aboutsummaryrefslogtreecommitdiff
path: root/src/lib/container/smartlist.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/container/smartlist.c')
-rw-r--r--src/lib/container/smartlist.c1094
1 files changed, 1094 insertions, 0 deletions
diff --git a/src/lib/container/smartlist.c b/src/lib/container/smartlist.c
new file mode 100644
index 0000000000..6aef728547
--- /dev/null
+++ b/src/lib/container/smartlist.c
@@ -0,0 +1,1094 @@
+/* Copyright (c) 2003-2004, Roger Dingledine
+ * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
+ * Copyright (c) 2007-2018, The Tor Project, Inc. */
+/* See LICENSE for licensing information */
+
+/**
+ * \file container.c
+ * \brief Implements a smartlist (a resizable array) along
+ * with helper functions to use smartlists. Also includes
+ * hash table implementations of a string-to-void* map, and of
+ * a digest-to-void* map.
+ **/
+
+#include "lib/malloc/util_malloc.h"
+#include "lib/container/smartlist.h"
+#include "common/util.h"
+#include "lib/crypt_ops/crypto_digest.h"
+#include "lib/ctime/di_ops.h"
+
+#include <stdlib.h>
+#include <string.h>
+
+/** All newly allocated smartlists have this capacity. */
+#define SMARTLIST_DEFAULT_CAPACITY 16
+
+/** Allocate and return an empty smartlist.
+ */
+MOCK_IMPL(smartlist_t *,
+smartlist_new,(void))
+{
+ smartlist_t *sl = tor_malloc(sizeof(smartlist_t));
+ sl->num_used = 0;
+ sl->capacity = SMARTLIST_DEFAULT_CAPACITY;
+ sl->list = tor_calloc(sizeof(void *), sl->capacity);
+ return sl;
+}
+
+/** Deallocate a smartlist. Does not release storage associated with the
+ * list's elements.
+ */
+MOCK_IMPL(void,
+smartlist_free_,(smartlist_t *sl))
+{
+ if (!sl)
+ return;
+ tor_free(sl->list);
+ tor_free(sl);
+}
+
+/** Remove all elements from the list.
+ */
+void
+smartlist_clear(smartlist_t *sl)
+{
+ memset(sl->list, 0, sizeof(void *) * sl->num_used);
+ sl->num_used = 0;
+}
+
+#if SIZE_MAX < INT_MAX
+#error "We don't support systems where size_t is smaller than int."
+#endif
+
+/** Make sure that <b>sl</b> can hold at least <b>size</b> entries. */
+static inline void
+smartlist_ensure_capacity(smartlist_t *sl, size_t size)
+{
+ /* Set MAX_CAPACITY to MIN(INT_MAX, SIZE_MAX / sizeof(void*)) */
+#if (SIZE_MAX/SIZEOF_VOID_P) > INT_MAX
+#define MAX_CAPACITY (INT_MAX)
+#else
+#define MAX_CAPACITY (int)((SIZE_MAX / (sizeof(void*))))
+#endif
+
+ raw_assert(size <= MAX_CAPACITY);
+
+ if (size > (size_t) sl->capacity) {
+ size_t higher = (size_t) sl->capacity;
+ if (PREDICT_UNLIKELY(size > MAX_CAPACITY/2)) {
+ higher = MAX_CAPACITY;
+ } else {
+ while (size > higher)
+ higher *= 2;
+ }
+ sl->list = tor_reallocarray(sl->list, sizeof(void *),
+ ((size_t)higher));
+ memset(sl->list + sl->capacity, 0,
+ sizeof(void *) * (higher - sl->capacity));
+ sl->capacity = (int) higher;
+ }
+#undef ASSERT_CAPACITY
+#undef MAX_CAPACITY
+}
+
+/** Append element to the end of the list. */
+void
+smartlist_add(smartlist_t *sl, void *element)
+{
+ smartlist_ensure_capacity(sl, ((size_t) sl->num_used)+1);
+ sl->list[sl->num_used++] = element;
+}
+
+/** Append each element from S2 to the end of S1. */
+void
+smartlist_add_all(smartlist_t *s1, const smartlist_t *s2)
+{
+ size_t new_size = (size_t)s1->num_used + (size_t)s2->num_used;
+ tor_assert(new_size >= (size_t) s1->num_used); /* check for overflow. */
+ smartlist_ensure_capacity(s1, new_size);
+ memcpy(s1->list + s1->num_used, s2->list, s2->num_used*sizeof(void*));
+ tor_assert(new_size <= INT_MAX); /* redundant. */
+ s1->num_used = (int) new_size;
+}
+
+/** Append a copy of string to sl */
+void
+smartlist_add_strdup(struct smartlist_t *sl, const char *string)
+{
+ char *copy;
+
+ copy = tor_strdup(string);
+
+ smartlist_add(sl, copy);
+}
+
+/** Remove all elements E from sl such that E==element. Preserve
+ * the order of any elements before E, but elements after E can be
+ * rearranged.
