aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/mgc.go
blob: 83afd55c47cd9d4f6f19ddca885abef00e80e509 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Garbage collector (GC).
//
// The GC runs concurrently with mutator threads, is type accurate (aka precise), allows multiple
// GC thread to run in parallel. It is a concurrent mark and sweep that uses a write barrier. It is
// non-generational and non-compacting. Allocation is done using size segregated per P allocation
// areas to minimize fragmentation while eliminating locks in the common case.
//
// The algorithm decomposes into several steps.
// This is a high level description of the algorithm being used. For an overview of GC a good
// place to start is Richard Jones' gchandbook.org.
//
// The algorithm's intellectual heritage includes Dijkstra's on-the-fly algorithm, see
// Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Steffens. 1978.
// On-the-fly garbage collection: an exercise in cooperation. Commun. ACM 21, 11 (November 1978),
// 966-975.
// For journal quality proofs that these steps are complete, correct, and terminate see
// Hudson, R., and Moss, J.E.B. Copying Garbage Collection without stopping the world.
// Concurrency and Computation: Practice and Experience 15(3-5), 2003.
//
// 1. GC performs sweep termination.
//
//    a. Stop the world. This causes all Ps to reach a GC safe-point.
//
//    b. Sweep any unswept spans. There will only be unswept spans if
//    this GC cycle was forced before the expected time.
//
// 2. GC performs the mark phase.
//
//    a. Prepare for the mark phase by setting gcphase to _GCmark
//    (from _GCoff), enabling the write barrier, enabling mutator
//    assists, and enqueueing root mark jobs. No objects may be
//    scanned until all Ps have enabled the write barrier, which is
//    accomplished using STW.
//
//    b. Start the world. From this point, GC work is done by mark
//    workers started by the scheduler and by assists performed as
//    part of allocation. The write barrier shades both the
//    overwritten pointer and the new pointer value for any pointer
//    writes (see mbarrier.go for details). Newly allocated objects
//    are immediately marked black.
//
//    c. GC performs root marking jobs. This includes scanning all
//    stacks, shading all globals, and shading any heap pointers in
//    off-heap runtime data structures. Scanning a stack stops a
//    goroutine, shades any pointers found on its stack, and then
//    resumes the goroutine.
//
//    d. GC drains the work queue of grey objects, scanning each grey
//    object to black and shading all pointers found in the object
//    (which in turn may add those pointers to the work queue).
//
//    e. Because GC work is spread across local caches, GC uses a
//    distributed termination algorithm to detect when there are no
//    more root marking jobs or grey objects (see gcMarkDone). At this
//    point, GC transitions to mark termination.
//
// 3. GC performs mark termination.
//
//    a. Stop the world.
//
//    b. Set gcphase to _GCmarktermination, and disable workers and
//    assists.
//
//    c. Perform housekeeping like flushing mcaches.
//
// 4. GC performs the sweep phase.
//
//    a. Prepare for the sweep phase by setting gcphase to _GCoff,
//    setting up sweep state and disabling the write barrier.
//
//    b. Start the world. From this point on, newly allocated objects
//    are white, and allocating sweeps spans before use if necessary.
//
//    c. GC does concurrent sweeping in the background and in response
//    to allocation. See description below.
//
// 5. When sufficient allocation has taken place, replay the sequence
// starting with 1 above. See discussion of GC rate below.

// Concurrent sweep.
//
// The sweep phase proceeds concurrently with normal program execution.
// The heap is swept span-by-span both lazily (when a goroutine needs another span)
// and concurrently in a background goroutine (this helps programs that are not CPU bound).
// At the end of STW mark termination all spans are marked as "needs sweeping".
//
// The background sweeper goroutine simply sweeps spans one-by-one.
//
// To avoid requesting more OS memory while there are unswept spans, when a
// goroutine needs another span, it first attempts to reclaim that much memory
// by sweeping. When a goroutine needs to allocate a new small-object span, it
// sweeps small-object spans for the same object size until it frees at least
// one object. When a goroutine needs to allocate large-object span from heap,
// it sweeps spans until it frees at least that many pages into heap. There is
// one case where this may not suffice: if a goroutine sweeps and frees two
// nonadjacent one-page spans to the heap, it will allocate a new two-page
// span, but there can still be other one-page unswept spans which could be
// combined into a two-page span.
//
// It's critical to ensure that no operations proceed on unswept spans (that would corrupt
// mark bits in GC bitmap). During GC all mcaches are flushed into the central cache,
// so they are empty. When a goroutine grabs a new span into mcache, it sweeps it.
// When a goroutine explicitly frees an object or sets a finalizer, it ensures that
// the span is swept (either by sweeping it, or by waiting for the concurrent sweep to finish).
// The finalizer goroutine is kicked off only when all spans are swept.
// When the next GC starts, it sweeps all not-yet-swept spans (if any).

