aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/symtab.go
blob: bfe415360edae7d7bf709b71d4813f168994b4d0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package runtime

import (
	"internal/abi"
	"internal/goarch"
	"internal/runtime/atomic"
	"runtime/internal/sys"
	"unsafe"
)

// Frames may be used to get function/file/line information for a
// slice of PC values returned by [Callers].
type Frames struct {
	// callers is a slice of PCs that have not yet been expanded to frames.
	callers []uintptr

	// nextPC is a next PC to expand ahead of processing callers.
	nextPC uintptr

	// frames is a slice of Frames that have yet to be returned.
	frames     []Frame
	frameStore [2]Frame
}

// Frame is the information returned by [Frames] for each call frame.
type Frame struct {
	// PC is the program counter for the location in this frame.
	// For a frame that calls another frame, this will be the
	// program counter of a call instruction. Because of inlining,
	// multiple frames may have the same PC value, but different
	// symbolic information.
	PC uintptr

	// Func is the Func value of this call frame. This may be nil
	// for non-Go code or fully inlined functions.
	Func *Func

	// Function is the package path-qualified function name of
	// this call frame. If non-empty, this string uniquely
	// identifies a single function in the program.
	// This may be the empty string if not known.
	// If Func is not nil then Function == Func.Name().
	Function string

	// File and Line are the file name and line number of the
	// location in this frame. For non-leaf frames, this will be
	// the location of a call. These may be the empty string and
	// zero, respectively, if not known.
	File string
	Line int

	// startLine is the line number of the beginning of the function in
	// this frame. Specifically, it is the line number of the func keyword
	// for Go functions. Note that //line directives can change the
	// filename and/or line number arbitrarily within a function, meaning
	// that the Line - startLine offset is not always meaningful.
	//
	// This may be zero if not known.
	startLine int

	// Entry point program counter for the function; may be zero
	// if not known. If Func is not nil then Entry ==
	// Func.Entry().
	Entry uintptr

	// The runtime's internal view of the function. This field
	// is set (funcInfo.valid() returns true) only for Go functions,
	// not for C functions.
	funcInfo funcInfo
}

// CallersFrames takes a slice of PC values returned by [Callers] and
// prepares to return function/file/line information.
// Do not change the slice until you are done with the [Frames].
func CallersFrames(callers []uintptr) *Frames {
	f := &Frames{callers: callers}
	f.frames = f.frameStore[:0]
	return f
}

// Next returns a [Frame] representing the next call frame in the slice
// of PC values. If it has already returned all call frames, Next
// returns a zero [Frame].
//
// The more result indicates whether the next call to Next will return
// a valid [Frame]. It does not necessarily indicate whether this call
// returned one.
//
// See the [Frames] example for idiomatic usage.
func (ci *Frames) Next() (frame Frame, more bool) {
	for len(ci.frames) < 2 {
		// Find the next frame.
		// We need to look for 2 frames so we know what
		// to return for the "more" result.
		if len(ci.callers) == 0 {
			break
		}
		var pc uintptr
		if ci.nextPC != 0 {
			pc, ci.nextPC = ci.nextPC, 0
		} else {
			pc, ci.callers = ci.callers[0], ci.callers[1:]
		}
		funcInfo := findfunc(pc)
		if !funcInfo.valid() {
			if cgoSymbolizer != nil {
				// Pre-expand cgo frames. We could do this
				// incrementally, too, but there's no way to
				// avoid allocation in this case anyway.
				ci.frames = append(ci.frames, expandCgoFrames(pc)...)
			}
			continue
		}
		f := funcInfo._Func()
		entry := f.Entry()
		if pc > entry {
			// We store the pc of the start of the instruction following
			// the instruction in question (the call or the inline mark).
			// This is done for historical reasons, and to make FuncForPC
			// work correctly for entries in the result of runtime.Callers.
			pc--
		}
		// It's important that interpret pc non-strictly as cgoTraceback may
		// have added bogus PCs with a valid funcInfo but invalid PCDATA.
		u, uf := newInlineUnwinder(funcInfo, pc)
		sf := u.srcFunc(uf)
		if u.isInlined(uf) {
			// Note: entry is not modified. It always refers to a real frame, not an inlined one.
			// File/line from funcline1 below are already correct.
			f = nil

			// When CallersFrame is invoked using the PC list returned by Callers,
			// the PC list includes virtual PCs corresponding to each outer frame
			// around an innermost real inlined PC.
			// We also want to support code passing in a PC list extracted from a
			// stack trace, and there only the real PCs are printed, not the virtual ones.
			// So check to see if the implied virtual PC for this PC (obtained from the
			// unwinder itself) is the next PC in ci.callers. If not, insert it.
			// The +1 here correspond to the pc-- above: the output of Callers
			// and therefore the input to CallersFrames is return PCs from the stack;
			// The pc-- backs up into the CALL instruction (not the first byte of the CALL
			// instruction, but good enough to find it nonetheless).
			// There are no cycles in implied virtual PCs (some number of frames were
			// inlined, but that number is finite), so this unpacking cannot cause an infinite loop.
			for unext := u.next(uf); unext.valid() && len(ci.callers) > 0 && ci.callers[0] != unext.pc+1; unext = u.next(unext) {
				snext := u.srcFunc(unext)
				if snext.funcID == abi.FuncIDWrapper && elideWrapperCalling(sf.funcID) {
					// Skip, because tracebackPCs (inside runtime.Callers) would too.
					continue
				}
				ci.nextPC = unext.pc + 1
				break
			}
		}
		ci.frames = append(ci.frames, Frame{
			PC:        pc,
			Func:      f,
			Function:  funcNameForPrint(sf.name()),
			Entry:     entry,
			startLine: int(sf.startLine),
			funcInfo:  funcInfo,
			// Note: File,Line set below
		})
	}

