4], 5r₂₆[4], 5r₂₆[4]] + + // skip r² calculation if we are only calculating one block + CMPBLE R3, $16, skip + + // calculate r² + MULTIPLY(R_0, R_1, R_2, R_3, R_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, M_0, M_1, M_2, M_3, M_4) + REDUCE(M_0, M_1, M_2, M_3, M_4) + VGBM $0x0f0f, T_0 + VERIMG $0, M_0, T_0, R_0 // [r₂₆[0], r²₂₆[0], r₂₆[0], r²₂₆[0]] + VERIMG $0, M_1, T_0, R_1 // [r₂₆[1], r²₂₆[1], r₂₆[1], r²₂₆[1]] + VERIMG $0, M_2, T_0, R_2 // [r₂₆[2], r²₂₆[2], r₂₆[2], r²₂₆[2]] + VERIMG $0, M_3, T_0, R_3 // [r₂₆[3], r²₂₆[3], r₂₆[3], r²₂₆[3]] + VERIMG $0, M_4, T_0, R_4 // [r₂₆[4], r²₂₆[4], r₂₆[4], r²₂₆[4]] + + // calculate 5r² (ignore least significant limb) + VREPIF $5, T_0 + VMLF T_0, R_1, R5_1 // [5r₂₆[1], 5r²₂₆[1], 5r₂₆[1], 5r²₂₆[1]] + VMLF T_0, R_2, R5_2 // [5r₂₆[2], 5r²₂₆[2], 5r₂₆[2], 5r²₂₆[2]] + VMLF T_0, R_3, R5_3 // [5r₂₆[3], 5r²₂₆[3], 5r₂₆[3], 5r²₂₆[3]] + VMLF T_0, R_4, R5_4 // [5r₂₆[4], 5r²₂₆[4], 5r₂₆[4], 5r²₂₆[4]] + +loop: + CMPBLE R3, $32, b2 // 2 or fewer blocks remaining, need to change key coefficients + + // load next 2 blocks from message + VLM (R2), T_0, T_1 + + // update message slice + SUB $32, R3 + MOVD $32(R2), R2 + + // unpack message blocks into 26-bit big-endian limbs + EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4) + + // add 2¹²⁸ to each message block value + VLEIB $4, $1, M_4 + VLEIB $12, $1, M_4 + +multiply: + // accumulate the incoming message + VAG H_0, M_0, M_0 + VAG H_3, M_3, M_3 + VAG H_1, M_1, M_1 + VAG H_4, M_4, M_4 + VAG H_2, M_2, M_2 + + // multiply the accumulator by the key coefficient + MULTIPLY(M_0, M_1, M_2, M_3, M_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, H_0, H_1, H_2, H_3, H_4) + + // carry and partially reduce the partial products + REDUCE(H_0, H_1, H_2, H_3, H_4) + + CMPBNE R3, $0, loop + +finish: + // sum lane 0 and lane 1 and put the result in lane 1 + VZERO T_0 + VSUMQG H_0, T_0, H_0 + VSUMQG H_3, T_0, H_3 + VSUMQG H_1, T_0, H_1 + VSUMQG H_4, T_0, H_4 + VSUMQG H_2, T_0, H_2 + + // reduce again after summation + // TODO(mundaym): there might be a more efficient way to do this + // now that we only have 1 active lane. For example, we could + // simultaneously pack the values as we reduce them. + REDUCE(H_0, H_1, H_2, H_3, H_4) + + // carry h[1] through to h[4] so that only h[4] can exceed 2²⁶ - 1 + // TODO(mundaym): in testing this final carry was unnecessary. + // Needs a proof before it can be removed though. + VESRLG $26, H_1, T_1 + VN MOD26, H_1, H_1 + VAQ T_1, H_2, H_2 + VESRLG $26, H_2, T_2 + VN MOD26, H_2, H_2 + VAQ T_2, H_3, H_3 + VESRLG $26, H_3, T_3 + VN MOD26, H_3, H_3 + VAQ T_3, H_4, H_4 + + // h is now < 2(2¹³⁰ - 5) + // Pack each lane in h₂₆[0:4] into h₁₂₈[0:1]. + VESLG $26, H_1, H_1 + VESLG $26, H_3, H_3 + VO H_0, H_1, H_0 + VO H_2, H_3, H_2 + VESLG $4, H_2, H_2 + VLEIB $7, $48, H_1 + VSLB H_1, H_2, H_2 + VO H_0, H_2, H_0 + VLEIB $7, $104, H_1 + VSLB H_1, H_4, H_3 + VO H_3, H_0, H_0 + VLEIB $7, $24, H_1 + VSRLB H_1, H_4, H_1 + + // update state + VSTEG $1, H_0, 0(R1) + VSTEG $0, H_0, 8(R1) + VSTEG $1, H_1, 16(R1) + RET + +b2: // 2 or fewer blocks remaining + CMPBLE R3, $16, b1 + + // Load the 2 remaining blocks (17-32 bytes remaining). + MOVD $-17(R3), R0 // index of final byte to load modulo 16 + VL (R2), T_0 // load full 16 byte block + VLL R0, 16(R2), T_1 // load final (possibly partial) block and pad with zeros to 16 bytes + + // The Poly1305 algorithm requires that a 1 bit be appended to + // each message block. If the final block is less than 16 bytes + // long then it is easiest to insert the 1 before the message + // block is split into 26-bit limbs. If, on the other hand, the + // final message block is 16 bytes long then we append the 1 bit + // after expansion as normal. + MOVBZ $1, R0 + MOVD $-16(R3), R3 // index of byte in last block to insert 1 at (could be 16) + CMPBEQ R3, $16, 2(PC) // skip the insertion if the final block is 16 bytes long + VLVGB R3, R0, T_1 // insert 1 into the byte at index R3 + + // Split both blocks into 26-bit limbs in the appropriate lanes. + EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4) + + // Append a 1 byte to the end of the second to last block. + VLEIB $4, $1, M_4 + + // Append a 1 byte to the end of the last block only if it is a + // full 16 byte block. + CMPBNE R3, $16, 2(PC) + VLEIB $12, $1, M_4 + + // Finally, set up the coefficients for the final multiplication. + // We have previously saved r and 5r in the 32-bit even indexes + // of the R_[0-4] and R5_[1-4] coefficient registers. + // + // We want lane 0 to be multiplied by r² so that can be kept the + // same. We want lane 1 to be multiplied by r so we need to move + // the saved r value into the 32-bit odd index in lane 1 by + // rotating the 64-bit lane by 32. + VGBM $0x00ff, T_0 // [0, 0xffffffffffffffff] - mask lane 1 only + VERIMG $32, R_0, T_0, R_0 // [_, r²₂₆[0], _, r₂₆[0]] + VERIMG $32, R_1, T_0, R_1 // [_, r²₂₆[1], _, r₂₆[1]] + VERIMG $32, R_2, T_0, R_2 // [_, r²₂₆[2], _, r₂₆[2]] + VERIMG $32, R_3, T_0, R_3 // [_, r²₂₆[3], _, r₂₆[3]] + VERIMG $32, R_4, T_0, R_4 // [_, r²₂₆[4], _, r₂₆[4]] + VERIMG $32, R5_1, T_0, R5_1 // [_, 5r²₂₆[1], _, 5r₂₆[1]] + VERIMG $32, R5_2, T_0, R5_2 // [_, 5r²₂₆[2], _, 5r₂₆[2]] + VERIMG $32, R5_3, T_0, R5_3 // [_, 5r²₂₆[3], _, 5r₂₆[3]] + VERIMG $32, R5_4, T_0, R5_4 // [_, 5r²₂₆[4], _, 5r₂₆[4]] + + MOVD $0, R3 + BR multiply + +skip: + CMPBEQ R3, $0, finish + +b1: // 1 block remaining + + // Load the final block (1-16 bytes). This will be placed into + // lane 0. + MOVD $-1(R3), R0 + VLL R0, (R2), T_0 // pad to 16 bytes with zeros + + // The Poly1305 algorithm requires that a 1 bit be appended to + // each message block. If the final block is less than 16 bytes + // long then it is easiest to insert the 1 before the message + // block is split into 26-bit limbs. If, on the other hand, the + // final message block is 16 bytes long then we append the 1 bit + // after expansion as normal. + MOVBZ $1, R0 + CMPBEQ R3, $16, 2(PC) + VLVGB R3, R0, T_0 + + // Set the message block in lane 1 to the value 0 so that it + // can be accumulated without affecting the final result. + VZERO T_1 + + // Split the final message block into 26-bit limbs in lane 0. + // Lane 1 will be contain 0. + EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4) + + // Append a 1 byte to the end of the last block only if it is a + // full 16 byte block. + CMPBNE R3, $16, 2(PC) + VLEIB $4, $1, M_4 + + // We have previously saved r and 5r in the 32-bit even indexes + // of the R_[0-4] and R5_[1-4] coefficient registers. + // + // We want lane 0 to be multiplied by r so we need to move the + // saved r value into the 32-bit odd index in lane 0. We want + // lane 1 to be set to the value 1. This makes multiplication + // a no-op. We do this by setting lane 1 in every register to 0 + // and then just setting the 32-bit index 3 in R_0 to 1. + VZERO T_0 + MOVD $0, R0 + MOVD $0x10111213, R12 + VLVGP R12, R0, T_1 // [_, 0x10111213, _, 0x00000000] + VPERM T_0, R_0, T_1, R_0 // [_, r₂₆[0], _, 0] + VPERM T_0, R_1, T_1, R_1 // [_, r₂₆[1], _, 0] + VPERM T_0, R_2, T_1, R_2 // [_, r₂₆[2], _, 0] + VPERM T_0, R_3, T_1, R_3 // [_, r₂₆[3], _, 0] + VPERM T_0, R_4, T_1, R_4 // [_, r₂₆[4], _, 0] + VPERM T_0, R5_1, T_1, R5_1 // [_, 5r₂₆[1], _, 0] + VPERM T_0, R5_2, T_1, R5_2 // [_, 5r₂₆[2], _, 0] + VPERM T_0, R5_3, T_1, R5_3 // [_, 5r₂₆[3], _, 0] + VPERM T_0, R5_4, T_1, R5_4 // [_, 5r₂₆[4], _, 0] + + // Set the value of lane 1 to be 1. + VLEIF $3, $1, R_0 // [_, r₂₆[0], _, 1] + + MOVD $0, R3 + BR multiply diff --git a/vendor/golang.org/x/crypto/internal/subtle/aliasing.go b/vendor/golang.org/x/crypto/internal/subtle/aliasing.go index f38797b..4fad24f 100644 --- a/vendor/golang.org/x/crypto/internal/subtle/aliasing.go +++ b/vendor/golang.org/x/crypto/internal/subtle/aliasing.go @@ -2,7 +2,8 @@ // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. -// +build !appengine +//go:build !purego +// +build !purego // Package subtle implements functions that are often useful in cryptographic // code but require careful thought to use correctly. diff --git a/vendor/golang.org/x/crypto/internal/subtle/aliasing_appengine.go b/vendor/golang.org/x/crypto/internal/subtle/aliasing_purego.go index 0cc4a8a..80ccbed 100644 --- a/vendor/golang.org/x/crypto/internal/subtle/aliasing_appengine.go +++ b/vendor/golang.org/x/crypto/internal/subtle/aliasing_purego.go @@ -2,7 +2,8 @@ // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. -// +build appengine +//go:build purego +// +build purego // Package subtle implements functions that are often useful in cryptographic // code but require careful thought to use correctly. diff --git a/vendor/golang.org/x/crypto/nacl/secretbox/secretbox.go b/vendor/golang.org/x/crypto/nacl/secretbox/secretbox.go index a98d1bd..a2973e6 100644 --- a/vendor/golang.org/x/crypto/nacl/secretbox/secretbox.go +++ b/vendor/golang.org/x/crypto/nacl/secretbox/secretbox.go @@ -35,8 +35,8 @@ This package is interoperable with NaCl: https://nacl.cr.yp.to/secretbox.html. package secretbox // import "golang.org/x/crypto/nacl/secretbox" import ( + "golang.org/x/crypto/internal/poly1305" "golang.org/x/crypto/internal/subtle" - "golang.org/x/crypto/poly1305" "golang.org/x/crypto/salsa20/salsa" ) diff --git a/vendor/golang.org/x/crypto/poly1305/poly1305.go b/vendor/golang.org/x/crypto/poly1305/poly1305.go deleted file mode 100644 index f562fa5..0000000 --- a/vendor/golang.org/x/crypto/poly1305/poly1305.go +++ /dev/null @@ -1,33 +0,0 @@ -// Copyright 2012 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -/* -Package poly1305 implements Poly1305 one-time message authentication code as -specified in https://cr.yp.to/mac/poly1305-20050329.pdf. - -Poly1305 is a fast, one-time authentication function. It is infeasible for an -attacker to generate an authenticator for a message without the key. However, a -key must only be used for a single message. Authenticating two different -messages with the same key allows an attacker to forge authenticators for other -messages with the same key. - -Poly1305 was originally coupled with AES in order to make Poly1305-AES. AES was -used with a fixed key in order to generate one-time keys from an nonce. -However, in this package AES isn't used and the one-time key is specified -directly. -*/ -package poly1305 // import "golang.org/x/crypto/poly1305" - -import "crypto/subtle" - -// TagSize is the size, in bytes, of a poly1305 authenticator. -const TagSize = 16 - -// Verify returns true if mac is a valid authenticator for m with the given -// key. -func Verify(mac *[16]byte, m []byte, key *[32]byte) bool { - var tmp [16]byte - Sum(&tmp, m, key) - return subtle.ConstantTimeCompare(tmp[:], mac[:]) == 1 -} diff --git a/vendor/golang.org/x/crypto/poly1305/sum_amd64.go b/vendor/golang.org/x/crypto/poly1305/sum_amd64.go deleted file mode 100644 index 4dd72fe..0000000 --- a/vendor/golang.org/x/crypto/poly1305/sum_amd64.go +++ /dev/null @@ -1,22 +0,0 @@ -// Copyright 2012 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// +build amd64,!gccgo,!appengine - -package poly1305 - -// This function is implemented in sum_amd64.s -//go:noescape -func poly1305(out *[16]byte, m *byte, mlen uint64, key *[32]byte) - -// Sum generates an authenticator for m using a one-time key and puts the -// 16-byte result into out. Authenticating two different messages with the same -// key allows an attacker to forge messages at will. -func Sum(out *[16]byte, m []byte, key *[32]byte) { - var mPtr *byte - if len(m) > 0 { - mPtr = &m[0] - } - poly1305(out, mPtr, uint64(len(m)), key) -} diff --git a/vendor/golang.org/x/crypto/poly1305/sum_arm.go b/vendor/golang.org/x/crypto/poly1305/sum_arm.go deleted file mode 100644 index 5dc321c..0000000 --- a/vendor/golang.org/x/crypto/poly1305/sum_arm.go +++ /dev/null @@ -1,22 +0,0 @@ -// Copyright 2015 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// +build arm,!gccgo,!appengine,!nacl - -package poly1305 - -// This function is implemented in sum_arm.s -//go:noescape -func poly1305_auth_armv6(out *[16]byte, m *byte, mlen uint32, key *[32]byte) - -// Sum generates an authenticator for m using a one-time key and puts the -// 16-byte result into out. Authenticating two different messages with the same -// key allows an attacker to forge messages at will. -func Sum(out *[16]byte, m []byte, key *[32]byte) { - var mPtr *byte - if len(m) > 0 { - mPtr = &m[0] - } - poly1305_auth_armv6(out, mPtr, uint32(len(m)), key) -} diff --git a/vendor/golang.org/x/crypto/poly1305/sum_arm.s b/vendor/golang.org/x/crypto/poly1305/sum_arm.s deleted file mode 100644 index f70b4ac..0000000 --- a/vendor/golang.org/x/crypto/poly1305/sum_arm.s +++ /dev/null @@ -1,427 +0,0 @@ -// Copyright 2015 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// +build arm,!gccgo,!appengine,!nacl - -#include "textflag.h" - -// This code was translated into a form compatible with 5a from the public -// domain source by Andrew Moon: github.com/floodyberry/poly1305-opt/blob/master/app/extensions/poly1305. - -DATA ·poly1305_init_constants_armv6<>+0x00(SB)/4, $0x3ffffff -DATA ·poly1305_init_constants_armv6<>+0x04(SB)/4, $0x3ffff03 -DATA ·poly1305_init_constants_armv6<>+0x08(SB)/4, $0x3ffc0ff -DATA ·poly1305_init_constants_armv6<>+0x0c(SB)/4, $0x3f03fff -DATA ·poly1305_init_constants_armv6<>+0x10(SB)/4, $0x00fffff -GLOBL ·poly1305_init_constants_armv6<>(SB), 8, $20 - -// Warning: the linker may use R11 to synthesize certain instructions. Please -// take care and verify that no synthetic instructions use it. - -TEXT poly1305_init_ext_armv6<>(SB), NOSPLIT, $0 - // Needs 16 bytes of stack and 64 bytes of space pointed to by R0. (It - // might look like it's only 60 bytes of space but the final four bytes - // will be written by another function.) We need to skip over four - // bytes of stack because that's saving the value of 'g'. - ADD $4, R13, R8 - MOVM.IB [R4-R7], (R8) - MOVM.IA.W (R1), [R2-R5] - MOVW $·poly1305_init_constants_armv6<>(SB), R7 - MOVW R2, R8 - MOVW R2>>26, R9 - MOVW R3>>20, g - MOVW R4>>14, R11 - MOVW R5>>8, R12 - ORR R3<<6, R9, R9 - ORR R4<<12, g, g - ORR R5<<18, R11, R11 - MOVM.IA (R7), [R2-R6] - AND R8, R2, R2 - AND R9, R3, R3 - AND g, R4, R4 - AND R11, R5, R5 - AND R12, R6, R6 - MOVM.IA.W [R2-R6], (R0) - EOR R2, R2, R2 - EOR R3, R3, R3 - EOR R4, R4, R4 - EOR R5, R5, R5 - EOR R6, R6, R6 - MOVM.IA.W [R2-R6], (R0) - MOVM.IA.W (R1), [R2-R5] - MOVM.IA [R2-R6], (R0) - ADD $20, R13, R0 - MOVM.DA (R0), [R4-R7] - RET - -#define MOVW_UNALIGNED(Rsrc, Rdst, Rtmp, offset) \ - MOVBU (offset+0)(Rsrc), Rtmp; \ - MOVBU Rtmp, (offset+0)(Rdst); \ - MOVBU (offset+1)(Rsrc), Rtmp; \ - MOVBU Rtmp, (offset+1)(Rdst); \ - MOVBU (offset+2)(Rsrc), Rtmp; \ - MOVBU Rtmp, (offset+2)(Rdst); \ - MOVBU (offset+3)(Rsrc), Rtmp; \ - MOVBU Rtmp, (offset+3)(Rdst) - -TEXT poly1305_blocks_armv6<>(SB), NOSPLIT, $0 - // Needs 24 bytes of stack for saved registers and then 88 bytes of - // scratch space after that. We assume that 24 bytes at (R13) have - // already been used: four bytes for the link register saved in the - // prelude of poly1305_auth_armv6, four bytes for saving the value of g - // in that function and 16 bytes of scratch space used around - // poly1305_finish_ext_armv6_skip1. - ADD $24, R13, R12 - MOVM.IB [R4-R8, R14], (R12) - MOVW R0, 88(R13) - MOVW R1, 92(R13) - MOVW R2, 96(R13) - MOVW R1, R14 - MOVW R2, R12 - MOVW 56(R0), R8 - WORD $0xe1180008 // TST R8, R8 not working see issue 5921 - EOR R6, R6, R6 - MOVW.EQ $(1<<24), R6 - MOVW R6, 84(R13) - ADD $116, R13, g - MOVM.IA (R0), [R0-R9] - MOVM.IA [R0-R4], (g) - CMP $16, R12 - BLO poly1305_blocks_armv6_done - -poly1305_blocks_armv6_mainloop: - WORD $0xe31e0003 // TST R14, #3 not working see issue 5921 - BEQ poly1305_blocks_armv6_mainloop_aligned - ADD $100, R13, g - MOVW_UNALIGNED(R14, g, R0, 0) - MOVW_UNALIGNED(R14, g, R0, 4) - MOVW_UNALIGNED(R14, g, R0, 8) - MOVW_UNALIGNED(R14, g, R0, 12) - MOVM.IA (g), [R0-R3] - ADD $16, R14 - B poly1305_blocks_armv6_mainloop_loaded - -poly1305_blocks_armv6_mainloop_aligned: - MOVM.IA.W (R14), [R0-R3] - -poly1305_blocks_armv6_mainloop_loaded: - MOVW R0>>26, g - MOVW R1>>20, R11 - MOVW R2>>14, R12 - MOVW R14, 92(R13) - MOVW R3>>8, R4 - ORR R1<<6, g, g - ORR R2<<12, R11, R11 - ORR R3<<18, R12, R12 - BIC $0xfc000000, R0, R0 - BIC $0xfc000000, g, g - MOVW 84(R13), R3 - BIC $0xfc000000, R11, R11 - BIC $0xfc000000, R12, R12 - ADD R0, R5, R5 - ADD g, R6, R6 - ORR R3, R4, R4 - ADD R11, R7, R7 - ADD $116, R13, R14 - ADD R12, R8, R8 - ADD R4, R9, R9 - MOVM.IA (R14), [R0-R4] - MULLU R4, R5, (R11, g) - MULLU R3, R5, (R14, R12) - MULALU R3, R6, (R11, g) - MULALU R2, R6, (R14, R12) - MULALU R2, R7, (R11, g) - MULALU R1, R7, (R14, R12) - ADD R4<<2, R4, R4 - ADD R3<<2, R3, R3 - MULALU R1, R8, (R11, g) - MULALU R0, R8, (R14, R12) - MULALU R0, R9, (R11, g) - MULALU R4, R9, (R14, R12) - MOVW g, 76(R13) - MOVW R11, 80(R13) - MOVW R12, 68(R13) - MOVW R14, 72(R13) - MULLU R2, R5, (R11, g) - MULLU R1, R5, (R14, R12) - MULALU R1, R6, (R11, g) - MULALU R0, R6, (R14, R12) - MULALU R0, R7, (R11, g) - MULALU R4, R7, (R14, R12) - ADD R2<<2, R2, R2 - ADD R1<<2, R1, R1 - MULALU R4, R8, (R11, g) - MULALU R3, R8, (R14, R12) - MULALU R3, R9, (R11, g) - MULALU R2, R9, (R14, R12) - MOVW g, 60(R13) - MOVW R11, 64(R13) - MOVW R12, 52(R13) - MOVW R14, 56(R13) - MULLU R0, R5, (R11, g) - MULALU R4, R6, (R11, g) - MULALU R3, R7, (R11, g) - MULALU R2, R8, (R11, g) - MULALU R1, R9, (R11, g) - ADD $52, R13, R0 - MOVM.IA (R0), [R0-R7] - MOVW g>>26, R12 - MOVW R4>>26, R14 - ORR R11<<6, R12, R12 - ORR R5<<6, R14, R14 - BIC $0xfc000000, g, g - BIC $0xfc000000, R4, R4 - ADD.S R12, R0, R0 - ADC $0, R1, R1 - ADD.S R14, R6, R6 - ADC $0, R7, R7 - MOVW R0>>26, R12 - MOVW R6>>26, R14 - ORR R1<<6, R12, R12 - ORR R7<<6, R14, R14 - BIC $0xfc000000, R0, R0 - BIC $0xfc000000, R6, R6 - ADD R14<<2, R14, R14 - ADD.S R12, R2, R2 - ADC $0, R3, R3 - ADD R14, g, g - MOVW R2>>26, R12 - MOVW g>>26, R14 - ORR R3<<6, R12, R12 - BIC $0xfc000000, g, R5 - BIC $0xfc000000, R2, R7 - ADD R12, R4, R4 - ADD R14, R0, R0 - MOVW R4>>26, R12 - BIC $0xfc000000, R4, R8 - ADD R12, R6, R9 - MOVW 96(R13), R12 - MOVW 92(R13), R14 - MOVW R0, R6 - CMP $32, R12 - SUB $16, R12, R12 - MOVW R12, 96(R13) - BHS poly1305_blocks_armv6_mainloop - -poly1305_blocks_armv6_done: - MOVW 88(R13), R12 - MOVW R5, 20(R12) - MOVW R6, 24(R12) - MOVW R7, 28(R12) - MOVW R8, 32(R12) - MOVW R9, 36(R12) - ADD $48, R13, R0 - MOVM.DA (R0), [R4-R8, R14] - RET - -#define MOVHUP_UNALIGNED(Rsrc, Rdst, Rtmp) \ - MOVBU.P 1(Rsrc), Rtmp; \ - MOVBU.P Rtmp, 1(Rdst); \ - MOVBU.P 1(Rsrc), Rtmp; \ - MOVBU.P Rtmp, 1(Rdst) - -#define MOVWP_UNALIGNED(Rsrc, Rdst, Rtmp) \ - MOVHUP_UNALIGNED(Rsrc, Rdst, Rtmp); \ - MOVHUP_UNALIGNED(Rsrc, Rdst, Rtmp) - -// func poly1305_auth_armv6(out *[16]byte, m *byte, mlen uint32, key *[32]key) -TEXT ·poly1305_auth_armv6(SB), $196-16 - // The value 196, just above, is the sum of 64 (the size of the context - // structure) and 132 (the amount of stack needed). - // - // At this point, the stack pointer (R13) has been moved down. It - // points to the saved link register and there's 196 bytes of free - // space above it. - // - // The stack for this function looks like: - // - // +--------------------- - // | - // | 64 bytes of context structure - // | - // +--------------------- - // | - // | 112 bytes for poly1305_blocks_armv6 - // | - // +--------------------- - // | 16 bytes of final block, constructed at - // | poly1305_finish_ext_armv6_skip8 - // +--------------------- - // | four bytes of saved 'g' - // +--------------------- - // | lr, saved by prelude <- R13 points here - // +--------------------- - MOVW g, 4(R13) - - MOVW out+0(FP), R4 - MOVW m+4(FP), R5 - MOVW mlen+8(FP), R6 - MOVW key+12(FP), R7 - - ADD $136, R13, R0 // 136 = 4 + 4 + 16 + 112 - MOVW R7, R1 - - // poly1305_init_ext_armv6 will write to the stack from R13+4, but - // that's ok because none of the other values have been written yet. - BL poly1305_init_ext_armv6<>(SB) - BIC.S $15, R6, R2 - BEQ poly1305_auth_armv6_noblocks - ADD $136, R13, R0 - MOVW R5, R1 - ADD R2, R5, R5 - SUB R2, R6, R6 - BL poly1305_blocks_armv6<>(SB) - -poly1305_auth_armv6_noblocks: - ADD $136, R13, R0 - MOVW R5, R1 - MOVW R6, R2 - MOVW R4, R3 - - MOVW R0, R5 - MOVW R1, R6 - MOVW R2, R7 - MOVW R3, R8 - AND.S R2, R2, R2 - BEQ poly1305_finish_ext_armv6_noremaining - EOR R0, R0 - ADD $8, R13, R9 // 8 = offset to 16 byte scratch space - MOVW R0, (R9) - MOVW R0, 4(R9) - MOVW R0, 8(R9) - MOVW R0, 12(R9) - WORD $0xe3110003 // TST R1, #3 not working see issue 5921 - BEQ poly1305_finish_ext_armv6_aligned - WORD $0xe3120008 // TST R2, #8 not working see issue 5921 - BEQ poly1305_finish_ext_armv6_skip8 - MOVWP_UNALIGNED(R1, R9, g) - MOVWP_UNALIGNED(R1, R9, g) - -poly1305_finish_ext_armv6_skip8: - WORD $0xe3120004 // TST $4, R2 not working see issue 5921 - BEQ poly1305_finish_ext_armv6_skip4 - MOVWP_UNALIGNED(R1, R9, g) - -poly1305_finish_ext_armv6_skip4: - WORD $0xe3120002 // TST $2, R2 not working see issue 5921 - BEQ poly1305_finish_ext_armv6_skip2 - MOVHUP_UNALIGNED(R1, R9, g) - B poly1305_finish_ext_armv6_skip2 - -poly1305_finish_ext_armv6_aligned: - WORD $0xe3120008 // TST R2, #8 not working see issue 5921 - BEQ poly1305_finish_ext_armv6_skip8_aligned - MOVM.IA.W (R1), [g-R11] - MOVM.IA.W [g-R11], (R9) - -poly1305_finish_ext_armv6_skip8_aligned: - WORD $0xe3120004 // TST $4, R2 not working see issue 5921 - BEQ poly1305_finish_ext_armv6_skip4_aligned - MOVW.P 4(R1), g - MOVW.P g, 4(R9) - -poly1305_finish_ext_armv6_skip4_aligned: - WORD $0xe3120002 // TST $2, R2 not working see issue 5921 - BEQ poly1305_finish_ext_armv6_skip2 - MOVHU.P 2(R1), g - MOVH.P g, 2(R9) - -poly1305_finish_ext_armv6_skip2: - WORD $0xe3120001 // TST $1, R2 not working see issue 5921 - BEQ poly1305_finish_ext_armv6_skip1 - MOVBU.P 1(R1), g - MOVBU.P g, 1(R9) - -poly1305_finish_ext_armv6_skip1: - MOVW $1, R11 - MOVBU R11, 0(R9) - MOVW R11, 56(R5) - MOVW R5, R0 - ADD $8, R13, R1 - MOVW $16, R2 - BL poly1305_blocks_armv6<>(SB) - -poly1305_finish_ext_armv6_noremaining: - MOVW 20(R5), R0 - MOVW 24(R5), R1 - MOVW 28(R5), R2 - MOVW 32(R5), R3 - MOVW 36(R5), R4 - MOVW R4>>26, R12 - BIC $0xfc000000, R4, R4 - ADD R12<<2, R12, R12 - ADD R12, R0, R0 - MOVW R0>>26, R12 - BIC $0xfc000000, R0, R0 - ADD R12, R1, R1 - MOVW R1>>26, R12 - BIC $0xfc000000, R1, R1 - ADD R12, R2, R2 - MOVW R2>>26, R12 - BIC $0xfc000000, R2, R2 - ADD R12, R3, R3 - MOVW R3>>26, R12 - BIC $0xfc000000, R3, R3 - ADD R12, R4, R4 - ADD $5, R0, R6 - MOVW R6>>26, R12 - BIC $0xfc000000, R6, R6 - ADD R12, R1, R7 - MOVW R7>>26, R12 - BIC $0xfc000000, R7, R7 - ADD R12, R2, g - MOVW g>>26, R12 - BIC $0xfc000000, g, g - ADD R12, R3, R11 - MOVW $-(1<<26), R12 - ADD R11>>26, R12, R12 - BIC $0xfc000000, R11, R11 - ADD R12, R4, R9 - MOVW R9>>31, R12 - SUB $1, R12 - AND R12, R6, R6 - AND R12, R7, R7 - AND R12, g, g - AND R12, R11, R11 - AND R12, R9, R9 - MVN R12, R12 - AND R12, R0, R0 - AND R12, R1, R1 - AND R12, R2, R2 - AND R12, R3, R3 - AND R12, R4, R4 - ORR R6, R0, R0 - ORR R7, R1, R1 - ORR g, R2, R2 - ORR R11, R3, R3 - ORR R9, R4, R4 - ORR R1<<26, R0, R0 - MOVW R1>>6, R1 - ORR R2<<20, R1, R1 - MOVW R2>>12, R2 - ORR R3<<14, R2, R2 - MOVW R3>>18, R3 - ORR R4<<8, R3, R3 - MOVW 40(R5), R6 - MOVW 44(R5), R7 - MOVW 48(R5), g - MOVW 52(R5), R11 - ADD.S R6, R0, R0 - ADC.S R7, R1, R1 - ADC.S g, R2, R2 - ADC.S R11, R3, R3 - MOVM.IA [R0-R3], (R8) - MOVW R5, R12 - EOR R0, R0, R0 - EOR R1, R1, R1 - EOR R2, R2, R2 - EOR R3, R3, R3 - EOR R4, R4, R4 - EOR R5, R5, R5 - EOR R6, R6, R6 - EOR R7, R7, R7 - MOVM.IA.W [R0-R7], (R12) - MOVM.IA [R0-R7], (R12) - MOVW 4(R13), g - RET diff --git a/vendor/golang.org/x/crypto/poly1305/sum_noasm.go b/vendor/golang.org/x/crypto/poly1305/sum_noasm.go deleted file mode 100644 index 751eec5..0000000 --- a/vendor/golang.org/x/crypto/poly1305/sum_noasm.go +++ /dev/null @@ -1,14 +0,0 @@ -// Copyright 2018 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// +build s390x,!go1.11 !arm,!amd64,!s390x gccgo appengine nacl - -package poly1305 - -// Sum generates an authenticator for msg using a one-time key and puts the -// 16-byte result into out. Authenticating two different messages with the same -// key allows an attacker to forge messages at will. -func Sum(out *[TagSize]byte, msg []byte, key *[32]byte) { - sumGeneric(out, msg, key) -} diff --git a/vendor/golang.org/x/crypto/poly1305/sum_ref.go b/vendor/golang.org/x/crypto/poly1305/sum_ref.go deleted file mode 100644 index c4d59bd..0000000 --- a/vendor/golang.org/x/crypto/poly1305/sum_ref.go +++ /dev/null @@ -1,139 +0,0 @@ -// Copyright 2012 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package poly1305 - -import "encoding/binary" - -// sumGeneric generates an authenticator for msg using a one-time key and -// puts the 16-byte result into out. This is the generic implementation of -// Sum and should be called if no assembly implementation is available. -func sumGeneric(out *[TagSize]byte, msg []byte, key *[32]byte) { - var ( - h0, h1, h2, h3, h4 uint32 // the hash accumulators - r0, r1, r2, r3, r4 uint64 // the r part of the key - ) - - r0 = uint64(binary.LittleEndian.Uint32(key[0:]) & 0x3ffffff) - r1 = uint64((binary.LittleEndian.Uint32(key[3:]) >> 2) & 0x3ffff03) - r2 = uint64((binary.LittleEndian.Uint32(key[6:]) >> 4) & 0x3ffc0ff) - r3 = uint64((binary.LittleEndian.Uint32(key[9:]) >> 6) & 0x3f03fff) - r4 = uint64((binary.LittleEndian.Uint32(key[12:]) >> 8) & 0x00fffff) - - R1, R2, R3, R4 := r1*5, r2*5, r3*5, r4*5 - - for len(msg) >= TagSize { - // h += msg - h0 += binary.LittleEndian.Uint32(msg[0:]) & 0x3ffffff - h1 += (binary.LittleEndian.Uint32(msg[3:]) >> 2) & 0x3ffffff - h2 += (binary.LittleEndian.Uint32(msg[6:]) >> 4) & 0x3ffffff - h3 += (binary.LittleEndian.Uint32(msg[9:]) >> 6) & 0x3ffffff - h4 += (binary.LittleEndian.Uint32(msg[12:]) >> 8) | (1 << 24) - - // h *= r - d0 := (uint64(h0) * r0) + (uint64(h1) * R4) + (uint64(h2) * R3) + (uint64(h3) * R2) + (uint64(h4) * R1) - d1 := (d0 >> 26) + (uint64(h0) * r1) + (uint64(h1) * r0) + (uint64(h2) * R4) + (uint64(h3) * R3) + (uint64(h4) * R2) - d2 := (d1 >> 26) + (uint64(h0) * r2) + (uint64(h1) * r1) + (uint64(h2) * r0) + (uint64(h3) * R4) + (uint64(h4) * R3) - d3 := (d2 >> 26) + (uint64(h0) * r3) + (uint64(h1) * r2) + (uint64(h2) * r1) + (uint64(h3) * r0) + (uint64(h4) * R4) - d4 := (d3 >> 26) + (uint64(h0) * r4) + (uint64(h1) * r3) + (uint64(h2) * r2) + (uint64(h3) * r1) + (uint64(h4) * r0) - - // h %= p - h0 = uint32(d0) & 0x3ffffff - h1 = uint32(d1) & 0x3ffffff - h2 = uint32(d2) & 0x3ffffff - h3 = uint32(d3) & 0x3ffffff - h4 = uint32(d4) & 0x3ffffff - - h0 += uint32(d4>>26) * 5 - h1 += h0 >> 26 - h0 = h0 & 0x3ffffff - - msg = msg[TagSize:] - } - - if len(msg) > 0 { - var block [TagSize]byte - off := copy(block[:], msg) - block[off] = 0x01 - - // h += msg - h0 += binary.LittleEndian.Uint32(block[0:]) & 0x3ffffff - h1 += (binary.LittleEndian.Uint32(block[3:]) >> 2) & 0x3ffffff - h2 += (binary.LittleEndian.Uint32(block[6:]) >> 4) & 0x3ffffff - h3 += (binary.LittleEndian.Uint32(block[9:]) >> 6) & 0x3ffffff - h4 += (binary.LittleEndian.Uint32(block[12:]) >> 8) - - // h *= r - d0 := (uint64(h0) * r0) + (uint64(h1) * R4) + (uint64(h2) * R3) + (uint64(h3) * R2) + (uint64(h4) * R1) - d1 := (d0 >> 26) + (uint64(h0) * r1) + (uint64(h1) * r0) + (uint64(h2) * R4) + (uint64(h3) * R3) + (uint64(h4) * R2) - d2 := (d1 >> 26) + (uint64(h0) * r2) + (uint64(h1) * r1) + (uint64(h2) * r0) + (uint64(h3) * R4) + (uint64(h4) * R3) - d3 := (d2 >> 26) + (uint64(h0) * r3) + (uint64(h1) * r2) + (uint64(h2) * r1) + (uint64(h3) * r0) + (uint64(h4) * R4) - d4 := (d3 >> 26) + (uint64(h0) * r4) + (uint64(h1) * r3) + (uint64(h2) * r2) + (uint64(h3) * r1) + (uint64(h4) * r0) - - // h %= p - h0 = uint32(d0) & 0x3ffffff - h1 = uint32(d1) & 0x3ffffff - h2 = uint32(d2) & 0x3ffffff - h3 = uint32(d3) & 0x3ffffff - h4 = uint32(d4) & 0x3ffffff - - h0 += uint32(d4>>26) * 5 - h1 += h0 >> 26 - h0 = h0 & 0x3ffffff - } - - // h %= p reduction - h2 += h1 >> 26 - h1 &= 0x3ffffff - h3 += h2 >> 26 - h2 &= 0x3ffffff - h4 += h3 >> 26 - h3 &= 0x3ffffff - h0 += 5 * (h4 >> 26) - h4 &= 0x3ffffff - h1 += h0 >> 26 - h0 &= 0x3ffffff - - // h - p - t0 := h0 + 5 - t1 := h1 + (t0 >> 26) - t2 := h2 + (t1 >> 26) - t3 := h3 + (t2 >> 26) - t4 := h4 + (t3 >> 26) - (1 << 26) - t0 &= 0x3ffffff - t1 &= 0x3ffffff - t2 &= 0x3ffffff - t3 &= 0x3ffffff - - // select h if h < p else h - p - t_mask := (t4 >> 31) - 1 - h_mask := ^t_mask - h0 = (h0 & h_mask) | (t0 & t_mask) - h1 = (h1 & h_mask) | (t1 & t_mask) - h2 = (h2 & h_mask) | (t2 & t_mask) - h3 = (h3 & h_mask) | (t3 & t_mask) - h4 = (h4 & h_mask) | (t4 & t_mask) - - // h %= 2^128 - h0 |= h1 << 26 - h1 = ((h1 >> 6) | (h2 << 20)) - h2 = ((h2 >> 12) | (h3 << 14)) - h3 = ((h3 >> 18) | (h4 << 8)) - - // s: the s part of the key - // tag = (h + s) % (2^128) - t := uint64(h0) + uint64(binary.LittleEndian.Uint32(key[16:])) - h0 = uint32(t) - t = uint64(h1) + uint64(binary.LittleEndian.Uint32(key[20:])) + (t >> 32) - h1 = uint32(t) - t = uint64(h2) + uint64(binary.LittleEndian.Uint32(key[24:])) + (t >> 32) - h2 = uint32(t) - t = uint64(h3) + uint64(binary.LittleEndian.Uint32(key[28:])) + (t >> 32) - h3 = uint32(t) - - binary.LittleEndian.PutUint32(out[0:], h0) - binary.LittleEndian.PutUint32(out[4:], h1) - binary.LittleEndian.PutUint32(out[8:], h2) - binary.LittleEndian.PutUint32(out[12:], h3) -} diff --git a/vendor/golang.org/x/crypto/poly1305/sum_s390x.go b/vendor/golang.org/x/crypto/poly1305/sum_s390x.go deleted file mode 100644 index 7a266ce..0000000 --- a/vendor/golang.org/x/crypto/poly1305/sum_s390x.go +++ /dev/null @@ -1,49 +0,0 @@ -// Copyright 2018 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// +build s390x,go1.11,!gccgo,!appengine - -package poly1305 - -// hasVectorFacility reports whether the machine supports -// the vector facility (vx). -func hasVectorFacility() bool - -// hasVMSLFacility reports whether the machine supports -// Vector Multiply Sum Logical (VMSL). -func hasVMSLFacility() bool - -var hasVX = hasVectorFacility() -var hasVMSL = hasVMSLFacility() - -// poly1305vx is an assembly implementation of Poly1305 that uses vector -// instructions. It must only be called if the vector facility (vx) is -// available. -//go:noescape -func poly1305vx(out *[16]byte, m *byte, mlen uint64, key *[32]byte) - -// poly1305vmsl is an assembly implementation of Poly1305 that uses vector -// instructions, including VMSL. It must only be called if the vector facility (vx) is -// available and if VMSL is supported. -//go:noescape -func poly1305vmsl(out *[16]byte, m *byte, mlen uint64, key *[32]byte) - -// Sum generates an authenticator for m using a one-time key and puts the -// 16-byte result into out. Authenticating two different messages with the same -// key allows an attacker to forge messages at will. -func Sum(out *[16]byte, m []byte, key *[32]byte) { - if hasVX { - var mPtr *byte - if len(m) > 0 { - mPtr = &m[0] - } - if hasVMSL && len(m) > 256 { - poly1305vmsl(out, mPtr, uint64(len(m)), key) - } else { - poly1305vx(out, mPtr, uint64(len(m)), key) - } - } else { - sumGeneric(out, m, key) - } -} diff --git a/vendor/golang.org/x/crypto/poly1305/sum_s390x.s b/vendor/golang.org/x/crypto/poly1305/sum_s390x.s deleted file mode 100644 index 356c07a..0000000 --- a/vendor/golang.org/x/crypto/poly1305/sum_s390x.s +++ /dev/null @@ -1,400 +0,0 @@ -// Copyright 2018 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// +build s390x,go1.11,!gccgo,!appengine - -#include "textflag.h" - -// Implementation of Poly1305 using the vector facility (vx). - -// constants -#define MOD26 V0 -#define EX0 V1 -#define EX1 V2 -#define EX2 V3 - -// temporaries -#define T_0 V4 -#define T_1 V5 -#define T_2 V6 -#define T_3 V7 -#define T_4 V8 - -// key (r) -#define R_0 V9 -#define R_1 V10 -#define R_2 V11 -#define R_3 V12 -#define R_4 V13 -#define R5_1 V14 -#define R5_2 V15 -#define R5_3 V16 -#define R5_4 V17 -#define RSAVE_0 R5 -#define RSAVE_1 R6 -#define RSAVE_2 R7 -#define RSAVE_3 R8 -#define RSAVE_4 R9 -#define R5SAVE_1 V28 -#define R5SAVE_2 V29 -#define R5SAVE_3 V30 -#define R5SAVE_4 V31 - -// message block -#define F_0 V18 -#define F_1 V19 -#define F_2 V20 -#define F_3 V21 -#define F_4 V22 - -// accumulator -#define H_0 V23 -#define H_1 V24 -#define H_2 V25 -#define H_3 V26 -#define H_4 V27 - -GLOBL ·keyMask<>(SB), RODATA, $16 -DATA ·keyMask<>+0(SB)/8, $0xffffff0ffcffff0f -DATA ·keyMask<>+8(SB)/8, $0xfcffff0ffcffff0f - -GLOBL ·bswapMask<>(SB), RODATA, $16 -DATA ·bswapMask<>+0(SB)/8, $0x0f0e0d0c0b0a0908 -DATA ·bswapMask<>+8(SB)/8, $0x0706050403020100 - -GLOBL ·constants<>(SB), RODATA, $64 -// MOD26 -DATA ·constants<>+0(SB)/8, $0x3ffffff -DATA ·constants<>+8(SB)/8, $0x3ffffff -// EX0 -DATA ·constants<>+16(SB)/8, $0x0006050403020100 -DATA ·constants<>+24(SB)/8, $0x1016151413121110 -// EX1 -DATA ·constants<>+32(SB)/8, $0x060c0b0a09080706 -DATA ·constants<>+40(SB)/8, $0x161c1b1a19181716 -// EX2 -DATA ·constants<>+48(SB)/8, $0x0d0d0d0d0d0f0e0d -DATA ·constants<>+56(SB)/8, $0x1d1d1d1d1d1f1e1d - -// h = (f*g) % (2**130-5) [partial reduction] -#define MULTIPLY(f0, f1, f2, f3, f4, g0, g1, g2, g3, g4, g51, g52, g53, g54, h0, h1, h2, h3, h4) \ - VMLOF f0, g0, h0 \ - VMLOF f0, g1, h1 \ - VMLOF f0, g2, h2 \ - VMLOF f0, g3, h3 \ - VMLOF f0, g4, h4 \ - VMLOF f1, g54, T_0 \ - VMLOF f1, g0, T_1 \ - VMLOF f1, g1, T_2 \ - VMLOF f1, g2, T_3 \ - VMLOF f1, g3, T_4 \ - VMALOF f2, g53, h0, h0 \ - VMALOF f2, g54, h1, h1 \ - VMALOF f2, g0, h2, h2 \ - VMALOF f2, g1, h3, h3 \ - VMALOF f2, g2, h4, h4 \ - VMALOF f3, g52, T_0, T_0 \ - VMALOF f3, g53, T_1, T_1 \ - VMALOF f3, g54, T_2, T_2 \ - VMALOF f3, g0, T_3, T_3 \ - VMALOF f3, g1, T_4, T_4 \ - VMALOF f4, g51, h0, h0 \ - VMALOF f4, g52, h1, h1 \ - VMALOF f4, g53, h2, h2 \ - VMALOF f4, g54, h3, h3 \ - VMALOF f4, g0, h4, h4 \ - VAG T_0, h0, h0 \ - VAG T_1, h1, h1 \ - VAG T_2, h2, h2 \ - VAG T_3, h3, h3 \ - VAG T_4, h4, h4 - -// carry h0->h1 h3->h4, h1->h2 h4->h0, h0->h1 h2->h3, h3->h4 -#define REDUCE(h0, h1, h2, h3, h4) \ - VESRLG $26, h0, T_0 \ - VESRLG $26, h3, T_1 \ - VN MOD26, h0, h0 \ - VN MOD26, h3, h3 \ - VAG T_0, h1, h1 \ - VAG T_1, h4, h4 \ - VESRLG $26, h1, T_2 \ - VESRLG $26, h4, T_3 \ - VN MOD26, h1, h1 \ - VN MOD26, h4, h4 \ - VESLG $2, T_3, T_4 \ - VAG T_3, T_4, T_4 \ - VAG T_2, h2, h2 \ - VAG T_4, h0, h0 \ - VESRLG $26, h2, T_0 \ - VESRLG $26, h0, T_1 \ - VN MOD26, h2, h2 \ - VN MOD26, h0, h0 \ - VAG T_0, h3, h3 \ - VAG T_1, h1, h1 \ - VESRLG $26, h3, T_2 \ - VN MOD26, h3, h3 \ - VAG T_2, h4, h4 - -// expand in0 into d[0] and in1 into d[1] -#define EXPAND(in0, in1, d0, d1, d2, d3, d4) \ - VGBM $0x0707, d1 \ // d1=tmp - VPERM in0, in1, EX2, d4 \ - VPERM in0, in1, EX0, d0 \ - VPERM in0, in1, EX1, d2 \ - VN d1, d4, d4 \ - VESRLG $26, d0, d1 \ - VESRLG $30, d2, d3 \ - VESRLG $4, d2, d2 \ - VN MOD26, d0, d0 \ - VN MOD26, d1, d1 \ - VN MOD26, d2, d2 \ - VN MOD26, d3, d3 - -// pack h4:h0 into h1:h0 (no carry) -#define PACK(h0, h1, h2, h3, h4) \ - VESLG $26, h1, h1 \ - VESLG $26, h3, h3 \ - VO h0, h1, h0 \ - VO h2, h3, h2 \ - VESLG $4, h2, h2 \ - VLEIB $7, $48, h1 \ - VSLB h1, h2, h2 \ - VO h0, h2, h0 \ - VLEIB $7, $104, h1 \ - VSLB h1, h4, h3 \ - VO h3, h0, h0 \ - VLEIB $7, $24, h1 \ - VSRLB h1, h4, h1 - -// if h > 2**130-5 then h -= 2**130-5 -#define MOD(h0, h1, t0, t1, t2) \ - VZERO t0 \ - VLEIG $1, $5, t0 \ - VACCQ h0, t0, t1 \ - VAQ h0, t0, t0 \ - VONE t2 \ - VLEIG $1, $-4, t2 \ - VAQ t2, t1, t1 \ - VACCQ h1, t1, t1 \ - VONE t2 \ - VAQ t2, t1, t1 \ - VN h0, t1, t2 \ - VNC t0, t1, t1 \ - VO t1, t2, h0 - -// func poly1305vx(out *[16]byte, m *byte, mlen uint64, key *[32]key) -TEXT ·poly1305vx(SB), $0-32 - // This code processes up to 2 blocks (32 bytes) per iteration - // using the algorithm described in: - // NEON crypto, Daniel J. Bernstein & Peter Schwabe - // https://cryptojedi.org/papers/neoncrypto-20120320.pdf - LMG out+0(FP), R1, R4 // R1=out, R2=m, R3=mlen, R4=key - - // load MOD26, EX0, EX1 and EX2 - MOVD $·constants<>(SB), R5 - VLM (R5), MOD26, EX2 - - // setup r - VL (R4), T_0 - MOVD $·keyMask<>(SB), R6 - VL (R6), T_1 - VN T_0, T_1, T_0 - EXPAND(T_0, T_0, R_0, R_1, R_2, R_3, R_4) - - // setup r*5 - VLEIG $0, $5, T_0 - VLEIG $1, $5, T_0 - - // store r (for final block) - VMLOF T_0, R_1, R5SAVE_1 - VMLOF T_0, R_2, R5SAVE_2 - VMLOF T_0, R_3, R5SAVE_3 - VMLOF T_0, R_4, R5SAVE_4 - VLGVG $0, R_0, RSAVE_0 - VLGVG $0, R_1, RSAVE_1 - VLGVG $0, R_2, RSAVE_2 - VLGVG $0, R_3, RSAVE_3 - VLGVG $0, R_4, RSAVE_4 - - // skip r**2 calculation - CMPBLE R3, $16, skip - - // calculate r**2 - MULTIPLY(R_0, R_1, R_2, R_3, R_4, R_0, R_1, R_2, R_3, R_4, R5SAVE_1, R5SAVE_2, R5SAVE_3, R5SAVE_4, H_0, H_1, H_2, H_3, H_4) - REDUCE(H_0, H_1, H_2, H_3, H_4) - VLEIG $0, $5, T_0 - VLEIG $1, $5, T_0 - VMLOF T_0, H_1, R5_1 - VMLOF T_0, H_2, R5_2 - VMLOF T_0, H_3, R5_3 - VMLOF T_0, H_4, R5_4 - VLR H_0, R_0 - VLR H_1, R_1 - VLR H_2, R_2 - VLR H_3, R_3 - VLR H_4, R_4 - - // initialize h - VZERO H_0 - VZERO H_1 - VZERO H_2 - VZERO H_3 - VZERO H_4 - -loop: - CMPBLE R3, $32, b2 - VLM (R2), T_0, T_1 - SUB $32, R3 - MOVD $32(R2), R2 - EXPAND(T_0, T_1, F_0, F_1, F_2, F_3, F_4) - VLEIB $4, $1, F_4 - VLEIB $12, $1, F_4 - -multiply: - VAG H_0, F_0, F_0 - VAG H_1, F_1, F_1 - VAG H_2, F_2, F_2 - VAG H_3, F_3, F_3 - VAG H_4, F_4, F_4 - MULTIPLY(F_0, F_1, F_2, F_3, F_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, H_0, H_1, H_2, H_3, H_4) - REDUCE(H_0, H_1, H_2, H_3, H_4) - CMPBNE R3, $0, loop - -finish: - // sum vectors - VZERO T_0 - VSUMQG H_0, T_0, H_0 - VSUMQG H_1, T_0, H_1 - VSUMQG H_2, T_0, H_2 - VSUMQG H_3, T_0, H_3 - VSUMQG H_4, T_0, H_4 - - // h may be >= 2*(2**130-5) so we need to reduce it again - REDUCE(H_0, H_1, H_2, H_3, H_4) - - // carry h1->h4 - VESRLG $26, H_1, T_1 - VN MOD26, H_1, H_1 - VAQ T_1, H_2, H_2 - VESRLG $26, H_2, T_2 - VN MOD26, H_2, H_2 - VAQ T_2, H_3, H_3 - VESRLG $26, H_3, T_3 - VN MOD26, H_3, H_3 - VAQ T_3, H_4, H_4 - - // h is now < 2*(2**130-5) - // pack h into h1 (hi) and h0 (lo) - PACK(H_0, H_1, H_2, H_3, H_4) - - // if h > 2**130-5 then h -= 2**130-5 - MOD(H_0, H_1, T_0, T_1, T_2) - - // h += s - MOVD $·bswapMask<>(SB), R5 - VL (R5), T_1 - VL 16(R4), T_0 - VPERM T_0, T_0, T_1, T_0 // reverse bytes (to big) - VAQ T_0, H_0, H_0 - VPERM H_0, H_0, T_1, H_0 // reverse bytes (to little) - VST H_0, (R1) - - RET - -b2: - CMPBLE R3, $16, b1 - - // 2 blocks remaining - SUB $17, R3 - VL (R2), T_0 - VLL R3, 16(R2), T_1 - ADD $1, R3 - MOVBZ $1, R0 - CMPBEQ R3, $16, 2(PC) - VLVGB R3, R0, T_1 - EXPAND(T_0, T_1, F_0, F_1, F_2, F_3, F_4) - CMPBNE R3, $16, 2(PC) - VLEIB $12, $1, F_4 - VLEIB $4, $1, F_4 - - // setup [r²,r] - VLVGG $1, RSAVE_0, R_0 - VLVGG $1, RSAVE_1, R_1 - VLVGG $1, RSAVE_2, R_2 - VLVGG $1, RSAVE_3, R_3 - VLVGG $1, RSAVE_4, R_4 - VPDI $0, R5_1, R5SAVE_1, R5_1 - VPDI $0, R5_2, R5SAVE_2, R5_2 - VPDI $0, R5_3, R5SAVE_3, R5_3 - VPDI $0, R5_4, R5SAVE_4, R5_4 - - MOVD $0, R3 - BR multiply - -skip: - VZERO H_0 - VZERO H_1 - VZERO H_2 - VZERO H_3 - VZERO H_4 - - CMPBEQ R3, $0, finish - -b1: - // 1 block remaining - SUB $1, R3 - VLL R3, (R2), T_0 - ADD $1, R3 - MOVBZ $1, R0 - CMPBEQ R3, $16, 2(PC) - VLVGB R3, R0, T_0 - VZERO T_1 - EXPAND(T_0, T_1, F_0, F_1, F_2, F_3, F_4) - CMPBNE R3, $16, 2(PC) - VLEIB $4, $1, F_4 - VLEIG $1, $1, R_0 - VZERO R_1 - VZERO R_2 - VZERO R_3 - VZERO R_4 - VZERO R5_1 - VZERO R5_2 - VZERO R5_3 - VZERO R5_4 - - // setup [r, 1] - VLVGG $0, RSAVE_0, R_0 - VLVGG $0, RSAVE_1, R_1 - VLVGG $0, RSAVE_2, R_2 - VLVGG $0, RSAVE_3, R_3 - VLVGG $0, RSAVE_4, R_4 - VPDI $0, R5SAVE_1, R5_1, R5_1 - VPDI $0, R5SAVE_2, R5_2, R5_2 - VPDI $0, R5SAVE_3, R5_3, R5_3 - VPDI $0, R5SAVE_4, R5_4, R5_4 - - MOVD $0, R3 - BR multiply - -TEXT ·hasVectorFacility(SB), NOSPLIT, $24-1 - MOVD $x-24(SP), R1 - XC $24, 0(R1), 0(R1) // clear the storage - MOVD $2, R0 // R0 is the number of double words stored -1 - WORD $0xB2B01000 // STFLE 0(R1) - XOR R0, R0 // reset the value of R0 - MOVBZ z-8(SP), R1 - AND $0x40, R1 - BEQ novector - -vectorinstalled: - // check if the vector instruction has been enabled - VLEIB $0, $0xF, V16 - VLGVB $0, V16, R1 - CMPBNE R1, $0xF, novector - MOVB $1, ret+0(FP) // have vx - RET - -novector: - MOVB $0, ret+0(FP) // no vx - RET diff --git a/vendor/golang.org/x/crypto/poly1305/sum_vmsl_s390x.s b/vendor/golang.org/x/crypto/poly1305/sum_vmsl_s390x.s deleted file mode 100644 index e548020..0000000 --- a/vendor/golang.org/x/crypto/poly1305/sum_vmsl_s390x.s +++ /dev/null @@ -1,931 +0,0 @@ -// Copyright 2018 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// +build s390x,go1.11,!gccgo,!appengine - -#include "textflag.h" - -// Implementation of Poly1305 using the vector facility (vx) and the VMSL instruction. - -// constants -#define EX0 V1 -#define EX1 V2 -#define EX2 V3 - -// temporaries -#define T_0 V4 -#define T_1 V5 -#define T_2 V6 -#define T_3 V7 -#define T_4 V8 -#define T_5 V9 -#define T_6 V10 -#define T_7 V11 -#define T_8 V12 -#define T_9 V13 -#define T_10 V14 - -// r**2 & r**4 -#define R_0 V15 -#define R_1 V16 -#define R_2 V17 -#define R5_1 V18 -#define R5_2 V19 -// key (r) -#define RSAVE_0 R7 -#define RSAVE_1 R8 -#define RSAVE_2 R9 -#define R5SAVE_1 R10 -#define R5SAVE_2 R11 - -// message block -#define M0 V20 -#define M1 V21 -#define M2 V22 -#define M3 V23 -#define M4 V24 -#define M5 V25 - -// accumulator -#define H0_0 V26 -#define H1_0 V27 -#define H2_0 V28 -#define H0_1 V29 -#define H1_1 V30 -#define H2_1 V31 - -GLOBL ·keyMask<>(SB), RODATA, $16 -DATA ·keyMask<>+0(SB)/8, $0xffffff0ffcffff0f -DATA ·keyMask<>+8(SB)/8, $0xfcffff0ffcffff0f - -GLOBL ·bswapMask<>(SB), RODATA, $16 -DATA ·bswapMask<>+0(SB)/8, $0x0f0e0d0c0b0a0908 -DATA ·bswapMask<>+8(SB)/8, $0x0706050403020100 - -GLOBL ·constants<>(SB), RODATA, $48 -// EX0 -DATA ·constants<>+0(SB)/8, $0x18191a1b1c1d1e1f -DATA ·constants<>+8(SB)/8, $0x0000050403020100 -// EX1 -DATA ·constants<>+16(SB)/8, $0x18191a1b1c1d1e1f -DATA ·constants<>+24(SB)/8, $0x00000a0908070605 -// EX2 -DATA ·constants<>+32(SB)/8, $0x18191a1b1c1d1e1f -DATA ·constants<>+40(SB)/8, $0x0000000f0e0d0c0b - -GLOBL ·c<>(SB), RODATA, $48 -// EX0 -DATA ·c<>+0(SB)/8, $0x0000050403020100 -DATA ·c<>+8(SB)/8, $0x0000151413121110 -// EX1 -DATA ·c<>+16(SB)/8, $0x00000a0908070605 -DATA ·c<>+24(SB)/8, $0x00001a1918171615 -// EX2 -DATA ·c<>+32(SB)/8, $0x0000000f0e0d0c0b -DATA ·c<>+40(SB)/8, $0x0000001f1e1d1c1b - -GLOBL ·reduce<>(SB), RODATA, $32 -// 44 bit -DATA ·reduce<>+0(SB)/8, $0x0 -DATA ·reduce<>+8(SB)/8, $0xfffffffffff -// 42 bit -DATA ·reduce<>+16(SB)/8, $0x0 -DATA ·reduce<>+24(SB)/8, $0x3ffffffffff - -// h = (f*g) % (2**130-5) [partial reduction] -// uses T_0...T_9 temporary registers -// input: m02_0, m02_1, m02_2, m13_0, m13_1, m13_2, r_0, r_1, r_2, r5_1, r5_2, m4_0, m4_1, m4_2, m5_0, m5_1, m5_2 -// temp: t0, t1, t2, t3, t4, t5, t6, t7, t8, t9 -// output: m02_0, m02_1, m02_2, m13_0, m13_1, m13_2 -#define MULTIPLY(m02_0, m02_1, m02_2, m13_0, m13_1, m13_2, r_0, r_1, r_2, r5_1, r5_2, m4_0, m4_1, m4_2, m5_0, m5_1, m5_2, t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) \ - \ // Eliminate the dependency for the last 2 VMSLs - VMSLG m02_0, r_2, m4_2, m4_2 \ - VMSLG m13_0, r_2, m5_2, m5_2 \ // 8 VMSLs pipelined - VMSLG m02_0, r_0, m4_0, m4_0 \ - VMSLG m02_1, r5_2, V0, T_0 \ - VMSLG m02_0, r_1, m4_1, m4_1 \ - VMSLG m02_1, r_0, V0, T_1 \ - VMSLG m02_1, r_1, V0, T_2 \ - VMSLG m02_2, r5_1, V0, T_3 \ - VMSLG m02_2, r5_2, V0, T_4 \ - VMSLG m13_0, r_0, m5_0, m5_0 \ - VMSLG m13_1, r5_2, V0, T_5 \ - VMSLG m13_0, r_1, m5_1, m5_1 \ - VMSLG m13_1, r_0, V0, T_6 \ - VMSLG m13_1, r_1, V0, T_7 \ - VMSLG m13_2, r5_1, V0, T_8 \ - VMSLG m13_2, r5_2, V0, T_9 \ - VMSLG m02_2, r_0, m4_2, m4_2 \ - VMSLG m13_2, r_0, m5_2, m5_2 \ - VAQ m4_0, T_0, m02_0 \ - VAQ m4_1, T_1, m02_1 \ - VAQ m5_0, T_5, m13_0 \ - VAQ m5_1, T_6, m13_1 \ - VAQ m02_0, T_3, m02_0 \ - VAQ m02_1, T_4, m02_1 \ - VAQ m13_0, T_8, m13_0 \ - VAQ m13_1, T_9, m13_1 \ - VAQ m4_2, T_2, m02_2 \ - VAQ m5_2, T_7, m13_2 \ - -// SQUARE uses three limbs of r and r_2*5 to output square of r -// uses T_1, T_5 and T_7 temporary registers -// input: r_0, r_1, r_2, r5_2 -// temp: TEMP0, TEMP1, TEMP2 -// output: p0, p1, p2 -#define SQUARE(r_0, r_1, r_2, r5_2, p0, p1, p2, TEMP0, TEMP1, TEMP2) \ - VMSLG r_0, r_0, p0, p0 \ - VMSLG r_1, r5_2, V0, TEMP0 \ - VMSLG r_2, r5_2, p1, p1 \ - VMSLG r_0, r_1, V0, TEMP1 \ - VMSLG r_1, r_1, p2, p2 \ - VMSLG r_0, r_2, V0, TEMP2 \ - VAQ TEMP0, p0, p0 \ - VAQ TEMP1, p1, p1 \ - VAQ TEMP2, p2, p2 \ - VAQ TEMP0, p0, p0 \ - VAQ TEMP1, p1, p1 \ - VAQ TEMP2, p2, p2 \ - -// carry h0->h1->h2->h0 || h3->h4->h5->h3 -// uses T_2, T_4, T_5, T_7, T_8, T_9 -// t6, t7, t8, t9, t10, t11 -// input: h0, h1, h2, h3, h4, h5 -// temp: t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11 -// output: h0, h1, h2, h3, h4, h5 -#define REDUCE(h0, h1, h2, h3, h4, h5, t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11) \ - VLM (R12), t6, t7 \ // 44 and 42 bit clear mask - VLEIB $7, $0x28, t10 \ // 5 byte shift mask - VREPIB $4, t8 \ // 4 bit shift mask - VREPIB $2, t11 \ // 2 bit shift mask - VSRLB t10, h0, t0 \ // h0 byte shift - VSRLB t10, h1, t1 \ // h1 byte shift - VSRLB t10, h2, t2 \ // h2 byte shift - VSRLB t10, h3, t3 \ // h3 byte shift - VSRLB t10, h4, t4 \ // h4 byte shift - VSRLB t10, h5, t5 \ // h5 byte shift - VSRL t8, t0, t0 \ // h0 bit shift - VSRL t8, t1, t1 \ // h2 bit shift - VSRL t11, t2, t2 \ // h2 bit shift - VSRL t8, t3, t3 \ // h3 bit shift - VSRL t8, t4, t4 \ // h4 bit shift - VESLG $2, t2, t9 \ // h2 carry x5 - VSRL t11, t5, t5 \ // h5 bit shift - VN t6, h0, h0 \ // h0 clear carry - VAQ t2, t9, t2 \ // h2 carry x5 - VESLG $2, t5, t9 \ // h5 carry x5 - VN t6, h1, h1 \ // h1 clear carry - VN t7, h2, h2 \ // h2 clear carry - VAQ t5, t9, t5 \ // h5 carry x5 - VN t6, h3, h3 \ // h3 clear carry - VN t6, h4, h4 \ // h4 clear carry - VN t7, h5, h5 \ // h5 clear carry - VAQ t0, h1, h1 \ // h0->h1 - VAQ t3, h4, h4 \ // h3->h4 - VAQ t1, h2, h2 \ // h1->h2 - VAQ t4, h5, h5 \ // h4->h5 - VAQ t2, h0, h0 \ // h2->h0 - VAQ t5, h3, h3 \ // h5->h3 - VREPG $1, t6, t6 \ // 44 and 42 bit masks across both halves - VREPG $1, t7, t7 \ - VSLDB $8, h0, h0, h0 \ // set up [h0/1/2, h3/4/5] - VSLDB $8, h1, h1, h1 \ - VSLDB $8, h2, h2, h2 \ - VO h0, h3, h3 \ - VO h1, h4, h4 \ - VO h2, h5, h5 \ - VESRLG $44, h3, t0 \ // 44 bit shift right - VESRLG $44, h4, t1 \ - VESRLG $42, h5, t2 \ - VN t6, h3, h3 \ // clear carry bits - VN t6, h4, h4 \ - VN t7, h5, h5 \ - VESLG $2, t2, t9 \ // multiply carry by 5 - VAQ t9, t2, t2 \ - VAQ t0, h4, h4 \ - VAQ t1, h5, h5 \ - VAQ t2, h3, h3 \ - -// carry h0->h1->h2->h0 -// input: h0, h1, h2 -// temp: t0, t1, t2, t3, t4, t5, t6, t7, t8 -// output: h0, h1, h2 -#define REDUCE2(h0, h1, h2, t0, t1, t2, t3, t4, t5, t6, t7, t8) \ - VLEIB $7, $0x28, t3 \ // 5 byte shift mask - VREPIB $4, t4 \ // 4 bit shift mask - VREPIB $2, t7 \ // 2 bit shift mask - VGBM $0x003F, t5 \ // mask to clear carry bits - VSRLB t3, h0, t0 \ - VSRLB t3, h1, t1 \ - VSRLB t3, h2, t2 \ - VESRLG $4, t5, t5 \ // 44 bit clear mask - VSRL t4, t0, t0 \ - VSRL t4, t1, t1 \ - VSRL t7, t2, t2 \ - VESRLG $2, t5, t6 \ // 42 bit clear mask - VESLG $2, t2, t8 \ - VAQ t8, t2, t2 \ - VN t5, h0, h0 \ - VN t5, h1, h1 \ - VN t6, h2, h2 \ - VAQ t0, h1, h1 \ - VAQ t1, h2, h2 \ - VAQ t2, h0, h0 \ - VSRLB t3, h0, t0 \ - VSRLB t3, h1, t1 \ - VSRLB t3, h2, t2 \ - VSRL