// GC rate.
// Next GC is after we've allocated an extra amount of memory proportional to
// the amount already in use. The proportion is controlled by GOGC environment variable
// (100 by default). If GOGC=100 and we're using 4M, we'll GC again when we get to 8M
// (this mark is computed by the gcController.heapGoal method). This keeps the GC cost in
// linear proportion to the allocation cost. Adjusting GOGC just changes the linear constant
// (and also the amount of extra memory used).

// Oblets
//
// In order to prevent long pauses while scanning large objects and to
// improve parallelism, the garbage collector breaks up scan jobs for
// objects larger than maxObletBytes into "oblets" of at most
// maxObletBytes. When scanning encounters the beginning of a large
// object, it scans only the first oblet and enqueues the remaining
// oblets as new scan jobs.

package runtime

import (
	"internal/cpu"
	"internal/runtime/atomic"
	"unsafe"
)

const (
	_DebugGC      = 0
	_FinBlockSize = 4 * 1024

	// concurrentSweep is a debug flag. Disabling this flag
	// ensures all spans are swept while the world is stopped.
	concurrentSweep = true

	// debugScanConservative enables debug logging for stack
	// frames that are scanned conservatively.
	debugScanConservative = false

	// sweepMinHeapDistance is a lower bound on the heap distance
	// (in bytes) reserved for concurrent sweeping between GC
	// cycles.
	sweepMinHeapDistance = 1024 * 1024
)

// heapObjectsCanMove always returns false in the current garbage collector.
// It exists for go4.org/unsafe/assume-no-moving-gc, which is an
// unfortunate idea that had an even more unfortunate implementation.
// Every time a new Go release happened, the package stopped building,
// and the authors had to add a new file with a new //go:build line, and
// then the entire ecosystem of packages with that as a dependency had to
// explicitly update to the new version. Many packages depend on
// assume-no-moving-gc transitively, through paths like
// inet.af/netaddr -> go4.org/intern -> assume-no-moving-gc.
// This was causing a significant amount of friction around each new
// release, so we added this bool for the package to //go:linkname
// instead. The bool is still unfortunate, but it's not as bad as
// breaking the ecosystem on every new release.
//
// If the Go garbage collector ever does move heap objects, we can set
// this to true to break all the programs using assume-no-moving-gc.
//
//go:linkname heapObjectsCanMove
func heapObjectsCanMove() bool {
	return false
}

func gcinit() {
	if unsafe.Sizeof(workbuf{}) != _WorkbufSize {
		throw("size of Workbuf is suboptimal")
	}
	// No sweep on the first cycle.
	sweep.active.state.Store(sweepDrainedMask)

	// Initialize GC pacer state.
	// Use the environment variable GOGC for the initial gcPercent value.
	// Use the environment variable GOMEMLIMIT for the initial memoryLimit value.
	gcController.init(readGOGC(), readGOMEMLIMIT())

	work.startSema = 1
	work.markDoneSema = 1
	lockInit(&work.sweepWaiters.lock, lockRankSweepWaiters)
	lockInit(&work.assistQueue.lock, lockRankAssistQueue)
	lockInit(&work.wbufSpans.lock, lockRankWbufSpans)
}

// gcenable is called after the bulk of the runtime initialization,
// just before we're about to start letting user code run.
// It kicks off the background sweeper goroutine, the background
// scavenger goroutine, and enables GC.
func gcenable() {
	// Kick off sweeping and scavenging.
	c := make(chan int, 2)
	go bgsweep(c)
	go bgscavenge(c)
	<-c
	<-c
	memstats.enablegc = true // now that runtime is initialized, GC is okay
}