	// Pop one frame from the frame list. Keep the rest.
	// Avoid allocation in the common case, which is 1 or 2 frames.
	switch len(ci.frames) {
	case 0: // In the rare case when there are no frames at all, we return Frame{}.
		return
	case 1:
		frame = ci.frames[0]
		ci.frames = ci.frameStore[:0]
	case 2:
		frame = ci.frames[0]
		ci.frameStore[0] = ci.frames[1]
		ci.frames = ci.frameStore[:1]
	default:
		frame = ci.frames[0]
		ci.frames = ci.frames[1:]
	}
	more = len(ci.frames) > 0
	if frame.funcInfo.valid() {
		// Compute file/line just before we need to return it,
		// as it can be expensive. This avoids computing file/line
		// for the Frame we find but don't return. See issue 32093.
		file, line := funcline1(frame.funcInfo, frame.PC, false)
		frame.File, frame.Line = file, int(line)
	}
	return
}

// runtime_FrameStartLine returns the start line of the function in a Frame.
//
//go:linkname runtime_FrameStartLine runtime/pprof.runtime_FrameStartLine
func runtime_FrameStartLine(f *Frame) int {
	return f.startLine
}

// runtime_FrameSymbolName returns the full symbol name of the function in a Frame.
// For generic functions this differs from f.Function in that this doesn't replace
// the shape name to "...".
//
//go:linkname runtime_FrameSymbolName runtime/pprof.runtime_FrameSymbolName
func runtime_FrameSymbolName(f *Frame) string {
	if !f.funcInfo.valid() {
		return f.Function
	}
	u, uf := newInlineUnwinder(f.funcInfo, f.PC)
	sf := u.srcFunc(uf)
	return sf.name()
}

// runtime_expandFinalInlineFrame expands the final pc in stk to include all
// "callers" if pc is inline.
//
//go:linkname runtime_expandFinalInlineFrame runtime/pprof.runtime_expandFinalInlineFrame
func runtime_expandFinalInlineFrame(stk []uintptr) []uintptr {
	// TODO: It would be more efficient to report only physical PCs to pprof and
	// just expand the whole stack.
	if len(stk) == 0 {
		return stk
	}
	pc := stk[len(stk)-1]
	tracepc := pc - 1

	f := findfunc(tracepc)
	if !f.valid() {
		// Not a Go function.
		return stk
	}

	u, uf := newInlineUnwinder(f, tracepc)
	if !u.isInlined(uf) {
		// Nothing inline at tracepc.
		return stk
	}

	// Treat the previous func as normal. We haven't actually checked, but
	// since this pc was included in the stack, we know it shouldn't be
	// elided.
	calleeID := abi.FuncIDNormal

	// Remove pc from stk; we'll re-add it below.
	stk = stk[:len(stk)-1]

	for ; uf.valid(); uf = u.next(uf) {
		funcID := u.srcFunc(uf).funcID
		if funcID == abi.FuncIDWrapper && elideWrapperCalling(calleeID) {
			// ignore wrappers
		} else {
			stk = append(stk, uf.pc+1)
		}
		calleeID = funcID
	}

	return stk
}

// expandCgoFrames expands frame information for pc, known to be
// a non-Go function, using the cgoSymbolizer hook. expandCgoFrames
// returns nil if pc could not be expanded.
func expandCgoFrames(pc uintptr) []Frame {
	arg := cgoSymbolizerArg{pc: pc}
	callCgoSymbolizer(&arg)

	if arg.file == nil && arg.funcName == nil {
		// No useful information from symbolizer.
		return nil
	}

	var frames []Frame
	for {
		frames = append(frames, Frame{
			PC:       pc,
			Func:     nil,
			Function: gostring(arg.funcName),
			File:     gostring(arg.file),
			Line:     int(arg.lineno),
			Entry:    arg.entry,
			// funcInfo is zero, which implies !funcInfo.valid().
			// That ensures that we use the File/Line info given here.
		})
		if arg.more == 0 {
			break
		}
		callCgoSymbolizer(&arg)
	}

	// No more frames for this PC. Tell the symbolizer we are done.
	// We don't try to maintain a single cgoSymbolizerArg for the
	// whole use of Frames, because there would be no good way to tell
	// the symbolizer when we are done.
	arg.pc = 0
	callCgoSymbolizer(&arg)

	return frames
}

// NOTE: Func does not expose the actual unexported fields, because we return *Func
// values to users, and we want to keep them from being able to overwrite the data
// with (say) *f = Func{}.
// All code operating on a *Func must call raw() to get the *_func
// or funcInfo() to get the funcInfo instead.