+ */
+void
+smartlist_remove(smartlist_t *sl, const void *element)
+{
+ int i;
+ if (element == NULL)
+ return;
+ for (i=0; i < sl->num_used; i++)
+ if (sl->list[i] == element) {
+ sl->list[i] = sl->list[--sl->num_used]; /* swap with the end */
+ i--; /* so we process the new i'th element */
+ sl->list[sl->num_used] = NULL;
+ }
+}
+
+/** As <b>smartlist_remove</b>, but do not change the order of
+ * any elements not removed */
+void
+smartlist_remove_keeporder(smartlist_t *sl, const void *element)
+{
+ int i, j, num_used_orig = sl->num_used;
+ if (element == NULL)
+ return;
+
+ for (i=j=0; j < num_used_orig; ++j) {
+ if (sl->list[j] == element) {
+ --sl->num_used;
+ } else {
+ sl->list[i++] = sl->list[j];
+ }
+ }
+}
+
+/** If <b>sl</b> is nonempty, remove and return the final element. Otherwise,
+ * return NULL. */
+void *
+smartlist_pop_last(smartlist_t *sl)
+{
+ tor_assert(sl);
+ if (sl->num_used) {
+ void *tmp = sl->list[--sl->num_used];
+ sl->list[sl->num_used] = NULL;
+ return tmp;
+ } else
+ return NULL;
+}
+
+/** Reverse the order of the items in <b>sl</b>. */
+void
+smartlist_reverse(smartlist_t *sl)
+{
+ int i, j;
+ void *tmp;
+ tor_assert(sl);
+ for (i = 0, j = sl->num_used-1; i < j; ++i, --j) {
+ tmp = sl->list[i];
+ sl->list[i] = sl->list[j];
+ sl->list[j] = tmp;
+ }
+}
+
+/** If there are any strings in sl equal to element, remove and free them.
+ * Does not preserve order. */
+void
+smartlist_string_remove(smartlist_t *sl, const char *element)
+{
+ int i;
+ tor_assert(sl);
+ tor_assert(element);
+ for (i = 0; i < sl->num_used; ++i) {
+ if (!strcmp(element, sl->list[i])) {
+ tor_free(sl->list[i]);
+ sl->list[i] = sl->list[--sl->num_used]; /* swap with the end */
+ i--; /* so we process the new i'th element */
+ sl->list[sl->num_used] = NULL;
+ }
+ }
+}
+
+/** Return true iff some element E of sl has E==element.
+ */
+int
+smartlist_contains(const smartlist_t *sl, const void *element)
+{
+ int i;
+ for (i=0; i < sl->num_used; i++)
+ if (sl->list[i] == element)
+ return 1;
+ return 0;
+}
+
+/** Return true iff <b>sl</b> has some element E such that
+ * !strcmp(E,<b>element</b>)
+ */
+int
+smartlist_contains_string(const smartlist_t *sl, const char *element)
+{
+ int i;
+ if (!sl) return 0;
+ for (i=0; i < sl->num_used; i++)
+ if (strcmp((const char*)sl->list[i],element)==0)
+ return 1;
+ return 0;
+}
+
+/** If <b>element</b> is equal to an element of <b>sl</b>, return that
+ * element's index. Otherwise, return -1. */
+int
+smartlist_string_pos(const smartlist_t *sl, const char *element)
+{
+ int i;
+ if (!sl) return -1;
+ for (i=0; i < sl->num_used; i++)
+ if (strcmp((const char*)sl->list[i],element)==0)
+ return i;
+ return -1;
+}
+
+/** If <b>element</b> is the same pointer as an element of <b>sl</b>, return
+ * that element's index. Otherwise, return -1. */
+int
+smartlist_pos(const smartlist_t *sl, const void *element)
+{
+ int i;
+ if (!sl) return -1;
+ for (i=0; i < sl->num_used; i++)
+ if (element == sl->list[i])
+ return i;
+ return -1;
+}
+
+/** Return true iff <b>sl</b> has some element E such that
+ * !strcasecmp(E,<b>element</b>)
+ */
+int
+smartlist_contains_string_case(const smartlist_t *sl, const char *element)
+{
+ int i;
+ if (!sl) return 0;
+ for (i=0; i < sl->num_used; i++)
+ if (strcasecmp((const char*)sl->list[i],element)==0)
+ return 1;
+ return 0;
+}
+
+/** Return true iff <b>sl</b> has some element E such that E is equal
+ * to the decimal encoding of <b>num</b>.
