aboutsummaryrefslogtreecommitdiff
path: root/vendor/gioui.org/shader/piet/elements.comp
blob: 17ef1eeae6f84b8f03c35642e05c34ea6b73af48 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
// SPDX-License-Identifier: Apache-2.0 OR MIT OR Unlicense

// The element processing stage, first in the pipeline.
//
// This stage is primarily about applying transforms and computing bounding
// boxes. It is organized as a scan over the input elements, producing
// annotated output elements.

#version 450
#extension GL_GOOGLE_include_directive : enable

#include "mem.h"
#include "setup.h"

#define N_ROWS 4
#define WG_SIZE 32
#define LG_WG_SIZE 5
#define PARTITION_SIZE (WG_SIZE * N_ROWS)

layout(local_size_x = WG_SIZE, local_size_y = 1) in;

layout(set = 0, binding = 1) readonly buffer ConfigBuf {
    Config conf;
};

layout(set = 0, binding = 2) readonly buffer SceneBuf {
    uint[] scene;
};

// It would be better to use the Vulkan memory model than
// "volatile" but shooting for compatibility here rather
// than doing things right.
layout(set = 0, binding = 3) volatile buffer StateBuf {
    uint part_counter;
    uint[] state;
};

#include "scene.h"
#include "state.h"
#include "annotated.h"
#include "pathseg.h"
#include "tile.h"

#define StateBuf_stride (4 + 2 * State_size)

StateRef state_aggregate_ref(uint partition_ix) {
    return StateRef(4 + partition_ix * StateBuf_stride);
}

StateRef state_prefix_ref(uint partition_ix) {
    return StateRef(4 + partition_ix * StateBuf_stride + State_size);
}

uint state_flag_index(uint partition_ix) {
    return partition_ix * (StateBuf_stride / 4);
}

// These correspond to X, A, P respectively in the prefix sum paper.
#define FLAG_NOT_READY 0
#define FLAG_AGGREGATE_READY 1
#define FLAG_PREFIX_READY 2

#define FLAG_SET_LINEWIDTH 1
#define FLAG_SET_BBOX 2
#define FLAG_RESET_BBOX 4
#define FLAG_SET_FILL_MODE 8
// Fill modes take up the next bit. Non-zero fill is 0, stroke is 1.
#define LG_FILL_MODE 4
#define FILL_MODE_BITS 1
#define FILL_MODE_MASK (FILL_MODE_BITS << LG_FILL_MODE)

// This is almost like a monoid (the interaction between transformation and
// bounding boxes is approximate)
State combine_state(State a, State b) {
    State c;
    c.bbox.x = min(a.mat.x * b.bbox.x, a.mat.x * b.bbox.z) + min(a.mat.z * b.bbox.y, a.mat.z * b.bbox.w) + a.translate.x;
    c.bbox.y = min(a.mat.y * b.bbox.x, a.mat.y * b.bbox.z) + min(a.mat.w * b.bbox.y, a.mat.w * b.bbox.w) + a.translate.y;
    c.bbox.z = max(a.mat.x * b.bbox.x, a.mat.x * b.bbox.z) + max(a.mat.z * b.bbox.y, a.mat.z * b.bbox.w) + a.translate.x;
    c.bbox.w = max(a.mat.y * b.bbox.x, a.mat.y * b.bbox.z) + max(a.mat.w * b.bbox.y, a.mat.w * b.bbox.w) + a.translate.y;
    if ((a.flags & FLAG_RESET_BBOX) == 0 && b.bbox.z <= b.bbox.x && b.bbox.w <= b.bbox.y) {
        c.bbox = a.bbox;
    } else if ((a.flags & FLAG_RESET_BBOX) == 0 && (b.flags & FLAG_SET_BBOX) == 0 &&
        (a.bbox.z > a.bbox.x || a.bbox.w > a.bbox.y))
    {
        c.bbox.xy = min(a.bbox.xy, c.bbox.xy);
        c.bbox.zw = max(a.bbox.zw, c.bbox.zw);
    }
    // It would be more concise to cast to matrix types; ah well.
    c.mat.x = a.mat.x * b.mat.x + a.mat.z * b.mat.y;
    c.mat.y = a.mat.y * b.mat.x + a.mat.w * b.mat.y;
    c.mat.z = a.mat.x * b.mat.z + a.mat.z * b.mat.w;
    c.mat.w = a.mat.y * b.mat.z + a.mat.w * b.mat.w;
    c.translate.x = a.mat.x * b.translate.x + a.mat.z * b.translate.y + a.translate.x;
    c.translate.y = a.mat.y * b.translate.x + a.mat.w * b.translate.y + a.translate.y;
    c.linewidth = (b.flags & FLAG_SET_LINEWIDTH) == 0 ? a.linewidth : b.linewidth;
    c.flags = (a.flags & (FLAG_SET_LINEWIDTH | FLAG_SET_BBOX | FLAG_SET_FILL_MODE)) | b.flags;
    c.flags |= (a.flags & FLAG_RESET_BBOX) >> 1;
    uint fill_mode = (b.flags & FLAG_SET_FILL_MODE) == 0 ? a.flags : b.flags;
    fill_mode &= FILL_MODE_MASK;
    c.flags = (c.flags & ~FILL_MODE_MASK) | fill_mode;
    c.path_count = a.path_count + b.path_count;
    c.pathseg_count = a.pathseg_count + b.pathseg_count;
    c.trans_count = a.trans_count + b.trans_count;
    return c;
}