// A Func represents a Go function in the running binary.
type Func struct {
	opaque struct{} // unexported field to disallow conversions
}

func (f *Func) raw() *_func {
	return (*_func)(unsafe.Pointer(f))
}

func (f *Func) funcInfo() funcInfo {
	return f.raw().funcInfo()
}

func (f *_func) funcInfo() funcInfo {
	// Find the module containing fn. fn is located in the pclntable.
	// The unsafe.Pointer to uintptr conversions and arithmetic
	// are safe because we are working with module addresses.
	ptr := uintptr(unsafe.Pointer(f))
	var mod *moduledata
	for datap := &firstmoduledata; datap != nil; datap = datap.next {
		if len(datap.pclntable) == 0 {
			continue
		}
		base := uintptr(unsafe.Pointer(&datap.pclntable[0]))
		if base <= ptr && ptr < base+uintptr(len(datap.pclntable)) {
			mod = datap
			break
		}
	}
	return funcInfo{f, mod}
}

// pcHeader holds data used by the pclntab lookups.
type pcHeader struct {
	magic          uint32  // 0xFFFFFFF1
	pad1, pad2     uint8   // 0,0
	minLC          uint8   // min instruction size
	ptrSize        uint8   // size of a ptr in bytes
	nfunc          int     // number of functions in the module
	nfiles         uint    // number of entries in the file tab
	textStart      uintptr // base for function entry PC offsets in this module, equal to moduledata.text
	funcnameOffset uintptr // offset to the funcnametab variable from pcHeader
	cuOffset       uintptr // offset to the cutab variable from pcHeader
	filetabOffset  uintptr // offset to the filetab variable from pcHeader
	pctabOffset    uintptr // offset to the pctab variable from pcHeader
	pclnOffset     uintptr // offset to the pclntab variable from pcHeader
}

// moduledata records information about the layout of the executable
// image. It is written by the linker. Any changes here must be
// matched changes to the code in cmd/link/internal/ld/symtab.go:symtab.
// moduledata is stored in statically allocated non-pointer memory;
// none of the pointers here are visible to the garbage collector.
type moduledata struct {
	sys.NotInHeap // Only in static data

	pcHeader     *pcHeader
	funcnametab  []byte
	cutab        []uint32
	filetab      []byte
	pctab        []byte
	pclntable    []byte
	ftab         []functab
	findfunctab  uintptr
	minpc, maxpc uintptr

	text, etext           uintptr
	noptrdata, enoptrdata uintptr
	data, edata           uintptr
	bss, ebss             uintptr
	noptrbss, enoptrbss   uintptr
	covctrs, ecovctrs     uintptr
	end, gcdata, gcbss    uintptr
	types, etypes         uintptr
	rodata                uintptr
	gofunc                uintptr // go.func.*

	textsectmap []textsect
	typelinks   []int32 // offsets from types
	itablinks   []*itab

	ptab []ptabEntry

	pluginpath string
	pkghashes  []modulehash

	// This slice records the initializing tasks that need to be
	// done to start up the program. It is built by the linker.
	inittasks []*initTask

	modulename   string
	modulehashes []modulehash

	hasmain uint8 // 1 if module contains the main function, 0 otherwise

	gcdatamask, gcbssmask bitvector

	typemap map[typeOff]*_type // offset to *_rtype in previous module

	bad bool // module failed to load and should be ignored

	next *moduledata
}

// A modulehash is used to compare the ABI of a new module or a
// package in a new module with the loaded program.
//
// For each shared library a module links against, the linker creates an entry in the
// moduledata.modulehashes slice containing the name of the module, the abi hash seen
// at link time and a pointer to the runtime abi hash. These are checked in
// moduledataverify1 below.
//
// For each loaded plugin, the pkghashes slice has a modulehash of the
// newly loaded package that can be used to check the plugin's version of
// a package against any previously loaded version of the package.
// This is done in plugin.lastmoduleinit.
type modulehash struct {
	modulename   string
	linktimehash string
	runtimehash  *string
}

// pinnedTypemaps are the map[typeOff]*_type from the moduledata objects.
//
// These typemap objects are allocated at run time on the heap, but the
// only direct reference to them is in the moduledata, created by the
// linker and marked SNOPTRDATA so it is ignored by the GC.
//
// To make sure the map isn't collected, we keep a second reference here.
var pinnedTypemaps []map[typeOff]*_type

var firstmoduledata moduledata  // linker symbol
var lastmoduledatap *moduledata // linker symbol
var modulesSlice *[]*moduledata // see activeModules