+ */
+int
+smartlist_contains_int_as_string(const smartlist_t *sl, int num)
+{
+ char buf[32]; /* long enough for 64-bit int, and then some. */
+ tor_snprintf(buf,sizeof(buf),"%d", num);
+ return smartlist_contains_string(sl, buf);
+}
+
+/** Return true iff the two lists contain the same strings in the same
+ * order, or if they are both NULL. */
+int
+smartlist_strings_eq(const smartlist_t *sl1, const smartlist_t *sl2)
+{
+ if (sl1 == NULL)
+ return sl2 == NULL;
+ if (sl2 == NULL)
+ return 0;
+ if (smartlist_len(sl1) != smartlist_len(sl2))
+ return 0;
+ SMARTLIST_FOREACH(sl1, const char *, cp1, {
+ const char *cp2 = smartlist_get(sl2, cp1_sl_idx);
+ if (strcmp(cp1, cp2))
+ return 0;
+ });
+ return 1;
+}
+
+/** Return true iff the two lists contain the same int pointer values in
+ * the same order, or if they are both NULL. */
+int
+smartlist_ints_eq(const smartlist_t *sl1, const smartlist_t *sl2)
+{
+ if (sl1 == NULL)
+ return sl2 == NULL;
+ if (sl2 == NULL)
+ return 0;
+ if (smartlist_len(sl1) != smartlist_len(sl2))
+ return 0;
+ SMARTLIST_FOREACH(sl1, int *, cp1, {
+ int *cp2 = smartlist_get(sl2, cp1_sl_idx);
+ if (*cp1 != *cp2)
+ return 0;
+ });
+ return 1;
+}
+
+/** Return true iff <b>sl</b> has some element E such that
+ * tor_memeq(E,<b>element</b>,DIGEST_LEN)
+ */
+int
+smartlist_contains_digest(const smartlist_t *sl, const char *element)
+{
+ int i;
+ if (!sl) return 0;
+ for (i=0; i < sl->num_used; i++)
+ if (tor_memeq((const char*)sl->list[i],element,DIGEST_LEN))
+ return 1;
+ return 0;
+}
+
+/** Return true iff some element E of sl2 has smartlist_contains(sl1,E).
+ */
+int
+smartlist_overlap(const smartlist_t *sl1, const smartlist_t *sl2)
+{
+ int i;
+ for (i=0; i < sl2->num_used; i++)
+ if (smartlist_contains(sl1, sl2->list[i]))
+ return 1;
+ return 0;
+}
+
+/** Remove every element E of sl1 such that !smartlist_contains(sl2,E).
+ * Does not preserve the order of sl1.
+ */
+void
+smartlist_intersect(smartlist_t *sl1, const smartlist_t *sl2)
+{
+ int i;
+ for (i=0; i < sl1->num_used; i++)
+ if (!smartlist_contains(sl2, sl1->list[i])) {
+ sl1->list[i] = sl1->list[--sl1->num_used]; /* swap with the end */
+ i--; /* so we process the new i'th element */
+ sl1->list[sl1->num_used] = NULL;
+ }
+}
+
+/** Remove every element E of sl1 such that smartlist_contains(sl2,E).
+ * Does not preserve the order of sl1.
+ */
+void
+smartlist_subtract(smartlist_t *sl1, const smartlist_t *sl2)
+{
+ int i;
+ for (i=0; i < sl2->num_used; i++)
+ smartlist_remove(sl1, sl2->list[i]);
+}
+
+/** Remove the <b>idx</b>th element of sl; if idx is not the last
+ * element, swap the last element of sl into the <b>idx</b>th space.
+ */
+void
+smartlist_del(smartlist_t *sl, int idx)
+{
+ tor_assert(sl);
+ tor_assert(idx>=0);
+ tor_assert(idx < sl->num_used);
+ sl->list[idx] = sl->list[--sl->num_used];
+ sl->list[sl->num_used] = NULL;
+}
+
+/** Remove the <b>idx</b>th element of sl; if idx is not the last element,
+ * moving all subsequent elements back one space. Return the old value
+ * of the <b>idx</b>th element.
+ */
+void
+smartlist_del_keeporder(smartlist_t *sl, int idx)
+{
+ tor_assert(sl);
+ tor_assert(idx>=0);
+ tor_assert(idx < sl->num_used);
+ --sl->num_used;
+ if (idx < sl->num_used)
+ memmove(sl->list+idx, sl->list+idx+1, sizeof(void*)*(sl->num_used-idx));
+ sl->list[sl->num_used] = NULL;
+}
+
+/** Insert the value <b>val</b> as the new <b>idx</b>th element of
+ * <b>sl</b>, moving all items previously at <b>idx</b> or later
+ * forward one space.
