aboutsummaryrefslogtreecommitdiff
path: root/vendor/gioui.org/op/clip/clip.go
blob: 59554b53580881a215de0daf4157d9d6b8278bc1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
// SPDX-License-Identifier: Unlicense OR MIT

package clip

import (
	"encoding/binary"
	"image"
	"math"

	"gioui.org/f32"
	"gioui.org/internal/opconst"
	"gioui.org/internal/ops"
	"gioui.org/op"
)

// Path constructs a Op clip path described by lines and
// Bézier curves, where drawing outside the Path is discarded.
// The inside-ness of a pixel is determines by the even-odd rule,
// similar to the SVG rule of the same name.
//
// Path generates no garbage and can be used for dynamic paths; path
// data is stored directly in the Ops list supplied to Begin.
type Path struct {
	ops     *op.Ops
	contour int
	pen     f32.Point
	macro   op.MacroOp
	start   f32.Point
}

// Op sets the current clip to the intersection of
// the existing clip with this clip.
//
// If you need to reset the clip to its previous values after
// applying a Op, use op.StackOp.
type Op struct {
	call   op.CallOp
	bounds f32.Rectangle
}

func (p Op) Add(o *op.Ops) {
	p.call.Add(o)
	data := o.Write(opconst.TypeClipLen)
	data[0] = byte(opconst.TypeClip)
	bo := binary.LittleEndian
	bo.PutUint32(data[1:], math.Float32bits(p.bounds.Min.X))
	bo.PutUint32(data[5:], math.Float32bits(p.bounds.Min.Y))
	bo.PutUint32(data[9:], math.Float32bits(p.bounds.Max.X))
	bo.PutUint32(data[13:], math.Float32bits(p.bounds.Max.Y))
}

// Begin the path, storing the path data and final Op into ops.
func (p *Path) Begin(ops *op.Ops) {
	p.ops = ops
	p.macro = op.Record(ops)
	// Write the TypeAux opcode
	data := ops.Write(opconst.TypeAuxLen)
	data[0] = byte(opconst.TypeAux)
}

// MoveTo moves the pen to the given position.
func (p *Path) Move(to f32.Point) {
	to = to.Add(p.pen)
	p.end()
	p.pen = to
	p.start = to
}

// end completes the current contour.
func (p *Path) end() {
	if p.pen != p.start {
		p.lineTo(p.start)
	}
	p.contour++
}

// Line moves the pen by the amount specified by delta, recording a line.
func (p *Path) Line(delta f32.Point) {
	to := delta.Add(p.pen)
	p.lineTo(to)
}

func (p *Path) lineTo(to f32.Point) {
	// Model lines as degenerate quadratic Béziers.
	p.quadTo(to.Add(p.pen).Mul(.5), to)
}

// Quad records a quadratic Bézier from the pen to end
// with the control point ctrl.
func (p *Path) Quad(ctrl, to f32.Point) {
	ctrl = ctrl.Add(p.pen)
	to = to.Add(p.pen)
	p.quadTo(ctrl, to)
}

func (p *Path) quadTo(ctrl, to f32.Point) {
	data := p.ops.Write(ops.QuadSize + 4)
	bo := binary.LittleEndian
	bo.PutUint32(data[0:], uint32(p.contour))
	ops.EncodeQuad(data[4:], ops.Quad{
		From: p.pen,
		Ctrl: ctrl,
		To:   to,
	})
	p.pen = to
}

// Cube records a cubic Bézier from the pen through
// two control points ending in to.
func (p *Path) Cube(ctrl0, ctrl1, to f32.Point) {
	ctrl0 = ctrl0.Add(p.pen)
	ctrl1 = ctrl1.Add(p.pen)
	to = to.Add(p.pen)
	// Set the maximum distance proportionally to the longest side
	// of the bounding rectangle.
	hull := f32.Rectangle{
		Min: p.pen,
		Max: ctrl0,
	}.Canon().Add(ctrl1).Add(to)
	l := hull.Dx()
	if h := hull.Dy(); h > l {
		l = h
	}
	p.approxCubeTo(0, l*0.001, ctrl0, ctrl1, to)
}