// activeModules returns a slice of active modules.
//
// A module is active once its gcdatamask and gcbssmask have been
// assembled and it is usable by the GC.
//
// This is nosplit/nowritebarrier because it is called by the
// cgo pointer checking code.
//
//go:nosplit
//go:nowritebarrier
func activeModules() []*moduledata {
	p := (*[]*moduledata)(atomic.Loadp(unsafe.Pointer(&modulesSlice)))
	if p == nil {
		return nil
	}
	return *p
}

// modulesinit creates the active modules slice out of all loaded modules.
//
// When a module is first loaded by the dynamic linker, an .init_array
// function (written by cmd/link) is invoked to call addmoduledata,
// appending to the module to the linked list that starts with
// firstmoduledata.
//
// There are two times this can happen in the lifecycle of a Go
// program. First, if compiled with -linkshared, a number of modules
// built with -buildmode=shared can be loaded at program initialization.
// Second, a Go program can load a module while running that was built
// with -buildmode=plugin.
//
// After loading, this function is called which initializes the
// moduledata so it is usable by the GC and creates a new activeModules
// list.
//
// Only one goroutine may call modulesinit at a time.
func modulesinit() {
	modules := new([]*moduledata)
	for md := &firstmoduledata; md != nil; md = md.next {
		if md.bad {
			continue
		}
		*modules = append(*modules, md)
		if md.gcdatamask == (bitvector{}) {
			scanDataSize := md.edata - md.data
			md.gcdatamask = progToPointerMask((*byte)(unsafe.Pointer(md.gcdata)), scanDataSize)
			scanBSSSize := md.ebss - md.bss
			md.gcbssmask = progToPointerMask((*byte)(unsafe.Pointer(md.gcbss)), scanBSSSize)
			gcController.addGlobals(int64(scanDataSize + scanBSSSize))
		}
	}

	// Modules appear in the moduledata linked list in the order they are
	// loaded by the dynamic loader, with one exception: the
	// firstmoduledata itself the module that contains the runtime. This
	// is not always the first module (when using -buildmode=shared, it
	// is typically libstd.so, the second module). The order matters for
	// typelinksinit, so we swap the first module with whatever module
	// contains the main function.
	//
	// See Issue #18729.
	for i, md := range *modules {
		if md.hasmain != 0 {
			(*modules)[0] = md
			(*modules)[i] = &firstmoduledata
			break
		}
	}

	atomicstorep(unsafe.Pointer(&modulesSlice), unsafe.Pointer(modules))
}

type functab struct {
	entryoff uint32 // relative to runtime.text
	funcoff  uint32
}

// Mapping information for secondary text sections

type textsect struct {
	vaddr    uintptr // prelinked section vaddr
	end      uintptr // vaddr + section length
	baseaddr uintptr // relocated section address
}

// findfuncbucket is an array of these structures.
// Each bucket represents 4096 bytes of the text segment.
// Each subbucket represents 256 bytes of the text segment.
// To find a function given a pc, locate the bucket and subbucket for
// that pc. Add together the idx and subbucket value to obtain a
// function index. Then scan the functab array starting at that
// index to find the target function.
// This table uses 20 bytes for every 4096 bytes of code, or ~0.5% overhead.
type findfuncbucket struct {
	idx        uint32
	subbuckets [16]byte
}

func moduledataverify() {
	for datap := &firstmoduledata; datap != nil; datap = datap.next {
		moduledataverify1(datap)
	}
}

const debugPcln = false

func moduledataverify1(datap *moduledata) {
	// Check that the pclntab's format is valid.
	hdr := datap.pcHeader
	if hdr.magic != 0xfffffff1 || hdr.pad1 != 0 || hdr.pad2 != 0 ||
		hdr.minLC != sys.PCQuantum || hdr.ptrSize != goarch.PtrSize || hdr.textStart != datap.text {
		println("runtime: pcHeader: magic=", hex(hdr.magic), "pad1=", hdr.pad1, "pad2=", hdr.pad2,
			"minLC=", hdr.minLC, "ptrSize=", hdr.ptrSize, "pcHeader.textStart=", hex(hdr.textStart),
			"text=", hex(datap.text), "pluginpath=", datap.pluginpath)
		throw("invalid function symbol table")
	}

	// ftab is lookup table for function by program counter.
	nftab := len(datap.ftab) - 1
	for i := 0; i < nftab; i++ {
		// NOTE: ftab[nftab].entry is legal; it is the address beyond the final function.
		if datap.ftab[i].entryoff > datap.ftab[i+1].entryoff {
			f1 := funcInfo{(*_func)(unsafe.Pointer(&datap.pclntable[datap.ftab[i].funcoff])), datap}
			f2 := funcInfo{(*_func)(unsafe.Pointer(&datap.pclntable[datap.ftab[i+1].funcoff])), datap}
			f2name := "end"
			if i+1 < nftab {
				f2name = funcname(f2)
			}
			println("function symbol table not sorted by PC offset:", hex(datap.ftab[i].entryoff), funcname(f1), ">", hex(datap.ftab[i+1].entryoff), f2name, ", plugin:", datap.pluginpath)
			for j := 0; j <= i; j++ {
				println("\t", hex(datap.ftab[j].entryoff), funcname(funcInfo{(*_func)(unsafe.Pointer(&datap.pclntable[datap.ftab[j].funcoff])), datap}))
			}
			if GOOS == "aix" && isarchive {
				println("-Wl,-bnoobjreorder is mandatory on aix/ppc64 with c-archive")
			}
			throw("invalid runtime symbol table")
		}
	}