+ */
+void
+smartlist_insert(smartlist_t *sl, int idx, void *val)
+{
+ tor_assert(sl);
+ tor_assert(idx>=0);
+ tor_assert(idx <= sl->num_used);
+ if (idx == sl->num_used) {
+ smartlist_add(sl, val);
+ } else {
+ smartlist_ensure_capacity(sl, ((size_t) sl->num_used)+1);
+ /* Move other elements away */
+ if (idx < sl->num_used)
+ memmove(sl->list + idx + 1, sl->list + idx,
+ sizeof(void*)*(sl->num_used-idx));
+ sl->num_used++;
+ sl->list[idx] = val;
+ }
+}
+
+/**
+ * Split a string <b>str</b> along all occurrences of <b>sep</b>,
+ * appending the (newly allocated) split strings, in order, to
+ * <b>sl</b>. Return the number of strings added to <b>sl</b>.
+ *
+ * If <b>flags</b>&amp;SPLIT_SKIP_SPACE is true, remove initial and
+ * trailing space from each entry.
+ * If <b>flags</b>&amp;SPLIT_IGNORE_BLANK is true, remove any entries
+ * of length 0.
+ * If <b>flags</b>&amp;SPLIT_STRIP_SPACE is true, strip spaces from each
+ * split string.
+ *
+ * If <b>max</b>\>0, divide the string into no more than <b>max</b> pieces. If
+ * <b>sep</b> is NULL, split on any sequence of horizontal space.
+ */
+int
+smartlist_split_string(smartlist_t *sl, const char *str, const char *sep,
+ int flags, int max)
+{
+ const char *cp, *end, *next;
+ int n = 0;
+
+ tor_assert(sl);
+ tor_assert(str);
+
+ cp = str;
+ while (1) {
+ if (flags&SPLIT_SKIP_SPACE) {
+ while (TOR_ISSPACE(*cp)) ++cp;
+ }
+
+ if (max>0 && n == max-1) {
+ end = strchr(cp,'\0');
+ } else if (sep) {
+ end = strstr(cp,sep);
+ if (!end)
+ end = strchr(cp,'\0');
+ } else {
+ for (end = cp; *end && *end != '\t' && *end != ' '; ++end)
+ ;
+ }
+
+ tor_assert(end);
+
+ if (!*end) {
+ next = NULL;
+ } else if (sep) {
+ next = end+strlen(sep);
+ } else {
+ next = end+1;
+ while (*next == '\t' || *next == ' ')
+ ++next;
+ }
+
+ if (flags&SPLIT_SKIP_SPACE) {
+ while (end > cp && TOR_ISSPACE(*(end-1)))
+ --end;
+ }
+ if (end != cp || !(flags&SPLIT_IGNORE_BLANK)) {
+ char *string = tor_strndup(cp, end-cp);
+ if (flags&SPLIT_STRIP_SPACE)
+ tor_strstrip(string, " ");
+ smartlist_add(sl, string);
+ ++n;
+ }
+ if (!next)
+ break;
+ cp = next;
+ }
+
+ return n;
+}
+
+/** Allocate and return a new string containing the concatenation of
+ * the elements of <b>sl</b>, in order, separated by <b>join</b>. If
+ * <b>terminate</b> is true, also terminate the string with <b>join</b>.
+ * If <b>len_out</b> is not NULL, set <b>len_out</b> to the length of
+ * the returned string. Requires that every element of <b>sl</b> is
+ * NUL-terminated string.
+ */
+char *
+smartlist_join_strings(smartlist_t *sl, const char *join,
+ int terminate, size_t *len_out)
+{
+ return smartlist_join_strings2(sl,join,strlen(join),terminate,len_out);
+}
+
+/** As smartlist_join_strings, but instead of separating/terminated with a
+ * NUL-terminated string <b>join</b>, uses the <b>join_len</b>-byte sequence
+ * at <b>join</b>. (Useful for generating a sequence of NUL-terminated
+ * strings.)
+ */
+char *
+smartlist_join_strings2(smartlist_t *sl, const char *join,
+ size_t join_len, int terminate, size_t *len_out)
+{
+ int i;
+ size_t n = 0;
+ char *r = NULL, *dst, *src;
+
+ tor_assert(sl);
+ tor_assert(join);
+
+ if (terminate)
+ n = join_len;
+
+ for (i = 0; i < sl->num_used; ++i) {
+ n += strlen(sl->list[i]);
+ if (i+1 < sl->num_used) /* avoid double-counting the last one */
+ n += join_len;
+ }
+ dst = r = tor_malloc(n+1);
+ for (i = 0; i < sl->num_used; ) {
+ for (src = sl->list[i]; *src; )
+ *dst++ = *src++;
+ if (++i < sl->num_used) {
+ memcpy(dst, join, join_len);
+ dst += join_len;
+ }
+ }
+ if (terminate) {
+ memcpy(dst, join, join_len);
+ dst += join_len;
+ }
+ *dst = '\0';
+
+ if (len_out)
+ *len_out = dst-r;
+ return r;
+}
+
+/** Sort the members of <b>sl</b> into an order defined by
+ * the ordering function <b>compare</b>, which returns less then 0 if a
+ * precedes b, greater than 0 if b precedes a, and 0 if a 'equals' b.