State map_element(ElementRef ref) {
    // TODO: it would *probably* be more efficient to make the memory read patterns less
    // divergent, though it would be more wasted memory.
    uint tag = Element_tag(ref).tag;
    State c;
    c.bbox = vec4(0.0, 0.0, 0.0, 0.0);
    c.mat = vec4(1.0, 0.0, 0.0, 1.0);
    c.translate = vec2(0.0, 0.0);
    c.linewidth = 1.0; // TODO should be 0.0
    c.flags = 0;
    c.path_count = 0;
    c.pathseg_count = 0;
    c.trans_count = 0;
    switch (tag) {
    case Element_Line:
        LineSeg line = Element_Line_read(ref);
        c.bbox.xy = min(line.p0, line.p1);
        c.bbox.zw = max(line.p0, line.p1);
        c.pathseg_count = 1;
        break;
    case Element_Quad:
        QuadSeg quad = Element_Quad_read(ref);
        c.bbox.xy = min(min(quad.p0, quad.p1), quad.p2);
        c.bbox.zw = max(max(quad.p0, quad.p1), quad.p2);
        c.pathseg_count = 1;
        break;
    case Element_Cubic:
        CubicSeg cubic = Element_Cubic_read(ref);
        c.bbox.xy = min(min(cubic.p0, cubic.p1), min(cubic.p2, cubic.p3));
        c.bbox.zw = max(max(cubic.p0, cubic.p1), max(cubic.p2, cubic.p3));
        c.pathseg_count = 1;
        break;
    case Element_FillColor:
    case Element_FillImage:
    case Element_BeginClip:
        c.flags = FLAG_RESET_BBOX;
        c.path_count = 1;
        break;
    case Element_EndClip:
        c.path_count = 1;
        break;
    case Element_SetLineWidth:
        SetLineWidth lw = Element_SetLineWidth_read(ref);
        c.linewidth = lw.width;
        c.flags = FLAG_SET_LINEWIDTH;
        break;
    case Element_Transform:
        Transform t = Element_Transform_read(ref);
        c.mat = t.mat;
        c.translate = t.translate;
        c.trans_count = 1;
        break;
    case Element_SetFillMode:
        SetFillMode fm = Element_SetFillMode_read(ref);
        c.flags = FLAG_SET_FILL_MODE | (fm.fill_mode << LG_FILL_MODE);
        break;
    }
    return c;
}

// Get the bounding box of a circle transformed by the matrix into an ellipse.
vec2 get_linewidth(State st) {
    // See https://www.iquilezles.org/www/articles/ellipses/ellipses.htm
    return 0.5 * st.linewidth * vec2(length(st.mat.xz), length(st.mat.yw));
}

shared State sh_state[WG_SIZE];

shared uint sh_part_ix;
shared State sh_prefix;

void main() {
    State th_state[N_ROWS];
    // Determine partition to process by atomic counter (described in Section
    // 4.4 of prefix sum paper).
    if (gl_LocalInvocationID.x == 0) {
        sh_part_ix = atomicAdd(part_counter, 1);
    }
    barrier();
    uint part_ix = sh_part_ix;

    uint ix = part_ix * PARTITION_SIZE + gl_LocalInvocationID.x * N_ROWS;
    ElementRef ref = ElementRef(ix * Element_size);

    th_state[0] = map_element(ref);
    for (uint i = 1; i < N_ROWS; i++) {
        // discussion question: would it be faster to load using more coherent patterns
        // into thread memory? This is kinda strided.
        th_state[i] = combine_state(th_state[i - 1], map_element(Element_index(ref, i)));
    }
    State agg = th_state[N_ROWS - 1];
    sh_state[gl_LocalInvocationID.x] = agg;
    for (uint i = 0; i < LG_WG_SIZE; i++) {
        barrier();
        if (gl_LocalInvocationID.x >= (1 << i)) {
            State other = sh_state[gl_LocalInvocationID.x - (1 << i)];
            agg = combine_state(other, agg);
        }
        barrier();
        sh_state[gl_LocalInvocationID.x] = agg;
    }

