aboutsummaryrefslogtreecommitdiff
path: root/src/core/or/conflux.c
blob: 0082089504be6c7be11b7dc522c8add5895af5b8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
/* Copyright (c) 2021, The Tor Project, Inc. */
/* See LICENSE for licensing information */

/**
 * \file conflux.c
 * \brief Conflux multipath core algorithms
 */

#define TOR_CONFLUX_PRIVATE

#include "core/or/or.h"

#include "core/or/circuit_st.h"
#include "core/or/sendme.h"
#include "core/or/relay.h"
#include "core/or/congestion_control_common.h"
#include "core/or/congestion_control_st.h"
#include "core/or/origin_circuit_st.h"
#include "core/or/circuitlist.h"
#include "core/or/circuituse.h"
#include "core/or/conflux.h"
#include "core/or/conflux_params.h"
#include "core/or/conflux_util.h"
#include "core/or/conflux_pool.h"
#include "core/or/conflux_st.h"
#include "core/or/conflux_cell.h"
#include "lib/time/compat_time.h"
#include "app/config/config.h"

/** One million microseconds in a second */
#define USEC_PER_SEC 1000000

static inline uint64_t cwnd_sendable(const circuit_t *on_circ,
                                     uint64_t in_usec, uint64_t our_usec);

/* Track the total number of bytes used by all ooo_q so it can be used by the
 * OOM handler to assess. */
static uint64_t total_ooo_q_bytes = 0;

/**
 * Determine if we should multiplex a specific relay command or not.
 *
 * TODO: Version of this that is the set of forbidden commands
 * on linked circuits
 */
bool
conflux_should_multiplex(int relay_command)
{
  switch (relay_command) {
    /* These are all fine to multiplex, and must be
     * so that ordering is preserved */
    case RELAY_COMMAND_BEGIN:
    case RELAY_COMMAND_DATA:
    case RELAY_COMMAND_END:
    case RELAY_COMMAND_CONNECTED:
      return true;

    /* We can't multiplex these because they are
     * circuit-specific */
    case RELAY_COMMAND_SENDME:
    case RELAY_COMMAND_EXTEND:
    case RELAY_COMMAND_EXTENDED:
    case RELAY_COMMAND_TRUNCATE:
    case RELAY_COMMAND_TRUNCATED:
    case RELAY_COMMAND_DROP:
      return false;

    /* We must multiplex RESOLVEs because their ordering
     * impacts begin/end. */
    case RELAY_COMMAND_RESOLVE:
    case RELAY_COMMAND_RESOLVED:
      return true;

    /* These are all circuit-specific */
    case RELAY_COMMAND_BEGIN_DIR:
    case RELAY_COMMAND_EXTEND2:
    case RELAY_COMMAND_EXTENDED2:
    case RELAY_COMMAND_ESTABLISH_INTRO:
    case RELAY_COMMAND_ESTABLISH_RENDEZVOUS:
    case RELAY_COMMAND_INTRODUCE1:
    case RELAY_COMMAND_INTRODUCE2:
    case RELAY_COMMAND_RENDEZVOUS1:
    case RELAY_COMMAND_RENDEZVOUS2:
    case RELAY_COMMAND_INTRO_ESTABLISHED:
    case RELAY_COMMAND_RENDEZVOUS_ESTABLISHED:
    case RELAY_COMMAND_INTRODUCE_ACK:
    case RELAY_COMMAND_PADDING_NEGOTIATE:
    case RELAY_COMMAND_PADDING_NEGOTIATED:
      return false;

    /* These must be multiplexed because their ordering
     * relative to BEGIN/END must be preserved */
    case RELAY_COMMAND_XOFF:
    case RELAY_COMMAND_XON:
      return true;

    /* These two are not multiplexed, because they must
     * be processed immediately to update sequence numbers
     * before any other cells are processed on the circuit */
    case RELAY_COMMAND_CONFLUX_SWITCH:
    case RELAY_COMMAND_CONFLUX_LINK:
    case RELAY_COMMAND_CONFLUX_LINKED:
    case RELAY_COMMAND_CONFLUX_LINKED_ACK:
      return false;

    default:
      log_warn(LD_BUG, "Conflux asked to multiplex unknown relay command %d",
               relay_command);
      return false;
  }
}