+ */
+void
+smartlist_sort(smartlist_t *sl, int (*compare)(const void **a, const void **b))
+{
+ if (!sl->num_used)
+ return;
+ qsort(sl->list, sl->num_used, sizeof(void*),
+ (int (*)(const void *,const void*))compare);
+}
+
+/** Given a smartlist <b>sl</b> sorted with the function <b>compare</b>,
+ * return the most frequent member in the list. Break ties in favor of
+ * later elements. If the list is empty, return NULL. If count_out is
+ * non-null, set it to the count of the most frequent member.
+ */
+void *
+smartlist_get_most_frequent_(const smartlist_t *sl,
+ int (*compare)(const void **a, const void **b),
+ int *count_out)
+{
+ const void *most_frequent = NULL;
+ int most_frequent_count = 0;
+
+ const void *cur = NULL;
+ int i, count=0;
+
+ if (!sl->num_used) {
+ if (count_out)
+ *count_out = 0;
+ return NULL;
+ }
+ for (i = 0; i < sl->num_used; ++i) {
+ const void *item = sl->list[i];
+ if (cur && 0 == compare(&cur, &item)) {
+ ++count;
+ } else {
+ if (cur && count >= most_frequent_count) {
+ most_frequent = cur;
+ most_frequent_count = count;
+ }
+ cur = item;
+ count = 1;
+ }
+ }
+ if (cur && count >= most_frequent_count) {
+ most_frequent = cur;
+ most_frequent_count = count;
+ }
+ if (count_out)
+ *count_out = most_frequent_count;
+ return (void*)most_frequent;
+}
+
+/** Given a sorted smartlist <b>sl</b> and the comparison function used to
+ * sort it, remove all duplicate members. If free_fn is provided, calls
+ * free_fn on each duplicate. Otherwise, just removes them. Preserves order.
+ */
+void
+smartlist_uniq(smartlist_t *sl,
+ int (*compare)(const void **a, const void **b),
+ void (*free_fn)(void *a))
+{
+ int i;
+ for (i=1; i < sl->num_used; ++i) {
+ if (compare((const void **)&(sl->list[i-1]),
+ (const void **)&(sl->list[i])) == 0) {
+ if (free_fn)
+ free_fn(sl->list[i]);
+ smartlist_del_keeporder(sl, i--);
+ }
+ }
+}
+
+/** Assuming the members of <b>sl</b> are in order, return a pointer to the
+ * member that matches <b>key</b>. Ordering and matching are defined by a
+ * <b>compare</b> function that returns 0 on a match; less than 0 if key is
+ * less than member, and greater than 0 if key is greater then member.
+ */
+void *
+smartlist_bsearch(smartlist_t *sl, const void *key,
+ int (*compare)(const void *key, const void **member))
+{
+ int found, idx;
+ idx = smartlist_bsearch_idx(sl, key, compare, &found);
+ return found ? smartlist_get(sl, idx) : NULL;
+}
+
+/** Assuming the members of <b>sl</b> are in order, return the index of the
+ * member that matches <b>key</b>. If no member matches, return the index of
+ * the first member greater than <b>key</b>, or smartlist_len(sl) if no member
+ * is greater than <b>key</b>. Set <b>found_out</b> to true on a match, to
+ * false otherwise. Ordering and matching are defined by a <b>compare</b>
+ * function that returns 0 on a match; less than 0 if key is less than member,
+ * and greater than 0 if key is greater then member.
+ */
+int
+smartlist_bsearch_idx(const smartlist_t *sl, const void *key,
+ int (*compare)(const void *key, const void **member),
+ int *found_out)
+{
+ int hi, lo, cmp, mid, len, diff;
+
+ tor_assert(sl);
+ tor_assert(compare);
+ tor_assert(found_out);
+
+ len = smartlist_len(sl);
+
+ /* Check for the trivial case of a zero-length list */
+ if (len == 0) {
+ *found_out = 0;
+ /* We already know smartlist_len(sl) is 0 in this case */
+ return 0;
+ }
+
+ /* Okay, we have a real search to do */
+ tor_assert(len > 0);
+ lo = 0;
+ hi = len - 1;
+
+ /*
+ * These invariants are always true:
+ *
+ * For all i such that 0 <= i < lo, sl[i] < key
+ * For all i such that hi < i <= len, sl[i] > key
+ */
+
+ while (lo <= hi) {
+ diff = hi - lo;
+ /*
+ * We want mid = (lo + hi) / 2, but that could lead to overflow, so
+ * instead diff = hi - lo (non-negative because of loop condition), and
+ * then hi = lo + diff, mid = (lo + lo + diff) / 2 = lo + (diff / 2).
