1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
|
/* Copyright (c) 2001, Matej Pfajfar.
* Copyright (c) 2001-2004, Roger Dingledine.
* Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
* Copyright (c) 2007-2018, The Tor Project, Inc. */
/* See LICENSE for licensing information */
/**
* \file crypto_rsa.c
* \brief OpenSSL implementations of our RSA code.
**/
#include "lib/crypt_ops/compat_openssl.h"
#include "lib/crypt_ops/crypto_rsa.h"
#include "lib/crypt_ops/crypto_util.h"
#include "lib/ctime/di_ops.h"
#include "lib/log/util_bug.h"
#include "lib/fs/files.h"
DISABLE_GCC_WARNING(redundant-decls)
#include <openssl/err.h>
#include <openssl/rsa.h>
#include <openssl/pem.h>
#include <openssl/evp.h>
#include <openssl/engine.h>
#include <openssl/rand.h>
#include <openssl/bn.h>
#include <openssl/conf.h>
ENABLE_GCC_WARNING(redundant-decls)
#include "lib/log/log.h"
#include "lib/encoding/binascii.h"
#include <string.h>
/** Declaration for crypto_pk_t structure. */
struct crypto_pk_t
{
int refs; /**< reference count, so we don't have to copy keys */
RSA *key; /**< The key itself */
};
/** Return true iff <b>key</b> contains the private-key portion of the RSA
* key. */
int
crypto_pk_key_is_private(const crypto_pk_t *k)
{
#ifdef OPENSSL_1_1_API
if (!k || !k->key)
return 0;
const BIGNUM *p, *q;
RSA_get0_factors(k->key, &p, &q);
return p != NULL; /* XXX/yawning: Should we check q? */
#else /* !(defined(OPENSSL_1_1_API)) */
return k && k->key && k->key->p;
#endif /* defined(OPENSSL_1_1_API) */
}
/** used by tortls.c: wrap an RSA* in a crypto_pk_t. Takes ownership of
* its argument. */
crypto_pk_t *
crypto_new_pk_from_openssl_rsa_(RSA *rsa)
{
crypto_pk_t *env;
tor_assert(rsa);
env = tor_malloc(sizeof(crypto_pk_t));
env->refs = 1;
env->key = rsa;
return env;
}
/** Helper, used by tor-gencert.c. Return a copy of the private RSA from a
* crypto_pk_t. */
RSA *
crypto_pk_get_openssl_rsa_(crypto_pk_t *env)
{
return RSA_PrivateKeyDup(env->key);
}
/** used by tortls.c: get an equivalent EVP_PKEY* for a crypto_pk_t. Iff
* private is set, include the private-key portion of the key. Return a valid
* pointer on success, and NULL on failure. */
MOCK_IMPL(EVP_PKEY *,
crypto_pk_get_openssl_evp_pkey_,(crypto_pk_t *env, int private))
{
RSA *key = NULL;
EVP_PKEY *pkey = NULL;
tor_assert(env->key);
if (private) {
if (!(key = RSAPrivateKey_dup(env->key)))
goto error;
} else {
if (!(key = RSAPublicKey_dup(env->key)))
goto error;
}
if (!(pkey = EVP_PKEY_new()))
goto error;
if (!(EVP_PKEY_assign_RSA(pkey, key)))
goto error;
return pkey;
error:
if (pkey)
EVP_PKEY_free(pkey);
if (key)
RSA_free(key);
return NULL;
}
/** Allocate and return storage for a public key. The key itself will not yet
* be set.
*/
MOCK_IMPL(crypto_pk_t *,
crypto_pk_new,(void))
{
RSA *rsa;
rsa = RSA_new();
tor_assert(rsa);
return crypto_new_pk_from_openssl_rsa_(rsa);
}
/** Release a reference to an asymmetric key; when all the references
* are released, free the key.