	min := datap.textAddr(datap.ftab[0].entryoff)
	max := datap.textAddr(datap.ftab[nftab].entryoff)
	if datap.minpc != min || datap.maxpc != max {
		println("minpc=", hex(datap.minpc), "min=", hex(min), "maxpc=", hex(datap.maxpc), "max=", hex(max))
		throw("minpc or maxpc invalid")
	}

	for _, modulehash := range datap.modulehashes {
		if modulehash.linktimehash != *modulehash.runtimehash {
			println("abi mismatch detected between", datap.modulename, "and", modulehash.modulename)
			throw("abi mismatch")
		}
	}
}

// textAddr returns md.text + off, with special handling for multiple text sections.
// off is a (virtual) offset computed at internal linking time,
// before the external linker adjusts the sections' base addresses.
//
// The text, or instruction stream is generated as one large buffer.
// The off (offset) for a function is its offset within this buffer.
// If the total text size gets too large, there can be issues on platforms like ppc64
// if the target of calls are too far for the call instruction.
// To resolve the large text issue, the text is split into multiple text sections
// to allow the linker to generate long calls when necessary.
// When this happens, the vaddr for each text section is set to its offset within the text.
// Each function's offset is compared against the section vaddrs and ends to determine the containing section.
// Then the section relative offset is added to the section's
// relocated baseaddr to compute the function address.
//
// It is nosplit because it is part of the findfunc implementation.
//
//go:nosplit
func (md *moduledata) textAddr(off32 uint32) uintptr {
	off := uintptr(off32)
	res := md.text + off
	if len(md.textsectmap) > 1 {
		for i, sect := range md.textsectmap {
			// For the last section, include the end address (etext), as it is included in the functab.
			if off >= sect.vaddr && off < sect.end || (i == len(md.textsectmap)-1 && off == sect.end) {
				res = sect.baseaddr + off - sect.vaddr
				break
			}
		}
		if res > md.etext && GOARCH != "wasm" { // on wasm, functions do not live in the same address space as the linear memory
			println("runtime: textAddr", hex(res), "out of range", hex(md.text), "-", hex(md.etext))
			throw("runtime: text offset out of range")
		}
	}
	return res
}

// textOff is the opposite of textAddr. It converts a PC to a (virtual) offset
// to md.text, and returns if the PC is in any Go text section.
//
// It is nosplit because it is part of the findfunc implementation.
//
//go:nosplit
func (md *moduledata) textOff(pc uintptr) (uint32, bool) {
	res := uint32(pc - md.text)
	if len(md.textsectmap) > 1 {
		for i, sect := range md.textsectmap {
			if sect.baseaddr > pc {
				// pc is not in any section.
				return 0, false
			}
			end := sect.baseaddr + (sect.end - sect.vaddr)
			// For the last section, include the end address (etext), as it is included in the functab.
			if i == len(md.textsectmap)-1 {
				end++
			}
			if pc < end {
				res = uint32(pc - sect.baseaddr + sect.vaddr)
				break
			}
		}
	}
	return res, true
}

// funcName returns the string at nameOff in the function name table.
func (md *moduledata) funcName(nameOff int32) string {
	if nameOff == 0 {
		return ""
	}
	return gostringnocopy(&md.funcnametab[nameOff])
}

// FuncForPC returns a *[Func] describing the function that contains the
// given program counter address, or else nil.
//
// If pc represents multiple functions because of inlining, it returns
// the *Func describing the innermost function, but with an entry of
// the outermost function.
func FuncForPC(pc uintptr) *Func {
	f := findfunc(pc)
	if !f.valid() {
		return nil
	}
	// This must interpret PC non-strictly so bad PCs (those between functions) don't crash the runtime.
	// We just report the preceding function in that situation. See issue 29735.
	// TODO: Perhaps we should report no function at all in that case.
	// The runtime currently doesn't have function end info, alas.
	u, uf := newInlineUnwinder(f, pc)
	if !u.isInlined(uf) {
		return f._Func()
	}
	sf := u.srcFunc(uf)
	file, line := u.fileLine(uf)
	fi := &funcinl{
		ones:      ^uint32(0),
		entry:     f.entry(), // entry of the real (the outermost) function.
		name:      sf.name(),
		file:      file,
		line:      int32(line),
		startLine: sf.startLine,
	}
	return (*Func)(unsafe.Pointer(fi))
}

// Name returns the name of the function.
func (f *Func) Name() string {
	if f == nil {
		return ""
	}
	fn := f.raw()
	if fn.isInlined() { // inlined version
		fi := (*funcinl)(unsafe.Pointer(fn))
		return funcNameForPrint(fi.name)
	}
	return funcNameForPrint(funcname(f.funcInfo()))
}