/** Return the leg for a circuit in a conflux set. Return NULL if not found. */
conflux_leg_t *
conflux_get_leg(conflux_t *cfx, const circuit_t *circ)
{
  conflux_leg_t *leg_found = NULL;

  // Find the leg that the cell is written on
  CONFLUX_FOR_EACH_LEG_BEGIN(cfx, leg) {
    if (leg->circ == circ) {
      leg_found = leg;
      break;
    }
  } CONFLUX_FOR_EACH_LEG_END(leg);

  return leg_found;
}

/**
 * Gets the maximum last_seq_sent from all legs.
 */
uint64_t
conflux_get_max_seq_sent(const conflux_t *cfx)
{
  uint64_t max_seq_sent = 0;

  CONFLUX_FOR_EACH_LEG_BEGIN(cfx, leg) {
    if (leg->last_seq_sent > max_seq_sent) {
      max_seq_sent = leg->last_seq_sent;
    }
  } CONFLUX_FOR_EACH_LEG_END(leg);

  return max_seq_sent;
}

/**
 * Gets the maximum last_seq_recv from all legs.
 */
uint64_t
conflux_get_max_seq_recv(const conflux_t *cfx)
{
  uint64_t max_seq_recv = 0;

  CONFLUX_FOR_EACH_LEG_BEGIN(cfx, leg) {
    if (leg->last_seq_recv > max_seq_recv) {
      max_seq_recv = leg->last_seq_recv;
    }
  } CONFLUX_FOR_EACH_LEG_END(leg);

  return max_seq_recv;
}

/** Return the total memory allocation the circuit is using by conflux. If this
 * circuit is not a Conflux circuit, 0 is returned. */
uint64_t
conflux_get_circ_bytes_allocation(const circuit_t *circ)
{
  if (circ->conflux) {
    return smartlist_len(circ->conflux->ooo_q) * sizeof(conflux_cell_t);
  }
  return 0;
}

/** Return the total memory allocation in bytes by the subsystem.
 *
 * At the moment, only out of order queues are consiered. */
uint64_t
conflux_get_total_bytes_allocation(void)
{
  return total_ooo_q_bytes;
}

/** The OOM handler is asking us to try to free at least bytes_to_remove. */
size_t
conflux_handle_oom(size_t bytes_to_remove)
{
  (void) bytes_to_remove;

  /* We are not doing anything on the sets, the OOM handler will trigger a
   * circuit clean up which will affect conflux sets, by pruning oldest
   * circuits. */

  log_info(LD_CIRC, "OOM handler triggered. OOO queus allocation: %" PRIu64,
           total_ooo_q_bytes);
  return 0;
}

/**
 * Returns true if a circuit has package window space to send, and is
 * not blocked locally.
 */
static inline bool
circuit_ready_to_send(const circuit_t *circ)
{
  const congestion_control_t *cc = circuit_ccontrol(circ);
  bool cc_sendable = true;

  /* We consider ourselves blocked if we're within 1 sendme of the
   * cwnd, because inflight is decremented before this check */
  // TODO-329-TUNING: This subtraction not be right.. It depends
  // on call order wrt decisions and sendme arrival
  if (cc->inflight >= cc->cwnd) {
    cc_sendable = false;
  }

  /* Origin circuits use the package window of the last hop, and
   * have an outbound cell direction (towards exit). Otherwise,
   * there is no cpath and direction is inbound. */
  if (CIRCUIT_IS_ORIGIN(circ)) {
    return cc_sendable && !circ->circuit_blocked_on_n_chan;
  } else {
    return cc_sendable && !circ->circuit_blocked_on_p_chan;
  }
}

