aboutsummaryrefslogtreecommitdiff
path: root/vendor/gioui.org/shader/piet/kernel4.comp
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/gioui.org/shader/piet/kernel4.comp')
-rw-r--r--vendor/gioui.org/shader/piet/kernel4.comp248
1 files changed, 248 insertions, 0 deletions
diff --git a/vendor/gioui.org/shader/piet/kernel4.comp b/vendor/gioui.org/shader/piet/kernel4.comp
new file mode 100644
index 0000000..3f8ef65
--- /dev/null
+++ b/vendor/gioui.org/shader/piet/kernel4.comp
@@ -0,0 +1,248 @@
+// SPDX-License-Identifier: Apache-2.0 OR MIT OR Unlicense
+
+// This is "kernel 4" in a 4-kernel pipeline. It renders the commands
+// in the per-tile command list to an image.
+
+// Right now, this kernel stores the image in a buffer, but a better
+// plan is to use a texture. This is because of limited support.
+
+#version 450
+#extension GL_GOOGLE_include_directive : enable
+#ifdef ENABLE_IMAGE_INDICES
+#extension GL_EXT_nonuniform_qualifier : enable
+#endif
+
+#include "mem.h"
+#include "setup.h"
+
+#define CHUNK_X 2
+#define CHUNK_Y 4
+#define CHUNK CHUNK_X * CHUNK_Y
+#define CHUNK_DX (TILE_WIDTH_PX / CHUNK_X)
+#define CHUNK_DY (TILE_HEIGHT_PX / CHUNK_Y)
+layout(local_size_x = CHUNK_DX, local_size_y = CHUNK_DY) in;
+
+layout(set = 0, binding = 1) restrict readonly buffer ConfigBuf {
+ Config conf;
+};
+
+layout(rgba8, set = 0, binding = 2) uniform restrict writeonly image2D image;
+
+#ifdef ENABLE_IMAGE_INDICES
+layout(rgba8, set = 0, binding = 3) uniform restrict readonly image2D images[];
+#else
+layout(rgba8, set = 0, binding = 3) uniform restrict readonly image2D images;
+#endif
+
+#include "ptcl.h"
+#include "tile.h"
+
+mediump vec3 tosRGB(mediump vec3 rgb) {
+ bvec3 cutoff = greaterThanEqual(rgb, vec3(0.0031308));
+ mediump vec3 below = vec3(12.92)*rgb;
+ mediump vec3 above = vec3(1.055)*pow(rgb, vec3(0.41666)) - vec3(0.055);
+ return mix(below, above, cutoff);
+}
+
+mediump vec3 fromsRGB(mediump vec3 srgb) {
+ // Formula from EXT_sRGB.
+ bvec3 cutoff = greaterThanEqual(srgb, vec3(0.04045));
+ mediump vec3 below = srgb/vec3(12.92);
+ mediump vec3 above = pow((srgb + vec3(0.055))/vec3(1.055), vec3(2.4));
+ return mix(below, above, cutoff);
+}
+
+// unpacksRGB unpacks a color in the sRGB color space to a vec4 in the linear color
+// space.
+mediump vec4 unpacksRGB(uint srgba) {
+ mediump vec4 color = unpackUnorm4x8(srgba).wzyx;
+ return vec4(fromsRGB(color.rgb), color.a);
+}
+
+// packsRGB packs a color in the linear color space into its 8-bit sRGB equivalent.
+uint packsRGB(mediump vec4 rgba) {
+ rgba = vec4(tosRGB(rgba.rgb), rgba.a);
+ return packUnorm4x8(rgba.wzyx);
+}
+
+uvec2 chunk_offset(uint i) {
+ return uvec2(i % CHUNK_X * CHUNK_DX, i / CHUNK_X * CHUNK_DY);
+}
+
+mediump vec4[CHUNK] fillImage(uvec2 xy, CmdImage cmd_img) {
+ mediump vec4 rgba[CHUNK];
+ for (uint i = 0; i < CHUNK; i++) {
+ ivec2 uv = ivec2(xy + chunk_offset(i)) + cmd_img.offset;
+ mediump vec4 fg_rgba;
+#ifdef ENABLE_IMAGE_INDICES
+ fg_rgba = imageLoad(images[cmd_img.index], uv);
+#else
+ fg_rgba = imageLoad(images, uv);
+#endif
+ fg_rgba.rgb = fromsRGB(fg_rgba.rgb);
+ rgba[i] = fg_rgba;
+ }
+ return rgba;
+}
+
+void main() {
+ uint tile_ix = gl_WorkGroupID.y * conf.width_in_tiles + gl_WorkGroupID.x;
+ Alloc cmd_alloc = slice_mem(conf.ptcl_alloc, tile_ix * PTCL_INITIAL_ALLOC, PTCL_INITIAL_ALLOC);
+ CmdRef cmd_ref = CmdRef(cmd_alloc.offset);
+
+ // Read scrach space allocation, written first in the command list.