t4, t0, t0 \ - VSRL t4, t1, t1 \ - VSRL t7, t2, t2 \ - VN t5, h0, h0 \ - VN t5, h1, h1 \ - VESLG $2, t2, t8 \ - VN t6, h2, h2 \ - VAQ t0, h1, h1 \ - VAQ t8, t2, t2 \ - VAQ t1, h2, h2 \ - VAQ t2, h0, h0 \ - -// expands two message blocks into the lower halfs of the d registers -// moves the contents of the d registers into upper halfs -// input: in1, in2, d0, d1, d2, d3, d4, d5 -// temp: TEMP0, TEMP1, TEMP2, TEMP3 -// output: d0, d1, d2, d3, d4, d5 -#define EXPACC(in1, in2, d0, d1, d2, d3, d4, d5, TEMP0, TEMP1, TEMP2, TEMP3) \ - VGBM $0xff3f, TEMP0 \ - VGBM $0xff1f, TEMP1 \ - VESLG $4, d1, TEMP2 \ - VESLG $4, d4, TEMP3 \ - VESRLG $4, TEMP0, TEMP0 \ - VPERM in1, d0, EX0, d0 \ - VPERM in2, d3, EX0, d3 \ - VPERM in1, d2, EX2, d2 \ - VPERM in2, d5, EX2, d5 \ - VPERM in1, TEMP2, EX1, d1 \ - VPERM in2, TEMP3, EX1, d4 \ - VN TEMP0, d0, d0 \ - VN TEMP0, d3, d3 \ - VESRLG $4, d1, d1 \ - VESRLG $4, d4, d4 \ - VN TEMP1, d2, d2 \ - VN TEMP1, d5, d5 \ - VN TEMP0, d1, d1 \ - VN TEMP0, d4, d4 \ - -// expands one message block into the lower halfs of the d registers -// moves the contents of the d registers into upper halfs -// input: in, d0, d1, d2 -// temp: TEMP0, TEMP1, TEMP2 -// output: d0, d1, d2 -#define EXPACC2(in, d0, d1, d2, TEMP0, TEMP1, TEMP2) \ - VGBM $0xff3f, TEMP0 \ - VESLG $4, d1, TEMP2 \ - VGBM $0xff1f, TEMP1 \ - VPERM in, d0, EX0, d0 \ - VESRLG $4, TEMP0, TEMP0 \ - VPERM in, d2, EX2, d2 \ - VPERM in, TEMP2, EX1, d1 \ - VN TEMP0, d0, d0 \ - VN TEMP1, d2, d2 \ - VESRLG $4, d1, d1 \ - VN TEMP0, d1, d1 \ - -// pack h2:h0 into h1:h0 (no carry) -// input: h0, h1, h2 -// output: h0, h1, h2 -#define PACK(h0, h1, h2) \ - VMRLG h1, h2, h2 \ // copy h1 to upper half h2 - VESLG $44, h1, h1 \ // shift limb 1 44 bits, leaving 20 - VO h0, h1, h0 \ // combine h0 with 20 bits from limb 1 - VESRLG $20, h2, h1 \ // put top 24 bits of limb 1 into h1 - VLEIG $1, $0, h1 \ // clear h2 stuff from lower half of h1 - VO h0, h1, h0 \ // h0 now has 88 bits (limb 0 and 1) - VLEIG $0, $0, h2 \ // clear upper half of h2 - VESRLG $40, h2, h1 \ // h1 now has upper two bits of result - VLEIB $7, $88, h1 \ // for byte shift (11 bytes) - VSLB h1, h2, h2 \ // shift h2 11 bytes to the left - VO h0, h2, h0 \ // combine h0 with 20 bits from limb 1 - VLEIG $0, $0, h1 \ // clear upper half of h1 - -// if h > 2**130-5 then h -= 2**130-5 -// input: h0, h1 -// temp: t0, t1, t2 -// output: h0 -#define MOD(h0, h1, t0, t1, t2) \ - VZERO t0 \ - VLEIG $1, $5, t0 \ - VACCQ h0, t0, t1 \ - VAQ h0, t0, t0 \ - VONE t2 \ - VLEIG $1, $-4, t2 \ - VAQ t2, t1, t1 \ - VACCQ h1, t1, t1 \ - VONE t2 \ - VAQ t2, t1, t1 \ - VN h0, t1, t2 \ - VNC t0, t1, t1 \ - VO t1, t2, h0 \ - -// func poly1305vmsl(out *[16]byte, m *byte, mlen uint64, key *[32]key) -TEXT ·poly1305vmsl(SB), $0-32 - // This code processes 6 + up to 4 blocks (32 bytes) per iteration - // using the algorithm described in: - // NEON crypto, Daniel J. Bernstein & Peter Schwabe - // https://cryptojedi.org/papers/neoncrypto-20120320.pdf - // And as moddified for VMSL as described in - // Accelerating Poly1305 Cryptographic Message Authentication on the z14 - // O'Farrell et al, CASCON 2017, p48-55 - // https://ibm.ent.box.com/s/jf9gedj0e9d2vjctfyh186shaztavnht - - LMG out+0(FP), R1, R4 // R1=out, R2=m, R3=mlen, R4=key - VZERO V0 // c - - // load EX0, EX1 and EX2 - MOVD $·constants<>(SB), R5 - VLM (R5), EX0, EX2 // c - - // setup r - VL (R4), T_0 - MOVD $·keyMask<>(SB), R6 - VL (R6), T_1 - VN T_0, T_1, T_0 - VZERO T_2 // limbs for r - VZERO T_3 - VZERO T_4 - EXPACC2(T_0, T_2, T_3, T_4, T_1, T_5, T_7) - - // T_2, T_3, T_4: [0, r] - - // setup r*20 - VLEIG $0, $0, T_0 - VLEIG $1, $20, T_0 // T_0: [0, 20] - VZERO T_5 - VZERO T_6 - VMSLG T_0, T_3, T_5, T_5 - VMSLG T_0, T_4, T_6, T_6 - - // store r for final block in GR - VLGVG $1, T_2, RSAVE_0 // c - VLGVG $1, T_3, RSAVE_1 // c - VLGVG $1, T_4, RSAVE_2 // c - VLGVG $1, T_5, R5SAVE_1 // c - VLGVG $1, T_6, R5SAVE_2 // c - - // initialize h - VZERO H0_0 - VZERO H1_0 - VZERO H2_0 - VZERO H0_1 - VZERO H1_1 - VZERO H2_1 - - // initialize pointer for reduce constants - MOVD $·reduce<>(SB), R12 - - // calculate r**2 and 20*(r**2) - VZERO R_0 - VZERO R_1 - VZERO R_2 - SQUARE(T_2, T_3, T_4, T_6, R_0, R_1, R_2, T_1, T_5, T_7) - REDUCE2(R_0, R_1, R_2, M0, M1, M2, M3, M4, R5_1, R5_2, M5, T_1) - VZERO R5_1 - VZERO R5_2 - VMSLG T_0, R_1, R5_1, R5_1 - VMSLG T_0, R_2, R5_2, R5_2 - - // skip r**4 calculation if 3 blocks or less - CMPBLE R3, $48, b4 - - // calculate r**4 and 20*(r**4) - VZERO T_8 - VZERO T_9 - VZERO T_10 - SQUARE(R_0, R_1, R_2, R5_2, T_8, T_9, T_10, T_1, T_5, T_7) - REDUCE2(T_8, T_9, T_10, M0, M1, M2, M3, M4, T_2, T_3, M5, T_1) - VZERO T_2 - VZERO T_3 - VMSLG T_0, T_9, T_2, T_2 - VMSLG T_0, T_10, T_3, T_3 - - // put r**2 to the right and r**4 to the left of R_0, R_1, R_2 - VSLDB $8, T_8, T_8, T_8 - VSLDB $8, T_9, T_9, T_9 - VSLDB $8, T_10, T_10, T_10 - VSLDB $8, T_2, T_2, T_2 - VSLDB $8, T_3, T_3, T_3 - - VO T_8, R_0, R_0 - VO T_9, R_1, R_1 - VO T_10, R_2, R_2 - VO T_2, R5_1, R5_1 - VO T_3, R5_2, R5_2 - - CMPBLE R3, $80, load // less than or equal to 5 blocks in message - - // 6(or 5+1) blocks - SUB $81, R3 - VLM (R2), M0, M4 - VLL R3, 80(R2), M5 - ADD $1, R3 - MOVBZ $1, R0 - CMPBGE R3, $16, 2(PC) - VLVGB R3, R0, M5 - MOVD $96(R2), R2 - EXPACC(M0, M1, H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_0, T_1, T_2, T_3) - EXPACC(M2, M3, H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_0, T_1, T_2, T_3) - VLEIB $2, $1, H2_0 - VLEIB $2, $1, H2_1 - VLEIB $10, $1, H2_0 - VLEIB $10, $1, H2_1 - - VZERO M0 - VZERO M1 - VZERO M2 - VZERO M3 - VZERO T_4 - VZERO T_10 - EXPACC(M4, M5, M0, M1, M2, M3, T_4, T_10, T_0, T_1, T_2, T_3) - VLR T_4, M4 - VLEIB $10, $1, M2 - CMPBLT R3, $16, 2(PC) - VLEIB $10, $1, T_10 - MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, T_10, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) - REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M2, M3, M4, T_4, T_5, T_2, T_7, T_8, T_9) - VMRHG V0, H0_1, H0_0 - VMRHG V0, H1_1, H1_0 - VMRHG V0, H2_1, H2_0 - VMRLG V0, H0_1, H0_1 - VMRLG V0, H1_1, H1_1 - VMRLG V0, H2_1, H2_1 - - SUB $16, R3 - CMPBLE R3, $0, square - -load: - // load EX0, EX1 and EX2 - MOVD $·c<>(SB), R5 - VLM (R5), EX0, EX2 - -loop: - CMPBLE R3, $64, add // b4 // last 4 or less blocks left - - // next 4 full blocks - VLM (R2), M2, M5 - SUB $64, R3 - MOVD $64(R2), R2 - REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, T_0, T_1, T_3, T_4, T_5, T_2, T_7, T_8, T_9) - - // expacc in-lined to create [m2, m3] limbs - VGBM $0x3f3f, T_0 // 44 bit clear mask - VGBM $0x1f1f, T_1 // 40 bit clear mask - VPERM M2, M3, EX0, T_3 - VESRLG $4, T_0, T_0 // 44 bit clear mask ready - VPERM M2, M3, EX1, T_4 - VPERM M2, M3, EX2, T_5 - VN T_0, T_3, T_3 - VESRLG $4, T_4, T_4 - VN T_1, T_5, T_5 - VN T_0, T_4, T_4 - VMRHG H0_1, T_3, H0_0 - VMRHG H1_1, T_4, H1_0 - VMRHG H2_1, T_5, H2_0 - VMRLG H0_1, T_3, H0_1 - VMRLG H1_1, T_4, H1_1 - VMRLG H2_1, T_5, H2_1 - VLEIB $10, $1, H2_0 - VLEIB $10, $1, H2_1 - VPERM M4, M5, EX0, T_3 - VPERM M4, M5, EX1, T_4 - VPERM M4, M5, EX2, T_5 - VN T_0, T_3, T_3 - VESRLG $4, T_4, T_4 - VN T_1, T_5, T_5 - VN T_0, T_4, T_4 - VMRHG V0, T_3, M0 - VMRHG V0, T_4, M1 - VMRHG V0, T_5, M2 - VMRLG V0, T_3, M3 - VMRLG V0, T_4, M4 - VMRLG V0, T_5, M5 - VLEIB $10, $1, M2 - VLEIB $10, $1, M5 - - MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) - CMPBNE R3, $0, loop - REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M3, M4, M5, T_4, T_5, T_2, T_7, T_8, T_9) - VMRHG V0, H0_1, H0_0 - VMRHG V0, H1_1, H1_0 - VMRHG V0, H2_1, H2_0 - VMRLG V0, H0_1, H0_1 - VMRLG V0, H1_1, H1_1 - VMRLG V0, H2_1, H2_1 - - // load EX0, EX1, EX2 - MOVD $·constants<>(SB), R5 - VLM (R5), EX0, EX2 - - // sum vectors - VAQ H0_0, H0_1, H0_0 - VAQ H1_0, H1_1, H1_0 - VAQ H2_0, H2_1, H2_0 - - // h may be >= 2*(2**130-5) so we need to reduce it again - // M0...M4 are used as temps here - REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5) - -next: // carry h1->h2 - VLEIB $7, $0x28, T_1 - VREPIB $4, T_2 - VGBM $0x003F, T_3 - VESRLG $4, T_3 - - // byte shift - VSRLB T_1, H1_0, T_4 - - // bit shift - VSRL T_2, T_4, T_4 - - // clear h1 carry bits - VN T_3, H1_0, H1_0 - - // add carry - VAQ T_4, H2_0, H2_0 - - // h is now < 2*(2**130-5) - // pack h into h1 (hi) and h0 (lo) - PACK(H0_0, H1_0, H2_0) - - // if h > 2**130-5 then h -= 2**130-5 - MOD(H0_0, H1_0, T_0, T_1, T_2) - - // h += s - MOVD $·bswapMask<>(SB), R5 - VL (R5), T_1 - VL 16(R4), T_0 - VPERM T_0, T_0, T_1, T_0 // reverse bytes (to big) - VAQ T_0, H0_0, H0_0 - VPERM H0_0, H0_0, T_1, H0_0 // reverse bytes (to little) - VST H0_0, (R1) - RET - -add: - // load EX0, EX1, EX2 - MOVD $·constants<>(SB), R5 - VLM (R5), EX0, EX2 - - REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M3, M4, M5, T_4, T_5, T_2, T_7, T_8, T_9) - VMRHG V0, H0_1, H0_0 - VMRHG V0, H1_1, H1_0 - VMRHG V0, H2_1, H2_0 - VMRLG V0, H0_1, H0_1 - VMRLG V0, H1_1, H1_1 - VMRLG V0, H2_1, H2_1 - CMPBLE R3, $64, b4 - -b4: - CMPBLE R3, $48, b3 // 3 blocks or less - - // 4(3+1) blocks remaining - SUB $49, R3 - VLM (R2), M0, M2 - VLL R3, 48(R2), M3 - ADD $1, R3 - MOVBZ $1, R0 - CMPBEQ R3, $16, 2(PC) - VLVGB R3, R0, M3 - MOVD $64(R2), R2 - EXPACC(M0, M1, H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_0, T_1, T_2, T_3) - VLEIB $10, $1, H2_0 - VLEIB $10, $1, H2_1 - VZERO M0 - VZERO M1 - VZERO M4 - VZERO M5 - VZERO T_4 - VZERO T_10 - EXPACC(M2, M3, M0, M1, M4, M5, T_4, T_10, T_0, T_1, T_2, T_3) - VLR