*/
void
crypto_pk_free_(crypto_pk_t *env)
{
if (!env)
return;
if (--env->refs > 0)
return;
tor_assert(env->refs == 0);
if (env->key)
RSA_free(env->key);
tor_free(env);
}
/** Generate a <b>bits</b>-bit new public/private keypair in <b>env</b>.
* Return 0 on success, -1 on failure.
*/
MOCK_IMPL(int,
crypto_pk_generate_key_with_bits,(crypto_pk_t *env, int bits))
{
tor_assert(env);
if (env->key) {
RSA_free(env->key);
env->key = NULL;
}
{
BIGNUM *e = BN_new();
RSA *r = NULL;
if (!e)
goto done;
if (! BN_set_word(e, 65537))
goto done;
r = RSA_new();
if (!r)
goto done;
if (RSA_generate_key_ex(r, bits, e, NULL) == -1)
goto done;
env->key = r;
r = NULL;
done:
if (e)
BN_clear_free(e);
if (r)
RSA_free(r);
}
if (!env->key) {
crypto_openssl_log_errors(LOG_WARN, "generating RSA key");
return -1;
}
return 0;
}
/** A PEM callback that always reports a failure to get a password */
static int
pem_no_password_cb(char *buf, int size, int rwflag, void *u)
{
(void)buf;
(void)size;
(void)rwflag;
(void)u;
return -1;
}
/** Read a PEM-encoded private key from the <b>len</b>-byte string <b>s</b>
* into <b>env</b>. Return 0 on success, -1 on failure. If len is -1,
* the string is nul-terminated.
*/
int
crypto_pk_read_private_key_from_string(crypto_pk_t *env,
const char *s, ssize_t len)
{
BIO *b;
tor_assert(env);
tor_assert(s);
tor_assert(len < INT_MAX && len < SSIZE_T_CEILING);
/* Create a read-only memory BIO, backed by the string 's' */
b = BIO_new_mem_buf((char*)s, (int)len);
if (!b)
return -1;
if (env->key)
RSA_free(env->key);
env->key = PEM_read_bio_RSAPrivateKey(b,NULL,pem_no_password_cb,NULL);
BIO_free(b);
if (!env->key) {
crypto_openssl_log_errors(LOG_WARN, "Error parsing private key");
return -1;
}
return 0;
}
/** Read a PEM-encoded private key from the file named by
* <b>keyfile</b> into <b>env</b>. Return 0 on success, -1 on failure.
*/
int
crypto_pk_read_private_key_from_filename(crypto_pk_t *env,
const char *keyfile)
{
char *contents;
int r;
/* Read the file into a string. */
contents = read_file_to_str(keyfile, 0, NULL);
if (!contents) {
log_warn(LD_CRYPTO, "Error reading private key from \"%s\"", keyfile);
return -1;
}
/* Try to parse it. */
r = crypto_pk_read_private_key_from_string(env, contents, -1);
memwipe(contents, 0, strlen(contents));
tor_free(contents);
if (r)
return -1; /* read_private_key_from_string already warned, so we don't.*/
/* Make sure it's valid. */
if (crypto_pk_check_key(env) <= 0)
return -1;
return 0;
}
/** Helper function to implement crypto_pk_write_*_key_to_string. Return 0 on
* success, -1 on failure. */
static int
crypto_pk_write_key_to_string_impl(crypto_pk_t *env, char **dest,
size_t *len, int is_public)
{
BUF_MEM *buf;
BIO *b;
int r;
tor_assert(env);
tor_assert(env->key);
tor_assert(dest);
b = BIO_new(BIO_s_mem()); /* Create a memory BIO */
if (!b)
return -1;
/* Now you can treat b as if it were a file. Just use the
* PEM_*_bio_* functions instead of the non-bio variants.