    State exclusive;
    exclusive.bbox = vec4(0.0, 0.0, 0.0, 0.0);
    exclusive.mat = vec4(1.0, 0.0, 0.0, 1.0);
    exclusive.translate = vec2(0.0, 0.0);
    exclusive.linewidth = 1.0; //TODO should be 0.0
    exclusive.flags = 0;
    exclusive.path_count = 0;
    exclusive.pathseg_count = 0;
    exclusive.trans_count = 0;

    // Publish aggregate for this partition
    if (gl_LocalInvocationID.x == WG_SIZE - 1) {
        // Note: with memory model, we'd want to generate the atomic store version of this.
        State_write(state_aggregate_ref(part_ix), agg);
    }
    memoryBarrierBuffer();
    if (gl_LocalInvocationID.x == WG_SIZE - 1) {
        uint flag = FLAG_AGGREGATE_READY;
        if (part_ix == 0) {
            State_write(state_prefix_ref(part_ix), agg);
            flag = FLAG_PREFIX_READY;
        }
        state[state_flag_index(part_ix)] = flag;
        if (part_ix != 0) {
            // step 4 of paper: decoupled lookback
            uint look_back_ix = part_ix - 1;

            State their_agg;
            uint their_ix = 0;
            while (true) {
                flag = state[state_flag_index(look_back_ix)];
                if (flag == FLAG_PREFIX_READY) {
                    State their_prefix = State_read(state_prefix_ref(look_back_ix));
                    exclusive = combine_state(their_prefix, exclusive);
                    break;
                } else if (flag == FLAG_AGGREGATE_READY) {
                    their_agg = State_read(state_aggregate_ref(look_back_ix));
                    exclusive = combine_state(their_agg, exclusive);
                    look_back_ix--;
                    their_ix = 0;
                    continue;
                }
                // else spin

                // Unfortunately there's no guarantee of forward progress of other
                // workgroups, so compute a bit of the aggregate before trying again.
                // In the worst case, spinning stops when the aggregate is complete.
                ElementRef ref = ElementRef((look_back_ix * PARTITION_SIZE + their_ix) * Element_size);
                State s = map_element(ref);
                if (their_ix == 0) {
                    their_agg = s;
                } else {
                    their_agg = combine_state(their_agg, s);
                }
                their_ix++;
                if (their_ix == PARTITION_SIZE) {
                    exclusive = combine_state(their_agg, exclusive);
                    if (look_back_ix == 0) {
                        break;
                    }
                    look_back_ix--;
                    their_ix = 0;
                }
            }

            // step 5 of paper: compute inclusive prefix
            State inclusive_prefix = combine_state(exclusive, agg);
            sh_prefix = exclusive;
            State_write(state_prefix_ref(part_ix), inclusive_prefix);
        }
    }
    memoryBarrierBuffer();
    if (gl_LocalInvocationID.x == WG_SIZE - 1 && part_ix != 0) {
        state[state_flag_index(part_ix)] = FLAG_PREFIX_READY;
    }
    barrier();
    if (part_ix != 0) {
        exclusive = sh_prefix;
    }

    State row = exclusive;
    if (gl_LocalInvocationID.x > 0) {
        State other = sh_state[gl_LocalInvocationID.x - 1];
        row = combine_state(row, other);
    }
    for (uint i = 0; i < N_ROWS; i++) {
        State st = combine_state(row, th_state[i]);