// Entry returns the entry address of the function.
func (f *Func) Entry() uintptr {
	fn := f.raw()
	if fn.isInlined() { // inlined version
		fi := (*funcinl)(unsafe.Pointer(fn))
		return fi.entry
	}
	return fn.funcInfo().entry()
}

// FileLine returns the file name and line number of the
// source code corresponding to the program counter pc.
// The result will not be accurate if pc is not a program
// counter within f.
func (f *Func) FileLine(pc uintptr) (file string, line int) {
	fn := f.raw()
	if fn.isInlined() { // inlined version
		fi := (*funcinl)(unsafe.Pointer(fn))
		return fi.file, int(fi.line)
	}
	// Pass strict=false here, because anyone can call this function,
	// and they might just be wrong about targetpc belonging to f.
	file, line32 := funcline1(f.funcInfo(), pc, false)
	return file, int(line32)
}

// startLine returns the starting line number of the function. i.e., the line
// number of the func keyword.
func (f *Func) startLine() int32 {
	fn := f.raw()
	if fn.isInlined() { // inlined version
		fi := (*funcinl)(unsafe.Pointer(fn))
		return fi.startLine
	}
	return fn.funcInfo().startLine
}

// findmoduledatap looks up the moduledata for a PC.
//
// It is nosplit because it's part of the isgoexception
// implementation.
//
//go:nosplit
func findmoduledatap(pc uintptr) *moduledata {
	for datap := &firstmoduledata; datap != nil; datap = datap.next {
		if datap.minpc <= pc && pc < datap.maxpc {
			return datap
		}
	}
	return nil
}

type funcInfo struct {
	*_func
	datap *moduledata
}

func (f funcInfo) valid() bool {
	return f._func != nil
}

func (f funcInfo) _Func() *Func {
	return (*Func)(unsafe.Pointer(f._func))
}

// isInlined reports whether f should be re-interpreted as a *funcinl.
func (f *_func) isInlined() bool {
	return f.entryOff == ^uint32(0) // see comment for funcinl.ones
}

// entry returns the entry PC for f.
func (f funcInfo) entry() uintptr {
	return f.datap.textAddr(f.entryOff)
}

// findfunc looks up function metadata for a PC.
//
// It is nosplit because it's part of the isgoexception
// implementation.
//
//go:nosplit
func findfunc(pc uintptr) funcInfo {
	datap := findmoduledatap(pc)
	if datap == nil {
		return funcInfo{}
	}
	const nsub = uintptr(len(findfuncbucket{}.subbuckets))

	pcOff, ok := datap.textOff(pc)
	if !ok {
		return funcInfo{}
	}

	x := uintptr(pcOff) + datap.text - datap.minpc // TODO: are datap.text and datap.minpc always equal?
	b := x / abi.FuncTabBucketSize
	i := x % abi.FuncTabBucketSize / (abi.FuncTabBucketSize / nsub)

	ffb := (*findfuncbucket)(add(unsafe.Pointer(datap.findfunctab), b*unsafe.Sizeof(findfuncbucket{})))
	idx := ffb.idx + uint32(ffb.subbuckets[i])

	// Find the ftab entry.
	for datap.ftab[idx+1].entryoff <= pcOff {
		idx++
	}

	funcoff := datap.ftab[idx].funcoff
	return funcInfo{(*_func)(unsafe.Pointer(&datap.pclntable[funcoff])), datap}
}

// A srcFunc represents a logical function in the source code. This may
// correspond to an actual symbol in the binary text, or it may correspond to a
// source function that has been inlined.
type srcFunc struct {
	datap     *moduledata
	nameOff   int32
	startLine int32
	funcID    abi.FuncID
}

func (f funcInfo) srcFunc() srcFunc {
	if !f.valid() {
		return srcFunc{}
	}
	return srcFunc{f.datap, f.nameOff, f.startLine, f.funcID}
}

func (s srcFunc) name() string {
	if s.datap == nil {
		return ""
	}
	return s.datap.funcName(s.nameOff)
}

type pcvalueCache struct {
	entries [2][8]pcvalueCacheEnt
	inUse   int
}

type pcvalueCacheEnt struct {
	// targetpc and off together are the key of this cache entry.
	targetpc uintptr
	off      uint32

	val   int32   // The value of this entry.
	valPC uintptr // The PC at which val starts
}

// pcvalueCacheKey returns the outermost index in a pcvalueCache to use for targetpc.
// It must be very cheap to calculate.
// For now, align to goarch.PtrSize and reduce mod the number of entries.
// In practice, this appears to be fairly randomly and evenly distributed.
func pcvalueCacheKey(targetpc uintptr) uintptr {
	return (targetpc / goarch.PtrSize) % uintptr(len(pcvalueCache{}.entries))
}