+ */
+ mid = lo + (diff / 2);
+ cmp = compare(key, (const void**) &(sl->list[mid]));
+ if (cmp == 0) {
+ /* sl[mid] == key; we found it */
+ *found_out = 1;
+ return mid;
+ } else if (cmp > 0) {
+ /*
+ * key > sl[mid] and an index i such that sl[i] == key must
+ * have i > mid if it exists.
+ */
+
+ /*
+ * Since lo <= mid <= hi, hi can only decrease on each iteration (by
+ * being set to mid - 1) and hi is initially len - 1, mid < len should
+ * always hold, and this is not symmetric with the left end of list
+ * mid > 0 test below. A key greater than the right end of the list
+ * should eventually lead to lo == hi == mid == len - 1, and then
+ * we set lo to len below and fall out to the same exit we hit for
+ * a key in the middle of the list but not matching. Thus, we just
+ * assert for consistency here rather than handle a mid == len case.
+ */
+ tor_assert(mid < len);
+ /* Move lo to the element immediately after sl[mid] */
+ lo = mid + 1;
+ } else {
+ /* This should always be true in this case */
+ tor_assert(cmp < 0);
+
+ /*
+ * key < sl[mid] and an index i such that sl[i] == key must
+ * have i < mid if it exists.
+ */
+
+ if (mid > 0) {
+ /* Normal case, move hi to the element immediately before sl[mid] */
+ hi = mid - 1;
+ } else {
+ /* These should always be true in this case */
+ tor_assert(mid == lo);
+ tor_assert(mid == 0);
+ /*
+ * We were at the beginning of the list and concluded that every
+ * element e compares e > key.
+ */
+ *found_out = 0;
+ return 0;
+ }
+ }
+ }
+
+ /*
+ * lo > hi; we have no element matching key but we have elements falling
+ * on both sides of it. The lo index points to the first element > key.
+ */
+ tor_assert(lo == hi + 1); /* All other cases should have been handled */
+ tor_assert(lo >= 0);
+ tor_assert(lo <= len);
+ tor_assert(hi >= 0);
+ tor_assert(hi <= len);
+
+ if (lo < len) {
+ cmp = compare(key, (const void **) &(sl->list[lo]));
+ tor_assert(cmp < 0);
+ } else {
+ cmp = compare(key, (const void **) &(sl->list[len-1]));
+ tor_assert(cmp > 0);
+ }
+
+ *found_out = 0;
+ return lo;
+}
+
+/** Helper: compare two const char **s. */
+static int
+compare_string_ptrs_(const void **_a, const void **_b)
+{
+ return strcmp((const char*)*_a, (const char*)*_b);
+}
+
+/** Sort a smartlist <b>sl</b> containing strings into lexically ascending
+ * order. */
+void
+smartlist_sort_strings(smartlist_t *sl)
+{
+ smartlist_sort(sl, compare_string_ptrs_);
+}
+
+/** Return the most frequent string in the sorted list <b>sl</b> */
+const char *
+smartlist_get_most_frequent_string(smartlist_t *sl)
+{
+ return smartlist_get_most_frequent(sl, compare_string_ptrs_);
+}
+
+/** Return the most frequent string in the sorted list <b>sl</b>.
+ * If <b>count_out</b> is provided, set <b>count_out</b> to the
+ * number of times that string appears.
+ */
+const char *
+smartlist_get_most_frequent_string_(smartlist_t *sl, int *count_out)
+{
+ return smartlist_get_most_frequent_(sl, compare_string_ptrs_, count_out);
+}
+
+/** Remove duplicate strings from a sorted list, and free them with tor_free().
+ */
+void
+smartlist_uniq_strings(smartlist_t *sl)
+{
+ smartlist_uniq(sl, compare_string_ptrs_, tor_free_);
+}
+
+/** Helper: compare two pointers. */
+static int
+compare_ptrs_(const void **_a, const void **_b)
+{
+ const void *a = *_a, *b = *_b;
+ if (a<b)
+ return -1;
+ else if (a==b)
+ return 0;
+ else
+ return 1;
+}
+
+/** Sort <b>sl</b> in ascending order of the pointers it contains. */
+void
+smartlist_sort_pointers(smartlist_t *sl)
+{
+ smartlist_sort(sl, compare_ptrs_);
+}
+
+/* Heap-based priority queue implementation for O(lg N) insert and remove.
+ * Recall that the heap property is that, for every index I, h[I] <
+ * H[LEFT_CHILD[I]] and h[I] < H[RIGHT_CHILD[I]].
+ *
+ * For us to remove items other than the topmost item, each item must store
+ * its own index within the heap. When calling the pqueue functions, tell
+ * them about the offset of the field that stores the index within the item.