/**
 * Return the circuit with the minimum RTT. Do not use any
 * other circuit.
 *
 * This algorithm will minimize RTT always, and will not provide
 * any throughput benefit. We expect it to be useful for VoIP/UDP
 * use cases. Because it only uses one circuit on a leg at a time,
 * it can have more than one circuit per guard (ie: to find
 * lower-latency middles for the path).
 */
static const circuit_t *
conflux_decide_circ_minrtt(const conflux_t *cfx)
{
  uint64_t min_rtt = UINT64_MAX;
  const circuit_t *circ = NULL;

  /* Can't get here without any legs. */
  tor_assert(CONFLUX_NUM_LEGS(cfx));

  CONFLUX_FOR_EACH_LEG_BEGIN(cfx, leg) {

    /* Ignore circuits with no RTT measurement */
    if (leg->circ_rtts_usec && leg->circ_rtts_usec < min_rtt) {
      circ = leg->circ;
      min_rtt = leg->circ_rtts_usec;
    }
  } CONFLUX_FOR_EACH_LEG_END(leg);

  /* If the minRTT circuit can't send, dont send on any circuit. */
  if (!circ || !circuit_ready_to_send(circ)) {
    return NULL;
  }
  return circ;
}

/**
 * Favor the circuit with the lowest RTT that still has space in the
 * congestion window.
 *
 * This algorithm will maximize total throughput at the expense of
 * bloating out-of-order queues.
 */
static const circuit_t *
conflux_decide_circ_lowrtt(const conflux_t *cfx)
{
  uint64_t low_rtt = UINT64_MAX;
  const circuit_t *circ = NULL;

  /* Can't get here without any legs. */
  tor_assert(CONFLUX_NUM_LEGS(cfx));

  CONFLUX_FOR_EACH_LEG_BEGIN(cfx, leg) {
    /* If the package window is full, skip it */
    if (!circuit_ready_to_send(leg->circ)) {
      continue;
    }

    /* Ignore circuits with no RTT */
    if (leg->circ_rtts_usec && leg->circ_rtts_usec < low_rtt) {
      low_rtt = leg->circ_rtts_usec;
      circ = leg->circ;
    }
  } CONFLUX_FOR_EACH_LEG_END(leg);

  /* At this point, if we found a circuit, we've already validated that its
   * congestion window has room. */
  return circ;
}

/**
 * Returns the amount of room in a cwnd on a circuit.
 */
static inline uint64_t
cwnd_available(const circuit_t *on_circ)
{
  const congestion_control_t *cc = circuit_ccontrol(on_circ);
  tor_assert(cc);

  if (cc->cwnd < cc->inflight)
    return 0;

  return cc->cwnd - cc->inflight;
}

/**
 * Return the amount of congestion window we can send on
 * on_circ during in_usec. However, if we're still in
 * slow-start, send the whole window to establish the true
 * cwnd.
 */
static inline uint64_t
cwnd_sendable(const circuit_t *on_circ, uint64_t in_usec,
              uint64_t our_usec)
{
  const congestion_control_t *cc = circuit_ccontrol(on_circ);
  tor_assert(cc);
  uint64_t cwnd_adjusted = cwnd_available(on_circ);

  if (our_usec == 0 || in_usec == 0) {
    log_fn(LOG_PROTOCOL_WARN, LD_CIRC,
       "cwnd_sendable: Missing RTT data. in_usec: %" PRIu64
       " our_usec: %" PRIu64, in_usec, our_usec);
    return cwnd_adjusted;
  }

  if (cc->in_slow_start) {
    return cwnd_adjusted;
  } else {
    /* For any given leg, it has min_rtt/2 time before the 'primary'
     * leg's acks start arriving. So, the amount of data this
     * 'secondary' leg can send while the min_rtt leg transmits these
     * acks is:
     *   (cwnd_leg/(leg_rtt/2))*min_rtt/2 = cwnd_leg*min_rtt/leg_rtt.
     */
    uint64_t sendable = cwnd_adjusted*in_usec/our_usec;
    return MIN(cc->cwnd, sendable);
  }
}

/**
 * Returns true if we can switch to a new circuit, false otherwise.
 *
 * This function assumes we're primarily switching between two circuits,
 * the current and the prev. If we're using more than two circuits, we
 * need to set cfx_drain_pct to 100.
 */
static inline bool
conflux_can_switch(const conflux_t *cfx)
{
  /* If we still expected to send more cells on this circuit,
   * we're only allowed to switch if the previous circuit emptied. */
  if (cfx->cells_until_switch > 0) {
    /* If there is no prev leg, skip the inflight check. */
    if (!cfx->prev_leg) {
      return false;
    }
    const congestion_control_t *ccontrol =
      circuit_ccontrol(cfx->prev_leg->circ);

    /* If the inflight count has drained to below cfx_drain_pct
     * of the congestion window, then we can switch.
     * We check the sendme_inc because there may be un-ackable
     * data in inflight as well, and we can still switch then. */
    // TODO-329-TUNING: Should we try to switch if the prev_leg is
    // ready to send, instead of this?
    if (ccontrol->inflight < ccontrol->sendme_inc ||
        100*ccontrol->inflight <=
        conflux_params_get_drain_pct()*ccontrol->cwnd) {
      return true;
    }

    return false;
  }

  return true;
}

/**
 * Favor the circuit with the lowest RTT that still has space in the
 * congestion window up to the ratio of RTTs.
 *
 * This algorithm should only use auxillary legs up to the point
 * where their data arrives roughly the same time as the lowest
 * RTT leg. It will not utilize the full cwnd of auxillary legs,
 * except in slow start. Therefore, out-of-order queue bloat should
 * be minimized to just the slow-start phase.
 */
static const circuit_t *
conflux_decide_circ_cwndrtt(const conflux_t *cfx)
{
  uint64_t min_rtt = UINT64_MAX;
  const conflux_leg_t *leg = NULL;

  /* Can't get here without any legs. */
  tor_assert(!CONFLUX_NUM_LEGS(cfx));

  /* Find the leg with the minimum RTT.*/
  CONFLUX_FOR_EACH_LEG_BEGIN(cfx, l) {
    /* Ignore circuits with invalid RTT */
    if (l->circ_rtts_usec && l->circ_rtts_usec < min_rtt) {
      min_rtt = l->circ_rtts_usec;
      leg = l;
    }
  } CONFLUX_FOR_EACH_LEG_END(l);

  /* If the package window is has room, use it */
  if (leg && circuit_ready_to_send(leg->circ)) {
    return leg->circ;
  }

  leg = NULL;

  CONFLUX_FOR_EACH_LEG_BEGIN(cfx, l) {
    if (!circuit_ready_to_send(l->circ)) {
      continue;
    }

    /* Pick a 'min_leg' with the lowest RTT that still has
     * room in the congestion window. Note that this works for
     * min_leg itself, up to inflight. */
    if (l->circ_rtts_usec &&
        cwnd_sendable(l->circ, min_rtt, l->circ_rtts_usec) > 0) {
      leg = l;
    }
  } CONFLUX_FOR_EACH_LEG_END(l);

  /* If the circuit can't send, don't send on any circuit. */
  if (!leg || !circuit_ready_to_send(leg->circ)) {
    return NULL;
  }
  return leg->circ;
}

/**
 * This function is called when we want to send a relay cell on a
 * conflux, as well as when we want to compute available space in
 * to package from streams.
 *
 * It determines the circuit that relay command should be sent on,
 * and sends a SWITCH cell if necessary.
 *
 * It returns the circuit we should send on. If no circuits are ready
 * to send, it returns NULL.
 */
circuit_t *
conflux_decide_circ_for_send(conflux_t *cfx,
                             circuit_t *orig_circ,
                             uint8_t relay_command)
{
  /* If this command should not be multiplexed, send it on the original
   * circuit */
  if (!conflux_should_multiplex(relay_command)) {
    return orig_circ;
  }

  circuit_t *new_circ = conflux_decide_next_circ(cfx);