*/
if (is_public)
r = PEM_write_bio_RSAPublicKey(b, env->key);
else
r = PEM_write_bio_RSAPrivateKey(b, env->key, NULL,NULL,0,NULL,NULL);
if (!r) {
crypto_openssl_log_errors(LOG_WARN, "writing RSA key to string");
BIO_free(b);
return -1;
}
BIO_get_mem_ptr(b, &buf);
*dest = tor_malloc(buf->length+1);
memcpy(*dest, buf->data, buf->length);
(*dest)[buf->length] = 0; /* nul terminate it */
*len = buf->length;
BIO_free(b);
return 0;
}
/** PEM-encode the public key portion of <b>env</b> and write it to a
* newly allocated string. On success, set *<b>dest</b> to the new
* string, *<b>len</b> to the string's length, and return 0. On
* failure, return -1.
*/
int
crypto_pk_write_public_key_to_string(crypto_pk_t *env, char **dest,
size_t *len)
{
return crypto_pk_write_key_to_string_impl(env, dest, len, 1);
}
/** PEM-encode the private key portion of <b>env</b> and write it to a
* newly allocated string. On success, set *<b>dest</b> to the new
* string, *<b>len</b> to the string's length, and return 0. On
* failure, return -1.
*/
int
crypto_pk_write_private_key_to_string(crypto_pk_t *env, char **dest,
size_t *len)
{
return crypto_pk_write_key_to_string_impl(env, dest, len, 0);
}
/** Read a PEM-encoded public key from the first <b>len</b> characters of
* <b>src</b>, and store the result in <b>env</b>. Return 0 on success, -1 on
* failure.
*/
int
crypto_pk_read_public_key_from_string(crypto_pk_t *env, const char *src,
size_t len)
{
BIO *b;
tor_assert(env);
tor_assert(src);
tor_assert(len<INT_MAX);
b = BIO_new(BIO_s_mem()); /* Create a memory BIO */
if (!b)
return -1;
BIO_write(b, src, (int)len);
if (env->key)
RSA_free(env->key);
env->key = PEM_read_bio_RSAPublicKey(b, NULL, pem_no_password_cb, NULL);
BIO_free(b);
if (!env->key) {
crypto_openssl_log_errors(LOG_WARN, "reading public key from string");
return -1;
}
return 0;
}
/** Write the private key from <b>env</b> into the file named by <b>fname</b>,
* PEM-encoded. Return 0 on success, -1 on failure.
*/
int
crypto_pk_write_private_key_to_filename(crypto_pk_t *env,
const char *fname)
{
BIO *bio;
char *cp;
long len;
char *s;
int r;
tor_assert(crypto_pk_key_is_private(env));
if (!(bio = BIO_new(BIO_s_mem())))
return -1;
if (PEM_write_bio_RSAPrivateKey(bio, env->key, NULL,NULL,0,NULL,NULL)
== 0) {
crypto_openssl_log_errors(LOG_WARN, "writing private key");
BIO_free(bio);
return -1;
}
len = BIO_get_mem_data(bio, &cp);
tor_assert(len >= 0);
s = tor_malloc(len+1);
memcpy(s, cp, len);
s[len]='\0';
r = write_str_to_file(fname, s, 0);
BIO_free(bio);
memwipe(s, 0, strlen(s));
tor_free(s);
return r;
}
/** Return true iff <b>env</b> has a valid key.
*/
int
crypto_pk_check_key(crypto_pk_t *env)
{
int r;
tor_assert(env);
r = RSA_check_key(env->key);
if (r <= 0)
crypto_openssl_log_errors(LOG_WARN,"checking RSA key");
return r;
}
/** Return true iff <b>env</b> contains a public key whose public exponent
* equals 65537.
*/
int
crypto_pk_public_exponent_ok(crypto_pk_t *env)
{
tor_assert(env);
tor_assert(env->key);
const BIGNUM *e;
#ifdef OPENSSL_1_1_API
const BIGNUM *n, *d;
RSA_get0_key(env->key, &n, &e, &d);
#else
e = env->key->e;
#endif /* defined(OPENSSL_1_1_API) */
return BN_is_word(e, 65537);
}
/** Compare the public-key components of a and b. Return less than 0
* if a\<b, 0 if a==b, and greater than 0 if a\>b. A NULL key is
* considered to be less than all non-NULL keys, and equal to itself.