+ *
+ * Example:
+ *
+ * typedef struct timer_t {
+ * struct timeval tv;
+ * int heap_index;
+ * } timer_t;
+ *
+ * static int compare(const void *p1, const void *p2) {
+ * const timer_t *t1 = p1, *t2 = p2;
+ * if (t1->tv.tv_sec < t2->tv.tv_sec) {
+ * return -1;
+ * } else if (t1->tv.tv_sec > t2->tv.tv_sec) {
+ * return 1;
+ * } else {
+ * return t1->tv.tv_usec - t2->tv_usec;
+ * }
+ * }
+ *
+ * void timer_heap_insert(smartlist_t *heap, timer_t *timer) {
+ * smartlist_pqueue_add(heap, compare, offsetof(timer_t, heap_index),
+ * timer);
+ * }
+ *
+ * void timer_heap_pop(smartlist_t *heap) {
+ * return smartlist_pqueue_pop(heap, compare,
+ * offsetof(timer_t, heap_index));
+ * }
+ */
+
+/** @{ */
+/** Functions to manipulate heap indices to find a node's parent and children.
+ *
+ * For a 1-indexed array, we would use LEFT_CHILD[x] = 2*x and RIGHT_CHILD[x]
+ * = 2*x + 1. But this is C, so we have to adjust a little. */
+
+/* MAX_PARENT_IDX is the largest IDX in the smartlist which might have
+ * children whose indices fit inside an int.
+ * LEFT_CHILD(MAX_PARENT_IDX) == INT_MAX-2;
+ * RIGHT_CHILD(MAX_PARENT_IDX) == INT_MAX-1;
+ * LEFT_CHILD(MAX_PARENT_IDX + 1) == INT_MAX // impossible, see max list size.
+ */
+#define MAX_PARENT_IDX ((INT_MAX - 2) / 2)
+/* If this is true, then i is small enough to potentially have children
+ * in the smartlist, and it is save to use LEFT_CHILD/RIGHT_CHILD on it. */
+#define IDX_MAY_HAVE_CHILDREN(i) ((i) <= MAX_PARENT_IDX)
+#define LEFT_CHILD(i) ( 2*(i) + 1 )
+#define RIGHT_CHILD(i) ( 2*(i) + 2 )
+#define PARENT(i) ( ((i)-1) / 2 )
+/** }@ */
+
+/** @{ */
+/** Helper macros for heaps: Given a local variable <b>idx_field_offset</b>
+ * set to the offset of an integer index within the heap element structure,
+ * IDX_OF_ITEM(p) gives you the index of p, and IDXP(p) gives you a pointer to
+ * where p's index is stored. Given additionally a local smartlist <b>sl</b>,
+ * UPDATE_IDX(i) sets the index of the element at <b>i</b> to the correct
+ * value (that is, to <b>i</b>).
+ */
+#define IDXP(p) ((int*)STRUCT_VAR_P(p, idx_field_offset))
+
+#define UPDATE_IDX(i) do { \
+ void *updated = sl->list[i]; \
+ *IDXP(updated) = i; \
+ } while (0)
+
+#define IDX_OF_ITEM(p) (*IDXP(p))
+/** @} */
+
+/** Helper. <b>sl</b> may have at most one violation of the heap property:
+ * the item at <b>idx</b> may be greater than one or both of its children.
+ * Restore the heap property. */
+static inline void
+smartlist_heapify(smartlist_t *sl,
+ int (*compare)(const void *a, const void *b),
+ int idx_field_offset,
+ int idx)
+{
+ while (1) {
+ if (! IDX_MAY_HAVE_CHILDREN(idx)) {
+ /* idx is so large that it cannot have any children, since doing so
+ * would mean the smartlist was over-capacity. Therefore it cannot
+ * violate the heap property by being greater than a child (since it
+ * doesn't have any). */
+ return;
+ }
+
+ int left_idx = LEFT_CHILD(idx);
+ int best_idx;
+
+ if (left_idx >= sl->num_used)
+ return;
+ if (compare(sl->list[idx],sl->list[left_idx]) < 0)
+ best_idx = idx;
+ else
+ best_idx = left_idx;
+ if (left_idx+1 < sl->num_used &&
+ compare(sl->list[left_idx+1],sl->list[best_idx]) < 0)
+ best_idx = left_idx + 1;
+
+ if (best_idx == idx) {
+ return;
+ } else {
+ void *tmp = sl->list[idx];
+ sl->list[idx] = sl->list[best_idx];
+ sl->list[best_idx] = tmp;
+ UPDATE_IDX(idx);
+ UPDATE_IDX(best_idx);
+
+ idx = best_idx;
+ }
+ }
+}
+
+/** Insert <b>item</b> into the heap stored in <b>sl</b>, where order is
+ * determined by <b>compare</b> and the offset of the item in the heap is
+ * stored in an int-typed field at position <b>idx_field_offset</b> within
+ * item.