  /* Because our congestion window only cover relay data command, we can end up
   * in a situation where we need to send non data command when all circuits
   * are at capacity. For those cases, keep using the *current* leg,
   * so these commands arrive in-order. */
  if (!new_circ && relay_command != RELAY_COMMAND_DATA) {
    /* Curr leg should be set, because conflux_decide_next_circ() should
     * have set it earlier. No BUG() here because the only caller BUG()s. */
    if (!cfx->curr_leg) {
      log_warn(LD_BUG, "No current leg for conflux with relay command %d",
               relay_command);
      return NULL;
    }
    return cfx->curr_leg->circ;
  }

  /*
   * If we are switching to a new circuit, we need to send a SWITCH command.
   * We also need to compute an estimate of how much data we can send on
   * the new circuit before we are allowed to switch again, to rate
   * limit the frequency of switching.
   */
  if (new_circ) {
    conflux_leg_t *new_leg = conflux_get_leg(cfx, new_circ);
    tor_assert(cfx->curr_leg);

    if (new_circ != cfx->curr_leg->circ) {
      // TODO-329-TUNING: This is one mechanism to rate limit switching,
      // which should reduce the OOQ mem. However, we're not going to do that
      // until we get some data on if the memory usage is high
      cfx->cells_until_switch = 0;
        //cwnd_sendable(new_circ,cfx->curr_leg->circ_rtts_usec,
        //                         new_leg->circ_rtts_usec);

      conflux_validate_stream_lists(cfx);

      cfx->prev_leg = cfx->curr_leg;
      cfx->curr_leg = new_leg;

      tor_assert(cfx->prev_leg);
      tor_assert(cfx->curr_leg);

      uint64_t relative_seq = cfx->prev_leg->last_seq_sent -
                              cfx->curr_leg->last_seq_sent;

      tor_assert(cfx->prev_leg->last_seq_sent >=
                 cfx->curr_leg->last_seq_sent);
      conflux_send_switch_command(cfx->curr_leg->circ, relative_seq);
      cfx->curr_leg->last_seq_sent = cfx->prev_leg->last_seq_sent;
    }
  }

  return new_circ;
}

/** Called after conflux actually sent a cell on a circuit.
 * This function updates sequence number counters, and
 * switch counters.
 */
void
conflux_note_cell_sent(conflux_t *cfx, circuit_t *circ, uint8_t relay_command)
{
  conflux_leg_t *leg = NULL;

  if (!conflux_should_multiplex(relay_command)) {
    return;
  }

  leg = conflux_get_leg(cfx, circ);
  tor_assert(leg);

  leg->last_seq_sent++;

  if (cfx->cells_until_switch > 0) {
    cfx->cells_until_switch--;
  }
}

/** Find the leg with lowest non-zero curr_rtt_usec, and
 * pick it for our current leg. */
static inline bool
conflux_pick_first_leg(conflux_t *cfx)
{
  conflux_leg_t *min_leg = NULL;

  CONFLUX_FOR_EACH_LEG_BEGIN(cfx, leg) {
    /* We need to skip 0-RTT legs, since this can happen at the exit
     * when there is a race between BEGIN and LINKED_ACK, and BEGIN
     * wins the race. The good news is that because BEGIN won,
     * we don't need to consider those other legs, since they are
     * slower. */
    if (leg->circ_rtts_usec > 0) {
      if (!min_leg || leg->circ_rtts_usec < min_leg->circ_rtts_usec) {
        min_leg = leg;
      }
    }
  } CONFLUX_FOR_EACH_LEG_END(leg);

  if (!min_leg) {
    // Get the 0th leg; if it does not exist, log the set.
    // Bug 40827 managed to hit this, so let's dump the sets
    // in case it happens again.
    if (BUG(smartlist_len(cfx->legs) <= 0)) {
      // Since we have no legs, we have no idea if this is really a client
      // or server set. Try to find any that match:
      log_warn(LD_BUG, "Matching client sets:");
      conflux_log_set(LOG_WARN, cfx, true);
      log_warn(LD_BUG, "Matching server sets:");
      conflux_log_set(LOG_WARN, cfx, false);
      log_warn(LD_BUG, "End conflux set dump");
      return false;
    }

    min_leg = smartlist_get(cfx->legs, 0);
    tor_assert(min_leg);
    if (BUG(min_leg->linked_sent_usec == 0)) {
      log_warn(LD_BUG, "Conflux has no legs with non-zero RTT. "
               "Using first leg.");
      conflux_log_set(LOG_WARN, cfx, CIRCUIT_IS_ORIGIN(min_leg->circ));
    }
  }