*
* Note that this may leak information about the keys through timing.
*/
int
crypto_pk_cmp_keys(const crypto_pk_t *a, const crypto_pk_t *b)
{
int result;
char a_is_non_null = (a != NULL) && (a->key != NULL);
char b_is_non_null = (b != NULL) && (b->key != NULL);
char an_argument_is_null = !a_is_non_null | !b_is_non_null;
result = tor_memcmp(&a_is_non_null, &b_is_non_null, sizeof(a_is_non_null));
if (an_argument_is_null)
return result;
const BIGNUM *a_n, *a_e;
const BIGNUM *b_n, *b_e;
#ifdef OPENSSL_1_1_API
const BIGNUM *a_d, *b_d;
RSA_get0_key(a->key, &a_n, &a_e, &a_d);
RSA_get0_key(b->key, &b_n, &b_e, &b_d);
#else
a_n = a->key->n;
a_e = a->key->e;
b_n = b->key->n;
b_e = b->key->e;
#endif /* defined(OPENSSL_1_1_API) */
tor_assert(a_n != NULL && a_e != NULL);
tor_assert(b_n != NULL && b_e != NULL);
result = BN_cmp(a_n, b_n);
if (result)
return result;
return BN_cmp(a_e, b_e);
}
/** Return the size of the public key modulus in <b>env</b>, in bytes. */
size_t
crypto_pk_keysize(const crypto_pk_t *env)
{
tor_assert(env);
tor_assert(env->key);
return (size_t) RSA_size((RSA*)env->key);
}
/** Return the size of the public key modulus of <b>env</b>, in bits. */
int
crypto_pk_num_bits(crypto_pk_t *env)
{
tor_assert(env);
tor_assert(env->key);
#ifdef OPENSSL_1_1_API
/* It's so stupid that there's no other way to check that n is valid
* before calling RSA_bits().
*/
const BIGNUM *n, *e, *d;
RSA_get0_key(env->key, &n, &e, &d);
tor_assert(n != NULL);
return RSA_bits(env->key);
#else /* !(defined(OPENSSL_1_1_API)) */
tor_assert(env->key->n);
return BN_num_bits(env->key->n);
#endif /* defined(OPENSSL_1_1_API) */
}
/** Increase the reference count of <b>env</b>, and return it.
*/
crypto_pk_t *
crypto_pk_dup_key(crypto_pk_t *env)
{
tor_assert(env);
tor_assert(env->key);
env->refs++;
return env;
}
#ifdef TOR_UNIT_TESTS
/** For testing: replace dest with src. (Dest must have a refcount
* of 1) */
void
crypto_pk_assign_(crypto_pk_t *dest, const crypto_pk_t *src)
{
tor_assert(dest);
tor_assert(dest->refs == 1);
tor_assert(src);
RSA_free(dest->key);
dest->key = RSAPrivateKey_dup(src->key);
}
#endif /* defined(TOR_UNIT_TESTS) */
/** Make a real honest-to-goodness copy of <b>env</b>, and return it.
* Returns NULL on failure. */
crypto_pk_t *
crypto_pk_copy_full(crypto_pk_t *env)
{
RSA *new_key;
int privatekey = 0;
tor_assert(env);
tor_assert(env->key);
if (crypto_pk_key_is_private(env)) {
new_key = RSAPrivateKey_dup(env->key);
privatekey = 1;
} else {
new_key = RSAPublicKey_dup(env->key);
}
if (!new_key) {
/* LCOV_EXCL_START
*
* We can't cause RSA*Key_dup() to fail, so we can't really test this.