+ */
+void
+smartlist_pqueue_add(smartlist_t *sl,
+ int (*compare)(const void *a, const void *b),
+ int idx_field_offset,
+ void *item)
+{
+ int idx;
+ smartlist_add(sl,item);
+ UPDATE_IDX(sl->num_used-1);
+
+ for (idx = sl->num_used - 1; idx; ) {
+ int parent = PARENT(idx);
+ if (compare(sl->list[idx], sl->list[parent]) < 0) {
+ void *tmp = sl->list[parent];
+ sl->list[parent] = sl->list[idx];
+ sl->list[idx] = tmp;
+ UPDATE_IDX(parent);
+ UPDATE_IDX(idx);
+ idx = parent;
+ } else {
+ return;
+ }
+ }
+}
+
+/** Remove and return the top-priority item from the heap stored in <b>sl</b>,
+ * where order is determined by <b>compare</b> and the item's position is
+ * stored at position <b>idx_field_offset</b> within the item. <b>sl</b> must
+ * not be empty. */
+void *
+smartlist_pqueue_pop(smartlist_t *sl,
+ int (*compare)(const void *a, const void *b),
+ int idx_field_offset)
+{
+ void *top;
+ tor_assert(sl->num_used);
+
+ top = sl->list[0];
+ *IDXP(top)=-1;
+ if (--sl->num_used) {
+ sl->list[0] = sl->list[sl->num_used];
+ sl->list[sl->num_used] = NULL;
+ UPDATE_IDX(0);
+ smartlist_heapify(sl, compare, idx_field_offset, 0);
+ }
+ sl->list[sl->num_used] = NULL;
+ return top;
+}
+
+/** Remove the item <b>item</b> from the heap stored in <b>sl</b>,
+ * where order is determined by <b>compare</b> and the item's position is
+ * stored at position <b>idx_field_offset</b> within the item. <b>sl</b> must
+ * not be empty. */
+void
+smartlist_pqueue_remove(smartlist_t *sl,
+ int (*compare)(const void *a, const void *b),
+ int idx_field_offset,
+ void *item)
+{
+ int idx = IDX_OF_ITEM(item);
+ tor_assert(idx >= 0);
+ tor_assert(sl->list[idx] == item);
+ --sl->num_used;
+ *IDXP(item) = -1;
+ if (idx == sl->num_used) {
+ sl->list[sl->num_used] = NULL;
+ return;
+ } else {
+ sl->list[idx] = sl->list[sl->num_used];
+ sl->list[sl->num_used] = NULL;
+ UPDATE_IDX(idx);
+ smartlist_heapify(sl, compare, idx_field_offset, idx);
+ }
+}
+
+/** Assert that the heap property is correctly maintained by the heap stored
+ * in <b>sl</b>, where order is determined by <b>compare</b>. */
+void
+smartlist_pqueue_assert_ok(smartlist_t *sl,
+ int (*compare)(const void *a, const void *b),
+ int idx_field_offset)
+{
+ int i;
+ for (i = sl->num_used - 1; i >= 0; --i) {
+ if (i>0)
+ tor_assert(compare(sl->list[PARENT(i)], sl->list[i]) <= 0);
+ tor_assert(IDX_OF_ITEM(sl->list[i]) == i);
+ }
+}
+
+/** Helper: compare two DIGEST_LEN digests. */
+static int
+compare_digests_(const void **_a, const void **_b)
+{
+ return tor_memcmp((const char*)*_a, (const char*)*_b, DIGEST_LEN);
+}
+
+/** Sort the list of DIGEST_LEN-byte digests into ascending order. */
+void
+smartlist_sort_digests(smartlist_t *sl)
+{
+ smartlist_sort(sl, compare_digests_);
+}
+
+/** Remove duplicate digests from a sorted list, and free them with tor_free().
+ */
+void
+smartlist_uniq_digests(smartlist_t *sl)
+{
+ smartlist_uniq(sl, compare_digests_, tor_free_);
+}
+
+/** Helper: compare two DIGEST256_LEN digests. */
+static int
+compare_digests256_(const void **_a, const void **_b)
+{
+ return tor_memcmp((const char*)*_a, (const char*)*_b, DIGEST256_LEN);
+}
+
+/** Sort the list of DIGEST256_LEN-byte digests into ascending order. */
+void
+smartlist_sort_digests256(smartlist_t *sl)
+{
+ smartlist_sort(sl, compare_digests256_);
+}
+
+/** Return the most frequent member of the sorted list of DIGEST256_LEN
+ * digests in <b>sl</b> */
+const uint8_t *
+smartlist_get_most_frequent_digest256(smartlist_t *sl)
+{
+ return smartlist_get_most_frequent(sl, compare_digests256_);
+}
+
+/** Remove duplicate 256-bit digests from a sorted list, and free them with
+ * tor_free().
+ */
+void
+smartlist_uniq_digests256(smartlist_t *sl)
+{
+ smartlist_uniq(sl, compare_digests256_, tor_free_);
+}