  // TODO-329-TUNING: We may want to initialize this to a cwnd, to
  // minimize early switching?
  //cfx->cells_until_switch = circuit_ccontrol(min_leg->circ)->cwnd;
  cfx->cells_until_switch = 0;

  cfx->curr_leg = min_leg;

  return true;
}

/**
 * Returns the circuit that conflux would send on next, if
 * conflux_decide_circ_for_send were called. This is used to compute
 * available space in the package window.
 */
circuit_t *
conflux_decide_next_circ(conflux_t *cfx)
{
  // TODO-329-TUNING: Temporarily validate legs here. We can remove
  // this once tuning is complete.
  conflux_validate_legs(cfx);

  /* If we don't have a current leg yet, pick one.
   * (This is the only non-const operation in this function). */
  if (!cfx->curr_leg) {
    if (!conflux_pick_first_leg(cfx))
      return NULL;
  }

  /* First, check if we can switch. */
  if (!conflux_can_switch(cfx)) {
    tor_assert(cfx->curr_leg);
    circuit_t *curr_circ = cfx->curr_leg->circ;

    /* If we can't switch, and the current circuit can't send,
     * then return null. */
    if (circuit_ready_to_send(curr_circ)) {
      return curr_circ;
    }
    log_info(LD_CIRC, "Conflux can't switch; no circuit to send on.");
    return NULL;
  }

  switch (cfx->params.alg) {
    case CONFLUX_ALG_MINRTT: // latency (no ooq)
      return (circuit_t*)conflux_decide_circ_minrtt(cfx);
    case CONFLUX_ALG_LOWRTT: // high throughput (high oooq)
      return (circuit_t*)conflux_decide_circ_lowrtt(cfx);
    case CONFLUX_ALG_CWNDRTT: // throughput (low oooq)
      return (circuit_t*)conflux_decide_circ_cwndrtt(cfx);
    default:
      return NULL;
  }
}

/**
 * Called when we have a new RTT estimate for a circuit.
 */
void
conflux_update_rtt(conflux_t *cfx, circuit_t *circ, uint64_t rtt_usec)
{
  conflux_leg_t *leg = conflux_get_leg(cfx, circ);

  if (!leg) {
    log_warn(LD_BUG, "Got RTT update for circuit not in conflux");
    return;
  }

  // Update RTT
  leg->circ_rtts_usec = rtt_usec;

  // TODO-329-ARTI: For UDP latency targeting, arti could decide to launch
  // new a test leg to potentially replace this one, if a latency target
  // was requested and we now exceed it. Since C-Tor client likely
  // will not have UDP support, we aren't doing this here.
}

/**
 * Comparison function for ooo_q pqueue.
 *
 * Ensures that lower sequence numbers are at the head of the pqueue.
 */
static int
conflux_queue_cmp(const void *a, const void *b)
{
  // Compare a and b as conflux_cell_t using the seq field, and return a
  // comparison result such that the lowest seq is at the head of the pqueue.
  const conflux_cell_t *cell_a = a;
  const conflux_cell_t *cell_b = b;

  tor_assert(cell_a);
  tor_assert(cell_b);

  if (cell_a->seq < cell_b->seq) {
    return -1;
  } else if (cell_a->seq > cell_b->seq) {
    return 1;
  } else {
    return 0;
  }
}