+ Alloc scratch_alloc = alloc_read(cmd_alloc, cmd_ref.offset);
+ cmd_ref.offset += Alloc_size;
+
+ uvec2 xy_uint = uvec2(gl_LocalInvocationID.x + TILE_WIDTH_PX * gl_WorkGroupID.x, gl_LocalInvocationID.y + TILE_HEIGHT_PX * gl_WorkGroupID.y);
+ vec2 xy = vec2(xy_uint);
+ mediump vec4 rgba[CHUNK];
+ for (uint i = 0; i < CHUNK; i++) {
+ rgba[i] = vec4(0.0);
+ // TODO: remove this debug image support when the actual image method is plumbed.
+#ifdef DEBUG_IMAGES
+#ifdef ENABLE_IMAGE_INDICES
+ if (xy_uint.x < 1024 && xy_uint.y < 1024) {
+ rgba[i] = imageLoad(images[gl_WorkGroupID.x / 64], ivec2(xy_uint + chunk_offset(i))/4);
+ }
+#else
+ if (xy_uint.x < 1024 && xy_uint.y < 1024) {
+ rgb[i] = imageLoad(images[0], ivec2(xy_uint + chunk_offset(i))/4).rgb;
+ }
+#endif
+#endif
+ }
+
+ mediump float area[CHUNK];
+ uint clip_depth = 0;
+ bool mem_ok = mem_error == NO_ERROR;
+ while (mem_ok) {
+ uint tag = Cmd_tag(cmd_alloc, cmd_ref).tag;
+ if (tag == Cmd_End) {
+ break;
+ }
+ switch (tag) {
+ case Cmd_Stroke:
+ // Calculate distance field from all the line segments in this tile.
+ CmdStroke stroke = Cmd_Stroke_read(cmd_alloc, cmd_ref);
+ mediump float df[CHUNK];
+ for (uint k = 0; k < CHUNK; k++) df[k] = 1e9;
+ TileSegRef tile_seg_ref = TileSegRef(stroke.tile_ref);
+ do {
+ TileSeg seg = TileSeg_read(new_alloc(tile_seg_ref.offset, TileSeg_size, mem_ok), tile_seg_ref);
+ vec2 line_vec = seg.vector;
+ for (uint k = 0; k < CHUNK; k++) {
+ vec2 dpos = xy + vec2(0.5, 0.5) - seg.origin;
+ dpos += vec2(chunk_offset(k));
+ float t = clamp(dot(line_vec, dpos) / dot(line_vec, line_vec), 0.0, 1.0);
+ df[k] = min(df[k], length(line_vec * t - dpos));
+ }
+ tile_seg_ref = seg.next;
+ } while (tile_seg_ref.offset != 0);
+ for (uint k = 0; k < CHUNK; k++) {
+ area[k] = clamp(stroke.half_width + 0.5 - df[k], 0.0, 1.0);
+ }
+ cmd_ref.offset += 4 + CmdStroke_size;
+ break;
+ case Cmd_Fill:
+ CmdFill fill = Cmd_Fill_read(cmd_alloc, cmd_ref);
+ for (uint k = 0; k < CHUNK; k++) area[k] = float(fill.backdrop);
+ tile_seg_ref = TileSegRef(fill.tile_ref);
+ // Calculate coverage based on backdrop + coverage of each line segment
+ do {
+ TileSeg seg = TileSeg_read(new_alloc(tile_seg_ref.offset, TileSeg_size, mem_ok), tile_seg_ref);
+ for (uint k = 0; k < CHUNK; k++) {
+ vec2 my_xy = xy + vec2(chunk_offset(k));
+ vec2 start = seg.origin - my_xy;
+ vec2 end = start + seg.vector;
+ vec2 window = clamp(vec2(start.y, end.y), 0.0, 1.0);
+ if (window.x != window.y) {
+ vec2 t = (window - start.y) / seg.vector.y;
+ vec2 xs = vec2(mix(start.x, end.x, t.x), mix(start.x, end.x, t.y));
+ float xmin = min(min(xs.x, xs.y), 1.0) - 1e-6;
+ float xmax = max(xs.x, xs.y);
+ float b = min(xmax, 1.0);
+ float c = max(b, 0.0);
+ float d = max(xmin, 0.0);
+ float a = (b + 0.5 * (d * d - c * c) - xmin) / (xmax - xmin);
