diff options
Diffstat (limited to 'src/common/di_ops.c')
-rw-r--r-- | src/common/di_ops.c | 133 |
1 files changed, 133 insertions, 0 deletions
diff --git a/src/common/di_ops.c b/src/common/di_ops.c new file mode 100644 index 0000000000..c1e292fe2f --- /dev/null +++ b/src/common/di_ops.c @@ -0,0 +1,133 @@ +/* Copyright (c) 2011, The Tor Project, Inc. */ +/* See LICENSE for licensing information */ + +/** + * \file di_ops.c + * \brief Functions for data-independent operations + **/ + +#include "orconfig.h" +#include "di_ops.h" + +/** + * Timing-safe version of memcmp. As memcmp, compare the <b>sz</b> bytes + * at <b>a</b> with the <b>sz</b> bytes at <b>, and returns less than 0 if the + * bytes at <b>a</b> lexically precede those at <b>b</b>, 0 if the byte ranges + * are equal, and greater than zero if the bytes at <b>a</b> lexically follow + * those at <b>. + * + * This implementation differs from memcmp in that its timing behavior is not + * data-dependent: it should return in the same amount of time regardless of + * the contents of <b>a</b> and <b>b</b>. + */ +int +tor_memcmp(const void *a, const void *b, size_t len) +{ + const uint8_t *x = a; + const uint8_t *y = b; + size_t i = len; + int retval = 0; + + /* This loop goes from the end of the arrays to the start. At the + * start of every iteration, before we decrement i, we have set + * "retval" equal to the result of memcmp(a+i,b+i,len-i). During the + * loop, we update retval by leaving it unchanged if x[i]==y[i] and + * setting it to x[i]-y[i] if x[i]!= y[i]. + * + * The following assumes we are on a system with two's-complement + * arithmetic. We check for this at configure-time with the check + * that sets USING_TWOS_COMPLEMENT. If we aren't two's complement, then + * torint.h will stop compilation with an error. + */ + while (i--) { + int v1 = x[i]; + int v2 = y[i]; + int equal_p = v1 ^ v2; + + /* The following sets bits 8 and above of equal_p to 'equal_p == + * 0', and thus to v1 == v2. (To see this, note that if v1 == + * v2, then v1^v2 == equal_p == 0, so equal_p-1 == -1, which is the + * same as ~0 on a two's-complement machine. Then note that if + * v1 != v2, then 0 < v1 ^ v2 < 256, so 0 <= equal_p - 1 < 255.) + */ + --equal_p; + + equal_p >>= 8; + /* Thanks to (sign-preserving) arithmetic shift, equal_p is now + * equal to -(v1 == v2), which is exactly what we need below. + * (Since we're assuming two's-complement arithmetic, -1 is the + * same as ~0 (all bits set).) + * + * (The result of an arithmetic shift on a negative value is + * actually implementation-defined in standard C. So how do we + * get away with assuming it? Easy. We check.) */ +#if ((-60 >> 8) != -1) +#error "According to cpp, right-shift doesn't perform sign-extension." +#endif +#ifndef RSHIFT_DOES_SIGN_EXTEND +#error "According to configure, right-shift doesn't perform sign-extension." +#endif + + /* If v1 == v2, equal_p is ~0, so this will leave retval + * unchanged; otherwise, equal_p is 0, so this will zero it. */ + retval &= equal_p; + + /* If v1 == v2, then this adds 0, and leaves retval unchanged. + * Otherwise, we just zeroed retval, so this sets it to v1 - v2. */ + retval += (v1 - v2); + + /* There. Now retval is equal to its previous value if v1 == v2, and + * equal to v1 - v2 if v1 != v2. */ + } + + return retval; +} + +/** + * Timing-safe memory comparison. Return true if the <b>sz</b> bytes at + * <b>a</b> are the same as the <b>sz</b> bytes at <b>, and 0 otherwise. + * + * This implementation differs from !memcmp(a,b,sz) in that its timing + * behavior is not data-dependent: it should return in the same amount of time + * regardless of the contents of <b>a</b> and <b>b</b>. It differs from + * !tor_memcmp(a,b,sz) by being faster. + */ +int +tor_memeq(const void *a, const void *b, size_t sz) +{ + /* Treat a and b as byte ranges. */ + const uint8_t *ba = a, *bb = b; + uint32_t any_difference = 0; + while (sz--) { + /* Set byte_diff to all of those bits that are different in *ba and *bb, + * and advance both ba and bb. */ + const uint8_t byte_diff = *ba++ ^ *bb++; + + /* Set bits in any_difference if they are set in byte_diff. */ + any_difference |= byte_diff; + } + + /* Now any_difference is 0 if there are no bits different between + * a and b, and is nonzero if there are bits different between a + * and b. Now for paranoia's sake, let's convert it to 0 or 1. + * + * (If we say "!any_difference", the compiler might get smart enough + * to optimize-out our data-independence stuff above.) + * + * To unpack: + * + * If any_difference == 0: + * any_difference - 1 == ~0 + * (any_difference - 1) >> 8 == 0x00ffffff + * 1 & ((any_difference - 1) >> 8) == 1 + * + * If any_difference != 0: + * 0 < any_difference < 256, so + * 0 < any_difference - 1 < 255 + * (any_difference - 1) >> 8 == 0 + * 1 & ((any_difference - 1) >> 8) == 0 + */ + + return 1 & ((any_difference - 1) >> 8); +} + |