// approxCube approximates a cubic Bézier by a series of quadratic
// curves.
func (p *Path) approxCubeTo(splits int, maxDist float32, ctrl0, ctrl1, to f32.Point) int {
	// The idea is from
	// https://caffeineowl.com/graphics/2d/vectorial/cubic2quad01.html
	// where a quadratic approximates a cubic by eliminating its t³ term
	// from its polynomial expression anchored at the starting point:
	//
	// P(t) = pen + 3t(ctrl0 - pen) + 3t²(ctrl1 - 2ctrl0 + pen) + t³(to - 3ctrl1 + 3ctrl0 - pen)
	//
	// The control point for the new quadratic Q1 that shares starting point, pen, with P is
	//
	// C1 = (3ctrl0 - pen)/2
	//
	// The reverse cubic anchored at the end point has the polynomial
	//
	// P'(t) = to + 3t(ctrl1 - to) + 3t²(ctrl0 - 2ctrl1 + to) + t³(pen - 3ctrl0 + 3ctrl1 - to)
	//
	// The corresponding quadratic Q2 that shares the end point, to, with P has control
	// point
	//
	// C2 = (3ctrl1 - to)/2
	//
	// The combined quadratic Bézier, Q, shares both start and end points with its cubic
	// and use the midpoint between the two curves Q1 and Q2 as control point:
	//
	// C = (3ctrl0 - pen + 3ctrl1 - to)/4
	c := ctrl0.Mul(3).Sub(p.pen).Add(ctrl1.Mul(3)).Sub(to).Mul(1.0 / 4.0)
	const maxSplits = 32
	if splits >= maxSplits {
		p.quadTo(c, to)
		return splits
	}
	// The maximum distance between the cubic P and its approximation Q given t
	// can be shown to be
	//
	// d = sqrt(3)/36*|to - 3ctrl1 + 3ctrl0 - pen|
	//
	// To save a square root, compare d² with the squared tolerance.
	v := to.Sub(ctrl1.Mul(3)).Add(ctrl0.Mul(3)).Sub(p.pen)
	d2 := (v.X*v.X + v.Y*v.Y) * 3 / (36 * 36)
	if d2 <= maxDist*maxDist {
		p.quadTo(c, to)
		return splits
	}
	// De Casteljau split the curve and approximate the halves.
	t := float32(0.5)
	c0 := p.pen.Add(ctrl0.Sub(p.pen).Mul(t))
	c1 := ctrl0.Add(ctrl1.Sub(ctrl0).Mul(t))
	c2 := ctrl1.Add(to.Sub(ctrl1).Mul(t))
	c01 := c0.Add(c1.Sub(c0).Mul(t))
	c12 := c1.Add(c2.Sub(c1).Mul(t))
	c0112 := c01.Add(c12.Sub(c01).Mul(t))
	splits++
	splits = p.approxCubeTo(splits, maxDist, c0, c01, c0112)
	splits = p.approxCubeTo(splits, maxDist, c12, c2, to)
	return splits
}

// End the path and return a clip operation that represents it.
func (p *Path) End() Op {
	p.end()
	c := p.macro.Stop()
	return Op{
		call: c,
	}
}

// Rect represents the clip area of a rectangle with rounded
// corners.The origin is in the upper left
// corner.
// Specify a square with corner radii equal to half the square size to
// construct a circular clip area.
type Rect struct {
	Rect f32.Rectangle
	// The corner radii.
	SE, SW, NW, NE float32
}

// Op returns the Op for the rectangle.
func (rr Rect) Op(ops *op.Ops) Op {
	r := rr.Rect
	// Optimize for the common pixel aligned rectangle with no
	// corner rounding.
	if rr.SE == 0 && rr.SW == 0 && rr.NW == 0 && rr.NE == 0 {
		ri := image.Rectangle{
			Min: image.Point{X: int(r.Min.X), Y: int(r.Min.Y)},
			Max: image.Point{X: int(r.Max.X), Y: int(r.Max.Y)},
		}
		// Optimize pixel-aligned rectangles to just its bounds.
		if r == fRect(ri) {
			return Op{bounds: r}
		}
	}
	return roundRect(ops, r, rr.SE, rr.SW, rr.NW, rr.NE)
}

// Add is a shorthand for Op(ops).Add(ops).
func (rr Rect) Add(ops *op.Ops) {
	rr.Op(ops).Add(ops)
}

// roundRect returns the clip area of a rectangle with rounded
// corners defined by their radii.
func roundRect(ops *op.Ops, r f32.Rectangle, se, sw, nw, ne float32) Op {
	size := r.Size()
	// https://pomax.github.io/bezierinfo/#circles_cubic.
	w, h := float32(size.X), float32(size.Y)
	const c = 0.55228475 // 4*(sqrt(2)-1)/3
	var p Path
	p.Begin(ops)
	p.Move(r.Min)

	p.Move(f32.Point{X: w, Y: h - se})
	p.Cube(f32.Point{X: 0, Y: se * c}, f32.Point{X: -se + se*c, Y: se}, f32.Point{X: -se, Y: se}) // SE
	p.Line(f32.Point{X: sw - w + se, Y: 0})
	p.Cube(f32.Point{X: -sw * c, Y: 0}, f32.Point{X: -sw, Y: -sw + sw*c}, f32.Point{X: -sw, Y: -sw}) // SW
	p.Line(f32.Point{X: 0, Y: nw - h + sw})
	p.Cube(f32.Point{X: 0, Y: -nw * c}, f32.Point{X: nw - nw*c, Y: -nw}, f32.Point{X: nw, Y: -nw}) // NW
	p.Line(f32.Point{X: w - ne - nw, Y: 0})
	p.Cube(f32.Point{X: ne * c, Y: 0}, f32.Point{X: ne, Y: ne - ne*c}, f32.Point{X: ne, Y: ne}) // NE
	return p.End()
}

// fRect converts a rectangle to a f32.Rectangle.
func fRect(r image.Rectangle) f32.Rectangle {
	return f32.Rectangle{
		Min: fPt(r.Min), Max: fPt(r.Max),
	}
}

// fPt converts an point to a f32.Point.
func fPt(p image.Point) f32.Point {
	return f32.Point{
		X: float32(p.X), Y: float32(p.Y),
	}
}