// Garbage collector phase.
// Indicates to write barrier and synchronization task to perform.
var gcphase uint32

// The compiler knows about this variable.
// If you change it, you must change builtin/runtime.go, too.
// If you change the first four bytes, you must also change the write
// barrier insertion code.
var writeBarrier struct {
	enabled bool    // compiler emits a check of this before calling write barrier
	pad     [3]byte // compiler uses 32-bit load for "enabled" field
	alignme uint64  // guarantee alignment so that compiler can use a 32 or 64-bit load
}

// gcBlackenEnabled is 1 if mutator assists and background mark
// workers are allowed to blacken objects. This must only be set when
// gcphase == _GCmark.
var gcBlackenEnabled uint32

const (
	_GCoff             = iota // GC not running; sweeping in background, write barrier disabled
	_GCmark                   // GC marking roots and workbufs: allocate black, write barrier ENABLED
	_GCmarktermination        // GC mark termination: allocate black, P's help GC, write barrier ENABLED
)

//go:nosplit
func setGCPhase(x uint32) {
	atomic.Store(&gcphase, x)
	writeBarrier.enabled = gcphase == _GCmark || gcphase == _GCmarktermination
}

// gcMarkWorkerMode represents the mode that a concurrent mark worker
// should operate in.
//
// Concurrent marking happens through four different mechanisms. One
// is mutator assists, which happen in response to allocations and are
// not scheduled. The other three are variations in the per-P mark
// workers and are distinguished by gcMarkWorkerMode.
type gcMarkWorkerMode int

const (
	// gcMarkWorkerNotWorker indicates that the next scheduled G is not
	// starting work and the mode should be ignored.
	gcMarkWorkerNotWorker gcMarkWorkerMode = iota

	// gcMarkWorkerDedicatedMode indicates that the P of a mark
	// worker is dedicated to running that mark worker. The mark
	// worker should run without preemption.
	gcMarkWorkerDedicatedMode

	// gcMarkWorkerFractionalMode indicates that a P is currently
	// running the "fractional" mark worker. The fractional worker
	// is necessary when GOMAXPROCS*gcBackgroundUtilization is not
	// an integer and using only dedicated workers would result in
	// utilization too far from the target of gcBackgroundUtilization.
	// The fractional worker should run until it is preempted and
	// will be scheduled to pick up the fractional part of
	// GOMAXPROCS*gcBackgroundUtilization.
	gcMarkWorkerFractionalMode

	// gcMarkWorkerIdleMode indicates that a P is running the mark
	// worker because it has nothing else to do. The idle worker
	// should run until it is preempted and account its time
	// against gcController.idleMarkTime.
	gcMarkWorkerIdleMode
)

// gcMarkWorkerModeStrings are the strings labels of gcMarkWorkerModes
// to use in execution traces.
var gcMarkWorkerModeStrings = [...]string{
	"Not worker",
	"GC (dedicated)",
	"GC (fractional)",
	"GC (idle)",
}

// pollFractionalWorkerExit reports whether a fractional mark worker
// should self-preempt. It assumes it is called from the fractional
// worker.
func pollFractionalWorkerExit() bool {
	// This should be kept in sync with the fractional worker
	// scheduler logic in findRunnableGCWorker.
	now := nanotime()
	delta := now - gcController.markStartTime
	if delta <= 0 {
		return true
	}
	p := getg().m.p.ptr()
	selfTime := p.gcFractionalMarkTime + (now - p.gcMarkWorkerStartTime)
	// Add some slack to the utilization goal so that the
	// fractional worker isn't behind again the instant it exits.
	return float64(selfTime)/float64(delta) > 1.2*gcController.fractionalUtilizationGoal
}

var work workType

type workType struct {
	full  lfstack          // lock-free list of full blocks workbuf
	_     cpu.CacheLinePad // prevents false-sharing between full and empty
	empty lfstack          // lock-free list of empty blocks workbuf
	_     cpu.CacheLinePad // prevents false-sharing between empty and nproc/nwait

	wbufSpans struct {
		lock mutex
		// free is a list of spans dedicated to workbufs, but
		// that don't currently contain any workbufs.
		free mSpanList
		// busy is a list of all spans containing workbufs on
		// one of the workbuf lists.
		busy mSpanList
	}