T_4, M2 - VLEIB $10, $1, M4 - CMPBNE R3, $16, 2(PC) - VLEIB $10, $1, T_10 - MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M4, M5, M2, T_10, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) - REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M3, M4, M5, T_4, T_5, T_2, T_7, T_8, T_9) - VMRHG V0, H0_1, H0_0 - VMRHG V0, H1_1, H1_0 - VMRHG V0, H2_1, H2_0 - VMRLG V0, H0_1, H0_1 - VMRLG V0, H1_1, H1_1 - VMRLG V0, H2_1, H2_1 - SUB $16, R3 - CMPBLE R3, $0, square // this condition must always hold true! - -b3: - CMPBLE R3, $32, b2 - - // 3 blocks remaining - - // setup [r²,r] - VSLDB $8, R_0, R_0, R_0 - VSLDB $8, R_1, R_1, R_1 - VSLDB $8, R_2, R_2, R_2 - VSLDB $8, R5_1, R5_1, R5_1 - VSLDB $8, R5_2, R5_2, R5_2 - - VLVGG $1, RSAVE_0, R_0 - VLVGG $1, RSAVE_1, R_1 - VLVGG $1, RSAVE_2, R_2 - VLVGG $1, R5SAVE_1, R5_1 - VLVGG $1, R5SAVE_2, R5_2 - - // setup [h0, h1] - VSLDB $8, H0_0, H0_0, H0_0 - VSLDB $8, H1_0, H1_0, H1_0 - VSLDB $8, H2_0, H2_0, H2_0 - VO H0_1, H0_0, H0_0 - VO H1_1, H1_0, H1_0 - VO H2_1, H2_0, H2_0 - VZERO H0_1 - VZERO H1_1 - VZERO H2_1 - - VZERO M0 - VZERO M1 - VZERO M2 - VZERO M3 - VZERO M4 - VZERO M5 - - // H*[r**2, r] - MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) - REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, H0_1, H1_1, T_10, M5) - - SUB $33, R3 - VLM (R2), M0, M1 - VLL R3, 32(R2), M2 - ADD $1, R3 - MOVBZ $1, R0 - CMPBEQ R3, $16, 2(PC) - VLVGB R3, R0, M2 - - // H += m0 - VZERO T_1 - VZERO T_2 - VZERO T_3 - EXPACC2(M0, T_1, T_2, T_3, T_4, T_5, T_6) - VLEIB $10, $1, T_3 - VAG H0_0, T_1, H0_0 - VAG H1_0, T_2, H1_0 - VAG H2_0, T_3, H2_0 - - VZERO M0 - VZERO M3 - VZERO M4 - VZERO M5 - VZERO T_10 - - // (H+m0)*r - MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M3, M4, M5, V0, T_10, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) - REDUCE2(H0_0, H1_0, H2_0, M0, M3, M4, M5, T_10, H0_1, H1_1, H2_1, T_9) - - // H += m1 - VZERO V0 - VZERO T_1 - VZERO T_2 - VZERO T_3 - EXPACC2(M1, T_1, T_2, T_3, T_4, T_5, T_6) - VLEIB $10, $1, T_3 - VAQ H0_0, T_1, H0_0 - VAQ H1_0, T_2, H1_0 - VAQ H2_0, T_3, H2_0 - REDUCE2(H0_0, H1_0, H2_0, M0, M3, M4, M5, T_9, H0_1, H1_1, H2_1, T_10) - - // [H, m2] * [r**2, r] - EXPACC2(M2, H0_0, H1_0, H2_0, T_1, T_2, T_3) - CMPBNE R3, $16, 2(PC) - VLEIB $10, $1, H2_0 - VZERO M0 - VZERO M1 - VZERO M2 - VZERO M3 - VZERO M4 - VZERO M5 - MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) - REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, H0_1, H1_1, M5, T_10) - SUB $16, R3 - CMPBLE R3, $0, next // this condition must always hold true! - -b2: - CMPBLE R3, $16, b1 - - // 2 blocks remaining - - // setup [r²,r] - VSLDB $8, R_0, R_0, R_0 - VSLDB $8, R_1, R_1, R_1 - VSLDB $8, R_2, R_2, R_2 - VSLDB $8, R5_1, R5_1, R5_1 - VSLDB $8, R5_2, R5_2, R5_2 - - VLVGG $1, RSAVE_0, R_0 - VLVGG $1, RSAVE_1, R_1 - VLVGG $1, RSAVE_2, R_2 - VLVGG $1, R5SAVE_1, R5_1 - VLVGG $1, R5SAVE_2, R5_2 - - // setup [h0, h1] - VSLDB $8, H0_0, H0_0, H0_0 - VSLDB $8, H1_0, H1_0, H1_0 - VSLDB $8, H2_0, H2_0, H2_0 - VO H0_1, H0_0, H0_0 - VO H1_1, H1_0, H1_0 - VO H2_1, H2_0, H2_0 - VZERO H0_1 - VZERO H1_1 - VZERO H2_1 - - VZERO M0 - VZERO M1 - VZERO M2 - VZERO M3 - VZERO M4 - VZERO M5 - - // H*[r**2, r] - MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) - REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M2, M3, M4, T_4, T_5, T_2, T_7, T_8, T_9) - VMRHG V0, H0_1, H0_0 - VMRHG V0, H1_1, H1_0 - VMRHG V0, H2_1, H2_0 - VMRLG V0, H0_1, H0_1 - VMRLG V0, H1_1, H1_1 - VMRLG V0, H2_1, H2_1 - - // move h to the left and 0s at the right - VSLDB $8, H0_0, H0_0, H0_0 - VSLDB $8, H1_0, H1_0, H1_0 - VSLDB $8, H2_0, H2_0, H2_0 - - // get message blocks and append 1 to start - SUB $17, R3 - VL (R2), M0 - VLL R3, 16(R2), M1 - ADD $1, R3 - MOVBZ $1, R0 - CMPBEQ R3, $16, 2(PC) - VLVGB R3, R0, M1 - VZERO T_6 - VZERO T_7 - VZERO T_8 - EXPACC2(M0, T_6, T_7, T_8, T_1, T_2, T_3) - EXPACC2(M1, T_6, T_7, T_8, T_1, T_2, T_3) - VLEIB $2, $1, T_8 - CMPBNE R3, $16, 2(PC) - VLEIB $10, $1, T_8 - - // add [m0, m1] to h - VAG H0_0, T_6, H0_0 - VAG H1_0, T_7, H1_0 - VAG H2_0, T_8, H2_0 - - VZERO M2 - VZERO M3 - VZERO M4 - VZERO M5 - VZERO T_10 - VZERO M0 - - // at this point R_0 .. R5_2 look like [r**2, r] - MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M2, M3, M4, M5, T_10, M0, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) - REDUCE2(H0_0, H1_0, H2_0, M2, M3, M4, M5, T_9, H0_1, H1_1, H2_1, T_10) - SUB $16, R3, R3 - CMPBLE R3, $0, next - -b1: - CMPBLE R3, $0, next - - // 1 block remaining - - // setup [r²,r] - VSLDB $8, R_0, R_0, R_0 - VSLDB $8, R_1, R_1, R_1 - VSLDB $8, R_2, R_2, R_2 - VSLDB $8, R5_1, R5_1, R5_1 - VSLDB $8, R5_2, R5_2, R5_2 - - VLVGG $1, RSAVE_0, R_0 - VLVGG $1, RSAVE_1, R_1 - VLVGG $1, RSAVE_2, R_2 - VLVGG $1, R5SAVE_1, R5_1 - VLVGG $1, R5SAVE_2, R5_2 - - // setup [h0, h1] - VSLDB $8, H0_0, H0_0, H0_0 - VSLDB $8, H1_0, H1_0, H1_0 - VSLDB $8, H2_0, H2_0, H2_0 - VO H0_1, H0_0, H0_0 - VO H1_1, H1_0, H1_0 - VO H2_1, H2_0, H2_0 - VZERO H0_1 - VZERO H1_1 - VZERO H2_1 - - VZERO M0 - VZERO M1 - VZERO M2 - VZERO M3 - VZERO M4 - VZERO M5 - - // H*[r**2, r] - MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) - REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5) - - // set up [0, m0] limbs - SUB $1, R3 - VLL R3, (R2), M0 - ADD $1, R3 - MOVBZ $1, R0 - CMPBEQ R3, $16, 2(PC) - VLVGB R3, R0, M0 - VZERO T_1 - VZERO T_2 - VZERO T_3 - EXPACC2(M0, T_1, T_2, T_3, T_4, T_5, T_6)// limbs: [0, m] - CMPBNE R3, $16, 2(PC) - VLEIB $10, $1, T_3 - - // h+m0 - VAQ H0_0, T_1, H0_0 - VAQ H1_0, T_2, H1_0 - VAQ H2_0, T_3, H2_0 - - VZERO M0 - VZERO M1 - VZERO M2 - VZERO M3 - VZERO M4 - VZERO M5 - MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) - REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5) - - BR next - -square: - // setup [r²,r] - VSLDB $8, R_0, R_0, R_0 - VSLDB $8, R_1, R_1, R_1 - VSLDB $8, R_2, R_2, R_2 - VSLDB $8, R5_1, R5_1, R5_1 - VSLDB $8, R5_2, R5_2, R5_2 - - VLVGG $1, RSAVE_0, R_0 - VLVGG $1, RSAVE_1, R_1 - VLVGG $1, RSAVE_2, R_2 - VLVGG $1, R5SAVE_1, R5_1 - VLVGG $1, R5SAVE_2, R5_2 - - // setup [h0, h1] - VSLDB $8, H0_0, H0_0, H0_0 - VSLDB $8, H1_0, H1_0, H1_0 - VSLDB $8, H2_0, H2_0, H2_0 - VO H0_1, H0_0, H0_0 - VO H1_1, H1_0, H1_0 - VO H2_1, H2_0, H2_0 - VZERO H0_1 - VZERO H1_1 - VZERO H2_1 - - VZERO M0 - VZERO M1 - VZERO M2 - VZERO M3 - VZERO M4 - VZERO M5 - - // (h0*r**2) + (h1*r) - MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) - REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5) - BR next - -TEXT ·hasVMSLFacility(SB), NOSPLIT, $24-1 - MOVD $x-24(SP), R1 - XC $24, 0(R1), 0(R1) // clear the storage - MOVD $2, R0 // R0 is the number of double words stored -1 - WORD $0xB2B01000 // STFLE 0(R1) - XOR R0, R0 // reset the value of R0 - MOVBZ z-8(SP), R1 - AND $0x01, R1 - BEQ novmsl - -vectorinstalled: - // check if the vector instruction has been enabled - VLEIB $0, $0xF, V16 - VLGVB $0, V16, R1 - CMPBNE R1, $0xF, novmsl - MOVB $1, ret+0(FP) // have vx - RET - -novmsl: - MOVB $0, ret+0(FP) // no vx - RET diff --git a/vendor/golang.org/x/crypto/salsa20/salsa/salsa20_amd64.go b/vendor/golang.org/x/crypto/salsa20/salsa/salsa20_amd64.go index f9269c3..c400dfc 100644 --- a/vendor/golang.org/x/crypto/salsa20/salsa/salsa20_amd64.go +++ b/vendor/golang.org/x/crypto/salsa20/salsa/salsa20_amd64.go @@ -2,14 +2,14 @@ // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. -// +build amd64,!appengine,!gccgo +//go:build amd64 && !purego && gc +// +build amd64,!purego,gc package salsa -// This function is implemented in salsa2020_amd64.s. - //go:noescape +// salsa2020XORKeyStream is implemented in salsa20_amd64.s. func salsa2020XORKeyStream(out, in *byte, n uint64, nonce, key *byte) // XORKeyStream crypts bytes from in to out using the given key and counters. diff --git a/vendor/golang.org/x/crypto/salsa20/salsa/salsa2020_amd64.s b/vendor/golang.org/x/crypto/salsa20/salsa/salsa20_amd64.s index 22afbdc..c089277 100644 --- a/vendor/golang.org/x/crypto/salsa20/salsa/salsa2020_amd64.s +++ b/vendor/golang.org/x/crypto/salsa20/salsa/salsa20_amd64.s @@ -2,13 +2,14 @@ // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. -// +build amd64,!appengine,!gccgo +//go:build amd64 && !purego && gc +// +build amd64,!purego,gc // This code was translated into a form compatible with 6a from the public // domain sources in SUPERCOP: https://bench.cr.yp.to/supercop.html // func salsa2020XORKeyStream(out, in *byte, n uint64, nonce, key *byte) -// This needs up to 64 bytes at 360(SP); hence the non-obvious frame size. +// This needs up to 64 bytes at 360(R12); hence the non-obvious frame size. TEXT ·salsa2020XORKeyStream(SB),0,$456-40 // frame = 424 + 32 byte alignment MOVQ out+0(FP),DI MOVQ in+8(FP),SI @@ -17,10 +18,8 @@ TEXT ·salsa2020XORKeyStream(SB),0,$456-40 // frame = 424 + 32 byte alignment MOVQ key+32(FP),R8 MOVQ SP,R12 - MOVQ SP,R9 - ADDQ $31, R9 - ANDQ $~31, R9 - MOVQ R9, SP + ADDQ $31, R12 + ANDQ $~31, R12 MOVQ DX,R9 MOVQ CX,DX @@ -32,122 +31,116 @@ TEXT ·salsa2020XORKeyStream(SB),0,$456-40 // frame = 424 + 32 byte alignment MOVL 0(R10),R8 MOVL 0(DX),AX MOVL 16(R10),R11 - MOVL CX,0(SP) - MOVL R8, 4 (SP) - MOVL AX, 8 (SP) - MOVL R11, 12 (SP) + MOVL CX,0(R12) + MOVL R8, 4 (R12) + MOVL AX, 8 (R12) + MOVL R11, 12 (R12) MOVL 8(DX),CX MOVL 24(R10),R8 MOVL 4(R10),AX MOVL 4(DX),R11 - MOVL CX,16(SP) - MOVL R8, 20 (SP) - MOVL AX, 24 (SP) - MOVL R11, 28 (SP) + MOVL CX,16(R12) + MOVL R8, 20 (R12) + MOVL AX, 24 (R12) + MOVL