*/
log_err(LD_CRYPTO, "Unable to duplicate a %s key: openssl failed.",
privatekey?"private":"public");
crypto_openssl_log_errors(LOG_ERR,
privatekey ? "Duplicating a private key" :
"Duplicating a public key");
tor_fragile_assert();
return NULL;
/* LCOV_EXCL_STOP */
}
return crypto_new_pk_from_openssl_rsa_(new_key);
}
/** Encrypt <b>fromlen</b> bytes from <b>from</b> with the public key
* in <b>env</b>, using the padding method <b>padding</b>. On success,
* write the result to <b>to</b>, and return the number of bytes
* written. On failure, return -1.
*
* <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
* at least the length of the modulus of <b>env</b>.
*/
int
crypto_pk_public_encrypt(crypto_pk_t *env, char *to, size_t tolen,
const char *from, size_t fromlen, int padding)
{
int r;
tor_assert(env);
tor_assert(from);
tor_assert(to);
tor_assert(fromlen<INT_MAX);
tor_assert(tolen >= crypto_pk_keysize(env));
r = RSA_public_encrypt((int)fromlen,
(unsigned char*)from, (unsigned char*)to,
env->key, crypto_get_rsa_padding(padding));
if (r<0) {
crypto_openssl_log_errors(LOG_WARN, "performing RSA encryption");
return -1;
}
return r;
}
/** Decrypt <b>fromlen</b> bytes from <b>from</b> with the private key
* in <b>env</b>, using the padding method <b>padding</b>. On success,
* write the result to <b>to</b>, and return the number of bytes
* written. On failure, return -1.
*
* <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
* at least the length of the modulus of <b>env</b>.
*/
int
crypto_pk_private_decrypt(crypto_pk_t *env, char *to,
size_t tolen,
const char *from, size_t fromlen,
int padding, int warnOnFailure)
{
int r;
tor_assert(env);
tor_assert(from);
tor_assert(to);
tor_assert(env->key);
tor_assert(fromlen<INT_MAX);
tor_assert(tolen >= crypto_pk_keysize(env));
if (!crypto_pk_key_is_private(env))
/* Not a private key */
return -1;
r = RSA_private_decrypt((int)fromlen,
(unsigned char*)from, (unsigned char*)to,
env->key, crypto_get_rsa_padding(padding));
if (r<0) {
crypto_openssl_log_errors(warnOnFailure?LOG_WARN:LOG_DEBUG,
"performing RSA decryption");
return -1;
}
return r;
}
/** Check the signature in <b>from</b> (<b>fromlen</b> bytes long) with the
* public key in <b>env</b>, using PKCS1 padding. On success, write the
* signed data to <b>to</b>, and return the number of bytes written.
* On failure, return -1.
*
* <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
* at least the length of the modulus of <b>env</b>.
*/
MOCK_IMPL(int,
crypto_pk_public_checksig,(const crypto_pk_t *env, char *to,
size_t tolen,
const char *from, size_t fromlen))
{
int r;
tor_assert(env);
tor_assert(from);
tor_assert(to);
tor_assert(fromlen < INT_MAX);
tor_assert(tolen >= crypto_pk_keysize(env));
r = RSA_public_decrypt((int)fromlen,
(unsigned char*)from, (unsigned char*)to,
env->key, RSA_PKCS1_PADDING);
if (r<0) {
crypto_openssl_log_errors(LOG_INFO, "checking RSA signature");
return -1;
}
return r;
}
/** Sign <b>fromlen</b> bytes of data from <b>from</b> with the private key in
* <b>env</b>, using PKCS1 padding. On success, write the signature to
* <b>to</b>, and return the number of bytes written. On failure, return
* -1.
*
* <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
* at least the length of the modulus of <b>env</b>.