	// Restore 64-bit alignment on 32-bit.
	_ uint32

	// bytesMarked is the number of bytes marked this cycle. This
	// includes bytes blackened in scanned objects, noscan objects
	// that go straight to black, and permagrey objects scanned by
	// markroot during the concurrent scan phase. This is updated
	// atomically during the cycle. Updates may be batched
	// arbitrarily, since the value is only read at the end of the
	// cycle.
	//
	// Because of benign races during marking, this number may not
	// be the exact number of marked bytes, but it should be very
	// close.
	//
	// Put this field here because it needs 64-bit atomic access
	// (and thus 8-byte alignment even on 32-bit architectures).
	bytesMarked uint64

	markrootNext uint32 // next markroot job
	markrootJobs uint32 // number of markroot jobs

	nproc  uint32
	tstart int64
	nwait  uint32

	// Number of roots of various root types. Set by gcMarkRootPrepare.
	//
	// nStackRoots == len(stackRoots), but we have nStackRoots for
	// consistency.
	nDataRoots, nBSSRoots, nSpanRoots, nStackRoots int

	// Base indexes of each root type. Set by gcMarkRootPrepare.
	baseData, baseBSS, baseSpans, baseStacks, baseEnd uint32

	// stackRoots is a snapshot of all of the Gs that existed
	// before the beginning of concurrent marking. The backing
	// store of this must not be modified because it might be
	// shared with allgs.
	stackRoots []*g

	// Each type of GC state transition is protected by a lock.
	// Since multiple threads can simultaneously detect the state
	// transition condition, any thread that detects a transition
	// condition must acquire the appropriate transition lock,
	// re-check the transition condition and return if it no
	// longer holds or perform the transition if it does.
	// Likewise, any transition must invalidate the transition
	// condition before releasing the lock. This ensures that each
	// transition is performed by exactly one thread and threads
	// that need the transition to happen block until it has
	// happened.
	//
	// startSema protects the transition from "off" to mark or
	// mark termination.
	startSema uint32
	// markDoneSema protects transitions from mark to mark termination.
	markDoneSema uint32

	bgMarkDone uint32 // cas to 1 when at a background mark completion point
	// Background mark completion signaling

	// mode is the concurrency mode of the current GC cycle.
	mode gcMode

	// userForced indicates the current GC cycle was forced by an
	// explicit user call.
	userForced bool

	// initialHeapLive is the value of gcController.heapLive at the
	// beginning of this GC cycle.
	initialHeapLive uint64

	// assistQueue is a queue of assists that are blocked because
	// there was neither enough credit to steal or enough work to
	// do.
	assistQueue struct {
		lock mutex
		q    gQueue
	}

	// sweepWaiters is a list of blocked goroutines to wake when
	// we transition from mark termination to sweep.
	sweepWaiters struct {
		lock mutex
		list gList
	}

	// cycles is the number of completed GC cycles, where a GC
	// cycle is sweep termination, mark, mark termination, and
	// sweep. This differs from memstats.numgc, which is
	// incremented at mark termination.
	cycles atomic.Uint32

	// Timing/utilization stats for this cycle.
	stwprocs, maxprocs                 int32
	tSweepTerm, tMark, tMarkTerm, tEnd int64 // nanotime() of phase start

	// pauseNS is the total STW time this cycle, measured as the time between
	// when stopping began (just before trying to stop Ps) and just after the
	// world started again.
	pauseNS int64

	// debug.gctrace heap sizes for this cycle.
	heap0, heap1, heap2 uint64

	// Cumulative estimated CPU usage.
	cpuStats
}

// GC runs a garbage collection and blocks the caller until the
// garbage collection is complete. It may also block the entire
// program.
func GC() {
	// We consider a cycle to be: sweep termination, mark, mark
	// termination, and sweep. This function shouldn't return
	// until a full cycle has been completed, from beginning to
	// end. Hence, we always want to finish up the current cycle
	// and start a new one. That means:
	//
	// 1. In sweep termination, mark, or mark termination of cycle
	// N, wait until mark termination N completes and transitions
	// to sweep N.
	//
	// 2. In sweep N, help with sweep N.
	//
	// At this point we can begin a full cycle N+1.
	//
	// 3. Trigger cycle N+1 by starting sweep termination N+1.
	//
	// 4. Wait for mark termination N+1 to complete.
	//
	// 5. Help with sweep N+1 until it's done.
	//
	// This all has to be written to deal with the fact that the
	// GC may move ahead on its own. For example, when we block
	// until mark termination N, we may wake up in cycle N+2.