// Returns the PCData value, and the PC where this value starts.
func pcvalue(f funcInfo, off uint32, targetpc uintptr, strict bool) (int32, uintptr) {
	// If true, when we get a cache hit, still look up the data and make sure it
	// matches the cached contents.
	const debugCheckCache = false

	if off == 0 {
		return -1, 0
	}

	// Check the cache. This speeds up walks of deep stacks, which
	// tend to have the same recursive functions over and over,
	// or repetitive stacks between goroutines.
	var checkVal int32
	var checkPC uintptr
	ck := pcvalueCacheKey(targetpc)
	{
		mp := acquirem()
		cache := &mp.pcvalueCache
		// The cache can be used by the signal handler on this M. Avoid
		// re-entrant use of the cache. The signal handler can also write inUse,
		// but will always restore its value, so we can use a regular increment
		// even if we get signaled in the middle of it.
		cache.inUse++
		if cache.inUse == 1 {
			for i := range cache.entries[ck] {
				// We check off first because we're more
				// likely to have multiple entries with
				// different offsets for the same targetpc
				// than the other way around, so we'll usually
				// fail in the first clause.
				ent := &cache.entries[ck][i]
				if ent.off == off && ent.targetpc == targetpc {
					val, pc := ent.val, ent.valPC
					if debugCheckCache {
						checkVal, checkPC = ent.val, ent.valPC
						break
					} else {
						cache.inUse--
						releasem(mp)
						return val, pc
					}
				}
			}
		} else if debugCheckCache && (cache.inUse < 1 || cache.inUse > 2) {
			// Catch accounting errors or deeply reentrant use. In principle
			// "inUse" should never exceed 2.
			throw("cache.inUse out of range")
		}
		cache.inUse--
		releasem(mp)
	}

	if !f.valid() {
		if strict && panicking.Load() == 0 {
			println("runtime: no module data for", hex(f.entry()))
			throw("no module data")
		}
		return -1, 0
	}
	datap := f.datap
	p := datap.pctab[off:]
	pc := f.entry()
	prevpc := pc
	val := int32(-1)
	for {
		var ok bool
		p, ok = step(p, &pc, &val, pc == f.entry())
		if !ok {
			break
		}
		if targetpc < pc {
			// Replace a random entry in the cache. Random
			// replacement prevents a performance cliff if
			// a recursive stack's cycle is slightly
			// larger than the cache.
			// Put the new element at the beginning,
			// since it is the most likely to be newly used.
			if debugCheckCache && checkPC != 0 {
				if checkVal != val || checkPC != prevpc {
					print("runtime: table value ", val, "@", prevpc, " != cache value ", checkVal, "@", checkPC, " at PC ", targetpc, " off ", off, "\n")
					throw("bad pcvalue cache")
				}
			} else {
				mp := acquirem()
				cache := &mp.pcvalueCache
				cache.inUse++
				if cache.inUse == 1 {
					e := &cache.entries[ck]
					ci := cheaprandn(uint32(len(cache.entries[ck])))
					e[ci] = e[0]
					e[0] = pcvalueCacheEnt{
						targetpc: targetpc,
						off:      off,
						val:      val,
						valPC:    prevpc,
					}
				}
				cache.inUse--
				releasem(mp)
			}

			return val, prevpc
		}
		prevpc = pc
	}

	// If there was a table, it should have covered all program counters.
	// If not, something is wrong.
	if panicking.Load() != 0 || !strict {
		return -1, 0
	}

	print("runtime: invalid pc-encoded table f=", funcname(f), " pc=", hex(pc), " targetpc=", hex(targetpc), " tab=", p, "\n")

	p = datap.pctab[off:]
	pc = f.entry()
	val = -1
	for {
		var ok bool
		p, ok = step(p, &pc, &val, pc == f.entry())
		if !ok {
			break
		}
		print("\tvalue=", val, " until pc=", hex(pc), "\n")
	}

	throw("invalid runtime symbol table")
	return -1, 0
}

func funcname(f funcInfo) string {
	if !f.valid() {
		return ""
	}
	return f.datap.funcName(f.nameOff)
}

func funcpkgpath(f funcInfo) string {
	name := funcNameForPrint(funcname(f))
	i := len(name) - 1
	for ; i > 0; i-- {
		if name[i] == '/' {
			break
		}
	}
	for ; i < len(name); i++ {
		if name[i] == '.' {
			break
		}
	}
	return name[:i]
}

func funcfile(f funcInfo, fileno int32) string {
	datap := f.datap
	if !f.valid() {
		return "?"
	}
	// Make sure the cu index and file offset are valid
	if fileoff := datap.cutab[f.cuOffset+uint32(fileno)]; fileoff != ^uint32(0) {
		return gostringnocopy(&datap.filetab[fileoff])
	}
	// pcln section is corrupt.
	return "?"
}

func funcline1(f funcInfo, targetpc uintptr, strict bool) (file string, line int32) {
	datap := f.datap
	if !f.valid() {
		return "?", 0
	}
	fileno, _ := pcvalue(f, f.pcfile, targetpc, strict)
	line, _ = pcvalue(f, f.pcln, targetpc, strict)
	if fileno == -1 || line == -1 || int(fileno) >= len(datap.filetab) {
		// print("looking for ", hex(targetpc), " in ", funcname(f), " got file=", fileno, " line=", lineno, "\n")
		return "?", 0
	}
	file = funcfile(f, fileno)
	return
}

func funcline(f funcInfo, targetpc uintptr) (file string, line int32) {
	return funcline1(f, targetpc, true)
}

func funcspdelta(f funcInfo, targetpc uintptr) int32 {
	x, _ := pcvalue(f, f.pcsp, targetpc, true)
	if debugPcln && x&(goarch.PtrSize-1) != 0 {
		print("invalid spdelta ", funcname(f), " ", hex(f.entry()), " ", hex(targetpc), " ", hex(f.pcsp), " ", x, "\n")
		throw("bad spdelta")
	}
	return x
}