*/
int
crypto_pk_private_sign(const crypto_pk_t *env, char *to, size_t tolen,
const char *from, size_t fromlen)
{
int r;
tor_assert(env);
tor_assert(from);
tor_assert(to);
tor_assert(fromlen < INT_MAX);
tor_assert(tolen >= crypto_pk_keysize(env));
if (!crypto_pk_key_is_private(env))
/* Not a private key */
return -1;
r = RSA_private_encrypt((int)fromlen,
(unsigned char*)from, (unsigned char*)to,
(RSA*)env->key, RSA_PKCS1_PADDING);
if (r<0) {
crypto_openssl_log_errors(LOG_WARN, "generating RSA signature");
return -1;
}
return r;
}
/** ASN.1-encode the public portion of <b>pk</b> into <b>dest</b>.
* Return -1 on error, or the number of characters used on success.
*/
int
crypto_pk_asn1_encode(const crypto_pk_t *pk, char *dest, size_t dest_len)
{
int len;
unsigned char *buf = NULL;
len = i2d_RSAPublicKey(pk->key, &buf);
if (len < 0 || buf == NULL)
return -1;
if ((size_t)len > dest_len || dest_len > SIZE_T_CEILING) {
OPENSSL_free(buf);
return -1;
}
/* We don't encode directly into 'dest', because that would be illegal
* type-punning. (C99 is smarter than me, C99 is smarter than me...)
*/
memcpy(dest,buf,len);
OPENSSL_free(buf);
return len;
}
/** Decode an ASN.1-encoded public key from <b>str</b>; return the result on
* success and NULL on failure.
*/
crypto_pk_t *
crypto_pk_asn1_decode(const char *str, size_t len)
{
RSA *rsa;
unsigned char *buf;
const unsigned char *cp;
cp = buf = tor_malloc(len);
memcpy(buf,str,len);
rsa = d2i_RSAPublicKey(NULL, &cp, len);
tor_free(buf);
if (!rsa) {
crypto_openssl_log_errors(LOG_WARN,"decoding public key");
return NULL;
}
return crypto_new_pk_from_openssl_rsa_(rsa);
}
/** Given a crypto_pk_t <b>pk</b>, allocate a new buffer containing the
* Base64 encoding of the DER representation of the private key as a NUL
* terminated string, and return it via <b>priv_out</b>. Return 0 on
* success, -1 on failure.
*
* It is the caller's responsibility to sanitize and free the resulting buffer.
*/
int
crypto_pk_base64_encode_private(const crypto_pk_t *pk, char **priv_out)
{
unsigned char *der = NULL;
int der_len;
int ret = -1;
*priv_out = NULL;
der_len = i2d_RSAPrivateKey(pk->key, &der);
if (der_len < 0 || der == NULL)
return ret;
size_t priv_len = base64_encode_size(der_len, 0) + 1;
char *priv = tor_malloc_zero(priv_len);
if (base64_encode(priv, priv_len, (char *)der, der_len, 0) >= 0) {
*priv_out = priv;
ret = 0;
} else {
tor_free(priv);
}
memwipe(der, 0, der_len);
OPENSSL_free(der);
return ret;
}
/** Given a string containing the Base64 encoded DER representation of the
* private key <b>str</b>, decode and return the result on success, or NULL
* on failure.
*/
crypto_pk_t *
crypto_pk_base64_decode_private(const char *str, size_t len)
{
crypto_pk_t *pk = NULL;
char *der = tor_malloc_zero(len + 1);
int der_len = base64_decode(der, len, str, len);
if (der_len <= 0) {
log_warn(LD_CRYPTO, "Stored RSA private key seems corrupted (base64).");
goto out;
}
const unsigned char *dp = (unsigned char*)der; /* Shut the compiler up. */
RSA *rsa = d2i_RSAPrivateKey(NULL, &dp, der_len);
if (!rsa) {
crypto_openssl_log_errors(LOG_WARN, "decoding private key");
goto out;
}
pk = crypto_new_pk_from_openssl_rsa_(rsa);
/* Make sure it's valid. */
if (crypto_pk_check_key(pk) <= 0) {
crypto_pk_free(pk);
pk = NULL;
goto out;
}
out:
memwipe(der, 0, len + 1);
tor_free(der);
return pk;
}
|