/**
 * Get the congestion control object for a conflux circuit.
 *
 * Because conflux can only be negotiated with the last hop, we
 * can use the last hop of the cpath to obtain the congestion
 * control object for origin circuits. For non-origin circuits,
 * we can use the circuit itself.
 */
const congestion_control_t *
circuit_ccontrol(const circuit_t *circ)
{
  const congestion_control_t *ccontrol = NULL;
  tor_assert(circ);

  if (CIRCUIT_IS_ORIGIN(circ)) {
    tor_assert(CONST_TO_ORIGIN_CIRCUIT(circ)->cpath);
    tor_assert(CONST_TO_ORIGIN_CIRCUIT(circ)->cpath->prev);
    ccontrol = CONST_TO_ORIGIN_CIRCUIT(circ)->cpath->prev->ccontrol;
  } else {
    ccontrol = circ->ccontrol;
  }

  /* Conflux circuits always have congestion control*/
  tor_assert(ccontrol);
  return ccontrol;
}

// TODO-329-TUNING: For LowRTT, we can at most switch every SENDME,
// but for BLEST, we should switch at most every cwnd.. But
// we do not know the other side's CWND here.. We can at best
// asssume it is above the cwnd_min
#define CONFLUX_MIN_LINK_INCREMENT 31
/**
 * Validate and handle RELAY_COMMAND_CONFLUX_SWITCH.
 */
int
conflux_process_switch_command(circuit_t *in_circ,
                               crypt_path_t *layer_hint, cell_t *cell,
                               relay_header_t *rh)
{
  tor_assert(in_circ);
  tor_assert(cell);
  tor_assert(rh);

  conflux_t *cfx = in_circ->conflux;
  uint32_t relative_seq;
  conflux_leg_t *leg;

  if (!conflux_is_enabled(in_circ)) {
    circuit_mark_for_close(in_circ, END_CIRC_REASON_TORPROTOCOL);
    return -1;
  }

  /* If there is no conflux object negotiated, this is invalid.
   * log and close circ */
  if (!cfx) {
    log_warn(LD_BUG, "Got a conflux switch command on a circuit without "
             "conflux negotiated. Closing circuit.");

    circuit_mark_for_close(in_circ, END_CIRC_REASON_TORPROTOCOL);
    return -1;
  }

  // TODO-329-TUNING: Temporarily validate that we have all legs.
  // After tuning is complete, we can remove this.
  conflux_validate_legs(cfx);

  leg = conflux_get_leg(cfx, in_circ);

  /* If we can't find the conflux leg, we got big problems..
   * Close the circuit. */
  if (!leg) {
    log_warn(LD_BUG, "Got a conflux switch command on a circuit without "
             "conflux leg. Closing circuit.");
    circuit_mark_for_close(in_circ, END_CIRC_REASON_INTERNAL);
    return -1;
  }

  // Check source hop via layer_hint
  if (!conflux_validate_source_hop(in_circ, layer_hint)) {
    log_warn(LD_BUG, "Got a conflux switch command on a circuit with "
             "invalid source hop. Closing circuit.");
    circuit_mark_for_close(in_circ, END_CIRC_REASON_TORPROTOCOL);
    return -1;
  }

  relative_seq = conflux_cell_parse_switch(cell, rh->length);

  /*
   * We have to make sure that the switch command is truely
   * incrementing the sequence number, or else it becomes
   * a side channel that can be spammed for traffic analysis.
   */
  // TODO-329-TUNING: This can happen. Disabling for now..
  //if (relative_seq < CONFLUX_MIN_LINK_INCREMENT) {
  // log_warn(LD_CIRC, "Got a conflux switch command with a relative "
  //          "sequence number less than the minimum increment. Closing "
  //          "circuit.");
  // circuit_mark_for_close(in_circ, END_CIRC_REASON_TORPROTOCOL);
  // return -1;
  //}

  // TODO-329-UDP: When Prop#340 exits and was negotiated, ensure we're
  // in a packed cell, with another cell following, otherwise
  // this is a spammed side-channel.
  //   - We definitely should never get switches back-to-back.
  //   - We should not get switches across all legs with no data
  // But before Prop#340, it doesn't make much sense to do this.
  // C-Tor is riddled with side-channels like this anyway, unless
  // vanguards is in use. And this feature is not supported by
  // onion servicees in C-Tor, so we're good there.