+ area[k] += a * (window.x - window.y);
+ }
+ area[k] += sign(seg.vector.x) * clamp(my_xy.y - seg.y_edge + 1.0, 0.0, 1.0);
+ }
+ tile_seg_ref = seg.next;
+ } while (tile_seg_ref.offset != 0);
+ for (uint k = 0; k < CHUNK; k++) {
+ area[k] = min(abs(area[k]), 1.0);
+ }
+ cmd_ref.offset += 4 + CmdFill_size;
+ break;
+ case Cmd_Solid:
+ for (uint k = 0; k < CHUNK; k++) {
+ area[k] = 1.0;
+ }
+ cmd_ref.offset += 4;
+ break;
+ case Cmd_Alpha:
+ CmdAlpha alpha = Cmd_Alpha_read(cmd_alloc, cmd_ref);
+ for (uint k = 0; k < CHUNK; k++) {
+ area[k] = alpha.alpha;
+ }
+ cmd_ref.offset += 4 + CmdAlpha_size;
+ break;
+ case Cmd_Color:
+ CmdColor color = Cmd_Color_read(cmd_alloc, cmd_ref);
+ mediump vec4 fg = unpacksRGB(color.rgba_color);
+ for (uint k = 0; k < CHUNK; k++) {
+ mediump vec4 fg_k = fg * area[k];
+ rgba[k] = rgba[k] * (1.0 - fg_k.a) + fg_k;
+ }
+ cmd_ref.offset += 4 + CmdColor_size;
+ break;
+ case Cmd_Image:
+ CmdImage fill_img = Cmd_Image_read(cmd_alloc, cmd_ref);
+ mediump vec4 img[CHUNK] = fillImage(xy_uint, fill_img);
+ for (uint k = 0; k < CHUNK; k++) {
+ mediump vec4 fg_k = img[k] * area[k];
+ rgba[k] = rgba[k] * (1.0 - fg_k.a) + fg_k;
+ }
+ cmd_ref.offset += 4 + CmdImage_size;
+ break;
+ case Cmd_BeginClip:
+ uint base_ix = (scratch_alloc.offset >> 2) + CLIP_STATE_SIZE * (clip_depth * TILE_WIDTH_PX * TILE_HEIGHT_PX +
+ gl_LocalInvocationID.x + TILE_WIDTH_PX * gl_LocalInvocationID.y);
+ for (uint k = 0; k < CHUNK; k++) {
+ uvec2 offset = chunk_offset(k);
+ uint srgb = packsRGB(vec4(rgba[k]));
+ mediump float alpha = clamp(abs(area[k]), 0.0, 1.0);
+ write_mem(scratch_alloc, base_ix + 0 + CLIP_STATE_SIZE * (offset.x + offset.y * TILE_WIDTH_PX), srgb);
+ write_mem(scratch_alloc, base_ix + 1 + CLIP_STATE_SIZE * (offset.x + offset.y * TILE_WIDTH_PX), floatBitsToUint(alpha));
+ rgba[k] = vec4(0.0);
+ }
+ clip_depth++;
+ cmd_ref.offset += 4;
+ break;
+ case Cmd_EndClip:
+ clip_depth--;
+ base_ix = (scratch_alloc.offset >> 2) + CLIP_STATE_SIZE * (clip_depth * TILE_WIDTH_PX * TILE_HEIGHT_PX +
+ gl_LocalInvocationID.x + TILE_WIDTH_PX * gl_LocalInvocationID.y);
+ for (uint k = 0; k < CHUNK; k++) {
+ uvec2 offset = chunk_offset(k);
+ uint srgb = read_mem(scratch_alloc, base_ix + 0 + CLIP_STATE_SIZE * (offset.x + offset.y * TILE_WIDTH_PX));
+ uint alpha = read_mem(scratch_alloc, base_ix + 1 + CLIP_STATE_SIZE * (offset.x + offset.y * TILE_WIDTH_PX));
+ mediump vec4 bg = unpacksRGB(srgb);
+ mediump vec4 fg = rgba[k] * area[k] * uintBitsToFloat(alpha);
+ rgba[k] = bg * (1.0 - fg.a) + fg;
+ }
+ cmd_ref.offset += 4;
+ break;
+ case Cmd_Jump:
+ cmd_ref = CmdRef(Cmd_Jump_read(cmd_alloc, cmd_ref).new_ref);
+ cmd_alloc.offset = cmd_ref.offset;
+ break;
+ }
+ }
+
+ for (uint i = 0; i < CHUNK; i++) {
+ imageStore(image, ivec2(xy_uint + chunk_offset(i)), vec4(tosRGB(rgba[i].rgb), rgba[i].a));
+ }
+}