        // Here we read again from the original scene. There may be
        // gains to be had from stashing in shared memory or possibly
        // registers (though register pressure is an issue).
        ElementRef this_ref = Element_index(ref, i);
        ElementTag tag = Element_tag(this_ref);
        uint fill_mode = fill_mode_from_flags(st.flags >> LG_FILL_MODE);
        bool is_stroke = fill_mode == MODE_STROKE;
        switch (tag.tag) {
        case Element_Line:
            LineSeg line = Element_Line_read(this_ref);
            PathCubic path_cubic;
            path_cubic.p0 = line.p0;
            path_cubic.p1 = mix(line.p0, line.p1, 1.0 / 3.0);
            path_cubic.p2 = mix(line.p1, line.p0, 1.0 / 3.0);
            path_cubic.p3 = line.p1;
            path_cubic.path_ix = st.path_count;
            path_cubic.trans_ix = st.trans_count;
            if (is_stroke) {
                path_cubic.stroke = get_linewidth(st);
            } else {
                path_cubic.stroke = vec2(0.0);
            }
            PathSegRef path_out_ref = PathSegRef(conf.pathseg_alloc.offset + (st.pathseg_count - 1) * PathSeg_size);
            PathSeg_Cubic_write(conf.pathseg_alloc, path_out_ref, fill_mode, path_cubic);
            break;
        case Element_Quad:
            QuadSeg quad = Element_Quad_read(this_ref);
            path_cubic.p0 = quad.p0;
            path_cubic.p1 = mix(quad.p1, quad.p0, 1.0 / 3.0);
            path_cubic.p2 = mix(quad.p1, quad.p2, 1.0 / 3.0);
            path_cubic.p3 = quad.p2;
            path_cubic.path_ix = st.path_count;
            path_cubic.trans_ix = st.trans_count;
            if (is_stroke) {
                path_cubic.stroke = get_linewidth(st);
            } else {
                path_cubic.stroke = vec2(0.0);
            }
            path_out_ref = PathSegRef(conf.pathseg_alloc.offset + (st.pathseg_count - 1) * PathSeg_size);
            PathSeg_Cubic_write(conf.pathseg_alloc, path_out_ref, fill_mode, path_cubic);
            break;
        case Element_Cubic:
            CubicSeg cubic = Element_Cubic_read(this_ref);
            path_cubic.p0 = cubic.p0;
            path_cubic.p1 = cubic.p1;
            path_cubic.p2 = cubic.p2;
            path_cubic.p3 = cubic.p3;
            path_cubic.path_ix = st.path_count;
            path_cubic.trans_ix = st.trans_count;
            if (is_stroke) {
                path_cubic.stroke = get_linewidth(st);
            } else {
                path_cubic.stroke = vec2(0.0);
            }
            path_out_ref = PathSegRef(conf.pathseg_alloc.offset + (st.pathseg_count - 1) * PathSeg_size);
            PathSeg_Cubic_write(conf.pathseg_alloc, path_out_ref, fill_mode, path_cubic);
            break;
        case Element_FillColor:
            FillColor fill = Element_FillColor_read(this_ref);
            AnnoColor anno_fill;
            anno_fill.rgba_color = fill.rgba_color;
            if (is_stroke) {
                vec2 lw = get_linewidth(st);
                anno_fill.bbox = st.bbox + vec4(-lw, lw);
                anno_fill.linewidth = st.linewidth * sqrt(abs(st.mat.x * st.mat.w - st.mat.y * st.mat.z));
            } else {
                anno_fill.bbox = st.bbox;
                anno_fill.linewidth = 0.0;
            }
            AnnotatedRef out_ref = AnnotatedRef(conf.anno_alloc.offset + (st.path_count - 1) * Annotated_size);
            Annotated_Color_write(conf.anno_alloc, out_ref, fill_mode, anno_fill);
            break;
        case Element_FillImage:
            FillImage fill_img = Element_FillImage_read(this_ref);
            AnnoImage anno_img;
            anno_img.index = fill_img.index;
            anno_img.offset = fill_img.offset;
            if (is_stroke) {
                vec2 lw = get_linewidth(st);
                anno_img.bbox = st.bbox + vec4(-lw, lw);
                anno_img.linewidth = st.linewidth * sqrt(abs(st.mat.x * st.mat.w - st.mat.y * st.mat.z));
            } else {
                anno_img.bbox = st.bbox;
                anno_img.linewidth = 0.0;
            }
            out_ref = AnnotatedRef(conf.anno_alloc.offset + (st.path_count - 1) * Annotated_size);
            Annotated_Image_write(conf.anno_alloc, out_ref, fill_mode, anno_img);
            break;
        case Element_BeginClip:
            Clip begin_clip = Element_BeginClip_read(this_ref);
            AnnoBeginClip anno_begin_clip;
            // This is the absolute bbox, it's been transformed during encoding.
            anno_begin_clip.bbox = begin_clip.bbox;
            if (is_stroke) {
                vec2 lw = get_linewidth(st);
                anno_begin_clip.linewidth = st.linewidth * sqrt(abs(st.mat.x * st.mat.w - st.mat.y * st.mat.z));
            } else {
                anno_fill.linewidth = 0.0;
            }
            out_ref = AnnotatedRef(conf.anno_alloc.offset + (st.path_count - 1) * Annotated_size);
            Annotated_BeginClip_write(conf.anno_alloc, out_ref, fill_mode, anno_begin_clip);
            break;
        case Element_EndClip:
            Clip end_clip = Element_EndClip_read(this_ref);
            // This bbox is expected to be the same as the begin one.
            AnnoEndClip anno_end_clip = AnnoEndClip(end_clip.bbox);
            out_ref = AnnotatedRef(conf.anno_alloc.offset + (st.path_count - 1) * Annotated_size);
            Annotated_EndClip_write(conf.anno_alloc, out_ref, anno_end_clip);
            break;
        case Element_Transform:
            TransformSeg transform = TransformSeg(st.mat, st.translate);
            TransformSegRef trans_ref = TransformSegRef(conf.trans_alloc.offset + (st.trans_count - 1) * TransformSeg_size);
            TransformSeg_write(conf.trans_alloc, trans_ref, transform);
            break;
        }
    }
}