  /* Update the absolute sequence number on this leg by the delta.
   * Since this cell is not multiplexed, we do not count it towards
   * absolute sequence numbers. We only increment the sequence
   * numbers for multiplexed cells. Hence there is no +1 here. */
  leg->last_seq_recv += relative_seq;

  /* Mark this data as validated for controlport and vanguards
   * dropped cell handling */
  if (CIRCUIT_IS_ORIGIN(in_circ)) {
    circuit_read_valid_data(TO_ORIGIN_CIRCUIT(in_circ), rh->length);
  }

  return 0;
}

/**
 * Process an incoming relay cell for conflux. Called from
 * connection_edge_process_relay_cell().
 *
 * Returns true if the conflux system now has well-ordered cells to deliver
 * to streams, false otherwise.
 */
bool
conflux_process_cell(conflux_t *cfx, circuit_t *in_circ,
                     crypt_path_t *layer_hint, cell_t *cell)
{
  // TODO-329-TUNING: Temporarily validate legs here. We can remove
  // this after tuning is complete.
  conflux_validate_legs(cfx);

  conflux_leg_t *leg = conflux_get_leg(cfx, in_circ);
  if (!leg) {
    log_warn(LD_BUG, "Got a conflux cell on a circuit without "
             "conflux leg. Closing circuit.");
    circuit_mark_for_close(in_circ, END_CIRC_REASON_INTERNAL);
    return false;
  }

  /* We need to make sure this cell came from the expected hop, or
   * else it could be a data corruption attack from a middle node. */
  if (!conflux_validate_source_hop(in_circ, layer_hint)) {
    circuit_mark_for_close(in_circ, END_CIRC_REASON_TORPROTOCOL);
    return false;
  }

  /* Update the running absolute sequence number */
  leg->last_seq_recv++;

  /* If this cell is next, fast-path it by processing the cell in-place */
  if (leg->last_seq_recv == cfx->last_seq_delivered + 1) {
    /* The cell is now ready to be processed, and rest of the queue should
     * now be checked for remaining elements */
    cfx->last_seq_delivered++;
    return true;
  } else if (BUG(leg->last_seq_recv <= cfx->last_seq_delivered)) {
    log_warn(LD_BUG, "Got a conflux cell with a sequence number "
             "less than the last delivered. Closing circuit.");
    circuit_mark_for_close(in_circ, END_CIRC_REASON_INTERNAL);
    return false;
  } else {
    conflux_cell_t *c_cell = tor_malloc_zero(sizeof(conflux_cell_t));
    c_cell->seq = leg->last_seq_recv;

    memcpy(&c_cell->cell, cell, sizeof(cell_t));

    smartlist_pqueue_add(cfx->ooo_q, conflux_queue_cmp,
            offsetof(conflux_cell_t, heap_idx), c_cell);
    total_ooo_q_bytes += sizeof(cell_t);

    /* This cell should not be processed yet, and the queue is not ready
     * to process because the next absolute seqnum has not yet arrived */
    return false;
  }
}

/**
 * Dequeue the top cell from our queue.
 *
 * Returns the cell as a conflux_cell_t, or NULL if the queue is empty
 * or has a hole.
 */
conflux_cell_t *
conflux_dequeue_cell(conflux_t *cfx)
{
  conflux_cell_t *top = NULL;
  if (smartlist_len(cfx->ooo_q) == 0)
    return NULL;

  top = smartlist_get(cfx->ooo_q, 0);

  /* If the top cell is the next sequence number we need, then
   * pop and return it. */
  if (top->seq == cfx->last_seq_delivered+1) {
    smartlist_pqueue_pop(cfx->ooo_q, conflux_queue_cmp,
                         offsetof(conflux_cell_t, heap_idx));
    total_ooo_q_bytes -= sizeof(cell_t);
    cfx->last_seq_delivered++;
    return top;
  } else {
    return NULL;
  }
}