R11, 28 (R12) MOVL 12(DX),CX MOVL 12(R10),DX MOVL 28(R10),R8 MOVL 8(R10),AX - MOVL DX,32(SP) - MOVL CX, 36 (SP) - MOVL R8, 40 (SP) - MOVL AX, 44 (SP) + MOVL DX,32(R12) + MOVL CX, 36 (R12) + MOVL R8, 40 (R12) + MOVL AX, 44 (R12) MOVQ $1634760805,DX MOVQ $857760878,CX MOVQ $2036477234,R8 MOVQ $1797285236,AX - MOVL DX,48(SP) - MOVL CX, 52 (SP) - MOVL R8, 56 (SP) - MOVL AX, 60 (SP) + MOVL DX,48(R12) + MOVL CX, 52 (R12) + MOVL R8, 56 (R12) + MOVL AX, 60 (R12) CMPQ R9,$256 JB BYTESBETWEEN1AND255 - MOVOA 48(SP),X0 + MOVOA 48(R12),X0 PSHUFL $0X55,X0,X1 PSHUFL $0XAA,X0,X2 PSHUFL $0XFF,X0,X3 PSHUFL $0X00,X0,X0 - MOVOA X1,64(SP) - MOVOA X2,80(SP) - MOVOA X3,96(SP) - MOVOA X0,112(SP) - MOVOA 0(SP),X0 + MOVOA X1,64(R12) + MOVOA X2,80(R12) + MOVOA X3,96(R12) + MOVOA X0,112(R12) + MOVOA 0(R12),X0 PSHUFL $0XAA,X0,X1 PSHUFL $0XFF,X0,X2 PSHUFL $0X00,X0,X3 PSHUFL $0X55,X0,X0 - MOVOA X1,128(SP) - MOVOA X2,144(SP) - MOVOA X3,160(SP) - MOVOA X0,176(SP) - MOVOA 16(SP),X0 + MOVOA X1,128(R12) + MOVOA X2,144(R12) + MOVOA X3,160(R12) + MOVOA X0,176(R12) + MOVOA 16(R12),X0 PSHUFL $0XFF,X0,X1 PSHUFL $0X55,X0,X2 PSHUFL $0XAA,X0,X0 - MOVOA X1,192(SP) - MOVOA X2,208(SP) - MOVOA X0,224(SP) - MOVOA 32(SP),X0 + MOVOA X1,192(R12) + MOVOA X2,208(R12) + MOVOA X0,224(R12) + MOVOA 32(R12),X0 PSHUFL $0X00,X0,X1 PSHUFL $0XAA,X0,X2 PSHUFL $0XFF,X0,X0 - MOVOA X1,240(SP) - MOVOA X2,256(SP) - MOVOA X0,272(SP) + MOVOA X1,240(R12) + MOVOA X2,256(R12) + MOVOA X0,272(R12) BYTESATLEAST256: - MOVL 16(SP),DX - MOVL 36 (SP),CX - MOVL DX,288(SP) - MOVL CX,304(SP) - ADDQ $1,DX + MOVL 16(R12),DX + MOVL 36 (R12),CX + MOVL DX,288(R12) + MOVL CX,304(R12) SHLQ $32,CX ADDQ CX,DX + ADDQ $1,DX MOVQ DX,CX SHRQ $32,CX - MOVL DX, 292 (SP) - MOVL CX, 308 (SP) + MOVL DX, 292 (R12) + MOVL CX, 308 (R12) ADDQ $1,DX - SHLQ $32,CX - ADDQ CX,DX MOVQ DX,CX SHRQ $32,CX - MOVL DX, 296 (SP) - MOVL CX, 312 (SP) + MOVL DX, 296 (R12) + MOVL CX, 312 (R12) ADDQ $1,DX - SHLQ $32,CX - ADDQ CX,DX MOVQ DX,CX SHRQ $32,CX - MOVL DX, 300 (SP) - MOVL CX, 316 (SP) + MOVL DX, 300 (R12) + MOVL CX, 316 (R12) ADDQ $1,DX - SHLQ $32,CX - ADDQ CX,DX MOVQ DX,CX SHRQ $32,CX - MOVL DX,16(SP) - MOVL CX, 36 (SP) - MOVQ R9,352(SP) + MOVL DX,16(R12) + MOVL CX, 36 (R12) + MOVQ R9,352(R12) MOVQ $20,DX - MOVOA 64(SP),X0 - MOVOA 80(SP),X1 - MOVOA 96(SP),X2 - MOVOA 256(SP),X3 - MOVOA 272(SP),X4 - MOVOA 128(SP),X5 - MOVOA 144(SP),X6 - MOVOA 176(SP),X7 - MOVOA 192(SP),X8 - MOVOA 208(SP),X9 - MOVOA 224(SP),X10 - MOVOA 304(SP),X11 - MOVOA 112(SP),X12 - MOVOA 160(SP),X13 - MOVOA 240(SP),X14 - MOVOA 288(SP),X15 + MOVOA 64(R12),X0 + MOVOA 80(R12),X1 + MOVOA 96(R12),X2 + MOVOA 256(R12),X3 + MOVOA 272(R12),X4 + MOVOA 128(R12),X5 + MOVOA 144(R12),X6 + MOVOA 176(R12),X7 + MOVOA 192(R12),X8 + MOVOA 208(R12),X9 + MOVOA 224(R12),X10 + MOVOA 304(R12),X11 + MOVOA 112(R12),X12 + MOVOA 160(R12),X13 + MOVOA 240(R12),X14 + MOVOA 288(R12),X15 MAINLOOP1: - MOVOA X1,320(SP) - MOVOA X2,336(SP) + MOVOA X1,320(R12) + MOVOA X2,336(R12) MOVOA X13,X1 PADDL X12,X1 MOVOA X1,X2 @@ -197,8 +190,8 @@ TEXT ·salsa2020XORKeyStream(SB),0,$456-40 // frame = 424 + 32 byte alignment PXOR X1,X12 PSRLL $14,X2 PXOR X2,X12 - MOVOA 320(SP),X1 - MOVOA X12,320(SP) + MOVOA 320(R12),X1 + MOVOA X12,320(R12) MOVOA X9,X2 PADDL X7,X2 MOVOA X2,X12 @@ -213,8 +206,8 @@ TEXT ·salsa2020XORKeyStream(SB),0,$456-40 // frame = 424 + 32 byte alignment PXOR X2,X3 PSRLL $25,X12 PXOR X12,X3 - MOVOA 336(SP),X2 - MOVOA X0,336(SP) + MOVOA 336(R12),X2 + MOVOA X0,336(R12) MOVOA X6,X0 PADDL X2,X0 MOVOA X0,X12 @@ -257,8 +250,8 @@ TEXT ·salsa2020XORKeyStream(SB),0,$456-40 // frame = 424 + 32 byte alignment PXOR X0,X1 PSRLL $14,X12 PXOR X12,X1 - MOVOA 320(SP),X0 - MOVOA X1,320(SP) + MOVOA 320(R12),X0 + MOVOA X1,320(R12) MOVOA X4,X1 PADDL X0,X1 MOVOA X1,X12 @@ -273,8 +266,8 @@ TEXT ·salsa2020XORKeyStream(SB),0,$456-40 // frame = 424 + 32 byte alignment PXOR X1,X2 PSRLL $14,X12 PXOR X12,X2 - MOVOA 336(SP),X12 - MOVOA X2,336(SP) + MOVOA 336(R12),X12 + MOVOA X2,336(R12) MOVOA X14,X1 PADDL X12,X1 MOVOA X1,X2 @@ -317,8 +310,8 @@ TEXT ·salsa2020XORKeyStream(SB),0,$456-40 // frame = 424 + 32 byte alignment PXOR X1,X0 PSRLL $14,X2 PXOR X2,X0 - MOVOA 320(SP),X1 - MOVOA X0,320(SP) + MOVOA 320(R12),X1 + MOVOA X0,320(R12) MOVOA X8,X0 PADDL X14,X0 MOVOA X0,X2 @@ -333,8 +326,8 @@ TEXT ·salsa2020XORKeyStream(SB),0,$456-40 // frame = 424 + 32 byte alignment PXOR X0,X6 PSRLL $25,X2 PXOR X2,X6 - MOVOA 336(SP),X2 - MOVOA X12,336(SP) + MOVOA 336(R12),X2 + MOVOA X12,336(R12) MOVOA X3,X0 PADDL X2,X0 MOVOA X0,X12 @@ -384,14 +377,14 @@ TEXT ·salsa2020XORKeyStream(SB),0,$456-40 // frame = 424 + 32 byte alignment PXOR X0,X2 PSRLL $14,X12 PXOR X12,X2 - MOVOA 320(SP),X12 - MOVOA 336(SP),X0 + MOVOA 320(R12),X12 + MOVOA 336(R12),X0 SUBQ $2,DX JA MAINLOOP1 - PADDL 112(SP),X12 - PADDL 176(SP),X7 - PADDL 224(SP),X10 - PADDL 272(SP),X4 + PADDL 112(R12),X12 + PADDL 176(R12),X7 + PADDL 224(R12),X10 + PADDL 272(R12),X4 MOVD X12,DX MOVD X7,CX MOVD X10,R8 @@ -452,10 +445,10 @@ TEXT ·salsa2020XORKeyStream(SB),0,$456-40 // frame = 424 + 32 byte alignment MOVL CX,196(DI) MOVL R8,200(DI) MOVL R9,204(DI) - PADDL 240(SP),X14 - PADDL 64(SP),X0 - PADDL 128(SP),X5 - PADDL 192(SP),X8 + PADDL 240(R12),X14 + PADDL 64(R12),X0 + PADDL 128(R12),X5 + PADDL 192(R12),X8 MOVD X14,DX MOVD X0,CX MOVD X5,R8 @@ -516,10 +509,10 @@ TEXT ·salsa2020XORKeyStream(SB),0,$456-40 // frame = 424 + 32 byte alignment MOVL CX,212(DI) MOVL R8,216(DI) MOVL R9,220(DI) - PADDL 288(SP),X15 - PADDL 304(SP),X11 - PADDL 80(SP),X1 - PADDL 144(SP),X6 + PADDL 288(R12),X15 + PADDL 304(R12),X11 + PADDL 80(R12),X1 + PADDL 144(R12),X6 MOVD X15,DX MOVD X11,CX MOVD X1,R8 @@ -580,10 +573,10 @@ TEXT ·salsa2020XORKeyStream(SB),0,$456-40 // frame = 424 + 32 byte alignment MOVL CX,228(DI) MOVL R8,232(DI) MOVL R9,236(DI) - PADDL 160(SP),X13 - PADDL 208(SP),X9 - PADDL 256(SP),X3 - PADDL 96(SP),X2 + PADDL 160(R12),X13 + PADDL 208(R12),X9 + PADDL 256(R12),X3 + PADDL 96(R12),X2 MOVD X13,DX MOVD X9,CX MOVD X3,R8 @@ -644,7 +637,7 @@ TEXT ·salsa2020XORKeyStream(SB),0,$456-40 // frame = 424 + 32 byte alignment MOVL CX,244(DI) MOVL R8,248(DI) MOVL R9,252(DI) - MOVQ 352(SP),R9 + MOVQ 352(R12),R9 SUBQ $256,R9 ADDQ $256,SI ADDQ $256,DI @@ -656,17 +649,17 @@ TEXT ·salsa2020XORKeyStream(SB),0,$456-40 // frame = 424 + 32 byte alignment CMPQ R9,$64 JAE NOCOPY MOVQ DI,DX - LEAQ 360(SP),DI + LEAQ 360(R12),DI MOVQ R9,CX REP; MOVSB - LEAQ 360(SP),DI - LEAQ 360(SP),SI + LEAQ 360(R12),DI + LEAQ 360(R12),SI NOCOPY: - MOVQ R9,352(SP) - MOVOA 48(SP),X0 - MOVOA 0(SP),X1 - MOVOA 16(SP),X2 - MOVOA 32(SP),X3 + MOVQ R9,352(R12) + MOVOA 48(R12),X0 + MOVOA 0(R12),X1 + MOVOA 16(R12),X2 + MOVOA 32(R12),X3 MOVOA X1,X4 MOVQ $20,CX MAINLOOP2: @@ -797,10 +790,10 @@ TEXT ·salsa2020XORKeyStream(SB),0,$456-40 // frame = 424 + 32 byte alignment PSHUFL $0X39,X3,X3 PXOR X6,X0 JA MAINLOOP2 - PADDL 48(SP),X0 - PADDL 0(SP),X1 - PADDL 16(SP),X2 - PADDL 32(SP),X3 + PADDL 48(R12),X0 + PADDL 0(R12),X1 + PADDL 16(R12),X2 + PADDL 32(R12),X3 MOVD X0,CX MOVD X1,R8 MOVD X2,R9 @@ -861,16 +854,16 @@ TEXT ·salsa2020XORKeyStream(SB),0,$456-40 // frame = 424 + 32 byte alignment MOVL R8,44(DI) MOVL R9,28(DI) MOVL AX,12(DI) - MOVQ 352(SP),R9 - MOVL 16(SP),CX - MOVL 36 (SP),R8 + MOVQ 352(R12),R9 + MOVL 16(R12),CX + MOVL 36 (R12),R8 ADDQ $1,CX SHLQ $32,R8 ADDQ R8,CX MOVQ CX,R8 SHRQ $32,R8 - MOVL CX,16(SP) - MOVL R8, 36 (SP) + MOVL CX,16(R12) + MOVL R8, 36 (R12) CMPQ R9,$64 JA BYTESATLEAST65 JAE BYTESATLEAST64 @@ -880,7 +873,6 @@ TEXT ·salsa2020XORKeyStream(SB),0,$456-40 // frame = 424 + 32 byte alignment REP; MOVSB BYTESATLEAST64: DONE: - MOVQ R12,SP RET BYTESATLEAST65: SUBQ $64,R9 diff --git a/vendor/golang.org/x/crypto/salsa20/salsa/salsa20_noasm.go b/vendor/golang.org/x/crypto/salsa20/salsa/salsa20_noasm.go new file mode 100644 index 0000000..4392cc1 --- /dev/null +++ b/vendor/golang.org/x/crypto/salsa20/salsa/salsa20_noasm.go @@ -0,0 +1,15 @@ +// Copyright 2019 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +//go:build !amd64 || purego || !gc +// +build !amd64 purego !gc + +package salsa + +// XORKeyStream crypts bytes from in to out using the given key and counters. +// In and out must overlap entirely or not at all. Counter +// contains the raw salsa20 counter bytes (both nonce and block counter). +func XORKeyStream(out, in []byte, counter *[16]byte, key *[32]byte) { + genericXORKeyStream(out, in, counter, key) +} diff --git a/vendor/golang.org/x/crypto/salsa20/salsa/salsa20_ref.go b/vendor/golang.org/x/crypto/salsa20/salsa/salsa20_ref.go index 22126d1..68169c6 100644 --- a/vendor/golang.org/x/crypto/salsa20/salsa/salsa20_ref.go +++ b/vendor/golang.org/x/crypto/salsa20/salsa/salsa20_ref.go @@ -2,8 +2,6 @@ // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. -// +build !amd64 appengine gccgo - package salsa const rounds = 20 @@ -202,10 +200,9 @@ func core(out *[64]byte, in *[16]byte, k *[32]byte, c *[16]byte) { out[63] = byte(x15 >> 24) } -// XORKeyStream crypts bytes from in to out using the given key and counters. -// In and out must overlap entirely or not at all. Counter -// contains the raw salsa20 counter bytes (both nonce and block counter). -func XORKeyStream(out, in []byte, counter *[16]byte, key *[32]byte) { +// genericXORKeyStream is the generic implementation of XORKeyStream to be used +// when no assembly implementation is available. +func genericXORKeyStream(out, in []byte, counter *[16]byte, key *[32]byte) { var block [64]byte var counterCopy [16]byte copy(counterCopy[:], counter[:]) |