// funcMaxSPDelta returns the maximum spdelta at any point in f.
func funcMaxSPDelta(f funcInfo) int32 {
	datap := f.datap
	p := datap.pctab[f.pcsp:]
	pc := f.entry()
	val := int32(-1)
	most := int32(0)
	for {
		var ok bool
		p, ok = step(p, &pc, &val, pc == f.entry())
		if !ok {
			return most
		}
		most = max(most, val)
	}
}

func pcdatastart(f funcInfo, table uint32) uint32 {
	return *(*uint32)(add(unsafe.Pointer(&f.nfuncdata), unsafe.Sizeof(f.nfuncdata)+uintptr(table)*4))
}

func pcdatavalue(f funcInfo, table uint32, targetpc uintptr) int32 {
	if table >= f.npcdata {
		return -1
	}
	r, _ := pcvalue(f, pcdatastart(f, table), targetpc, true)
	return r
}

func pcdatavalue1(f funcInfo, table uint32, targetpc uintptr, strict bool) int32 {
	if table >= f.npcdata {
		return -1
	}
	r, _ := pcvalue(f, pcdatastart(f, table), targetpc, strict)
	return r
}

// Like pcdatavalue, but also return the start PC of this PCData value.
func pcdatavalue2(f funcInfo, table uint32, targetpc uintptr) (int32, uintptr) {
	if table >= f.npcdata {
		return -1, 0
	}
	return pcvalue(f, pcdatastart(f, table), targetpc, true)
}

// funcdata returns a pointer to the ith funcdata for f.
// funcdata should be kept in sync with cmd/link:writeFuncs.
func funcdata(f funcInfo, i uint8) unsafe.Pointer {
	if i < 0 || i >= f.nfuncdata {
		return nil
	}
	base := f.datap.gofunc // load gofunc address early so that we calculate during cache misses
	p := uintptr(unsafe.Pointer(&f.nfuncdata)) + unsafe.Sizeof(f.nfuncdata) + uintptr(f.npcdata)*4 + uintptr(i)*4
	off := *(*uint32)(unsafe.Pointer(p))
	// Return off == ^uint32(0) ? 0 : f.datap.gofunc + uintptr(off), but without branches.
	// The compiler calculates mask on most architectures using conditional assignment.
	var mask uintptr
	if off == ^uint32(0) {
		mask = 1
	}
	mask--
	raw := base + uintptr(off)
	return unsafe.Pointer(raw & mask)
}

// step advances to the next pc, value pair in the encoded table.
func step(p []byte, pc *uintptr, val *int32, first bool) (newp []byte, ok bool) {
	// For both uvdelta and pcdelta, the common case (~70%)
	// is that they are a single byte. If so, avoid calling readvarint.
	uvdelta := uint32(p[0])
	if uvdelta == 0 && !first {
		return nil, false
	}
	n := uint32(1)
	if uvdelta&0x80 != 0 {
		n, uvdelta = readvarint(p)
	}
	*val += int32(-(uvdelta & 1) ^ (uvdelta >> 1))
	p = p[n:]

	pcdelta := uint32(p[0])
	n = 1
	if pcdelta&0x80 != 0 {
		n, pcdelta = readvarint(p)
	}
	p = p[n:]
	*pc += uintptr(pcdelta * sys.PCQuantum)
	return p, true
}

// readvarint reads a varint from p.
func readvarint(p []byte) (read uint32, val uint32) {
	var v, shift, n uint32
	for {
		b := p[n]
		n++
		v |= uint32(b&0x7F) << (shift & 31)
		if b&0x80 == 0 {
			break
		}
		shift += 7
	}
	return n, v
}

type stackmap struct {
	n        int32   // number of bitmaps
	nbit     int32   // number of bits in each bitmap
	bytedata [1]byte // bitmaps, each starting on a byte boundary
}

//go:nowritebarrier
func stackmapdata(stkmap *stackmap, n int32) bitvector {
	// Check this invariant only when stackDebug is on at all.
	// The invariant is already checked by many of stackmapdata's callers,
	// and disabling it by default allows stackmapdata to be inlined.
	if stackDebug > 0 && (n < 0 || n >= stkmap.n) {
		throw("stackmapdata: index out of range")
	}
	return bitvector{stkmap.nbit, addb(&stkmap.bytedata[0], uintptr(n*((stkmap.nbit+7)>>3)))}
}