	// Wait until the current sweep termination, mark, and mark
	// termination complete.
	n := work.cycles.Load()
	gcWaitOnMark(n)

	// We're now in sweep N or later. Trigger GC cycle N+1, which
	// will first finish sweep N if necessary and then enter sweep
	// termination N+1.
	gcStart(gcTrigger{kind: gcTriggerCycle, n: n + 1})

	// Wait for mark termination N+1 to complete.
	gcWaitOnMark(n + 1)

	// Finish sweep N+1 before returning. We do this both to
	// complete the cycle and because runtime.GC() is often used
	// as part of tests and benchmarks to get the system into a
	// relatively stable and isolated state.
	for work.cycles.Load() == n+1 && sweepone() != ^uintptr(0) {
		Gosched()
	}

	// Callers may assume that the heap profile reflects the
	// just-completed cycle when this returns (historically this
	// happened because this was a STW GC), but right now the
	// profile still reflects mark termination N, not N+1.
	//
	// As soon as all of the sweep frees from cycle N+1 are done,
	// we can go ahead and publish the heap profile.
	//
	// First, wait for sweeping to finish. (We know there are no
	// more spans on the sweep queue, but we may be concurrently
	// sweeping spans, so we have to wait.)
	for work.cycles.Load() == n+1 && !isSweepDone() {
		Gosched()
	}

	// Now we're really done with sweeping, so we can publish the
	// stable heap profile. Only do this if we haven't already hit
	// another mark termination.
	mp := acquirem()
	cycle := work.cycles.Load()
	if cycle == n+1 || (gcphase == _GCmark && cycle == n+2) {
		mProf_PostSweep()
	}
	releasem(mp)
}

// gcWaitOnMark blocks until GC finishes the Nth mark phase. If GC has
// already completed this mark phase, it returns immediately.
func gcWaitOnMark(n uint32) {
	for {
		// Disable phase transitions.
		lock(&work.sweepWaiters.lock)
		nMarks := work.cycles.Load()
		if gcphase != _GCmark {
			// We've already completed this cycle's mark.
			nMarks++
		}
		if nMarks > n {
			// We're done.
			unlock(&work.sweepWaiters.lock)
			return
		}

		// Wait until sweep termination, mark, and mark
		// termination of cycle N complete.
		work.sweepWaiters.list.push(getg())
		goparkunlock(&work.sweepWaiters.lock, waitReasonWaitForGCCycle, traceBlockUntilGCEnds, 1)
	}
}

// gcMode indicates how concurrent a GC cycle should be.
type gcMode int

const (
	gcBackgroundMode gcMode = iota // concurrent GC and sweep
	gcForceMode                    // stop-the-world GC now, concurrent sweep
	gcForceBlockMode               // stop-the-world GC now and STW sweep (forced by user)
)

// A gcTrigger is a predicate for starting a GC cycle. Specifically,
// it is an exit condition for the _GCoff phase.
type gcTrigger struct {
	kind gcTriggerKind
	now  int64  // gcTriggerTime: current time
	n    uint32 // gcTriggerCycle: cycle number to start
}

type gcTriggerKind int

const (
	// gcTriggerHeap indicates that a cycle should be started when
	// the heap size reaches the trigger heap size computed by the
	// controller.
	gcTriggerHeap gcTriggerKind = iota

	// gcTriggerTime indicates that a cycle should be started when
	// it's been more than forcegcperiod nanoseconds since the
	// previous GC cycle.
	gcTriggerTime

	// gcTriggerCycle indicates that a cycle should be started if
	// we have not yet started cycle number gcTrigger.n (relative
	// to work.cycles).
	gcTriggerCycle
)

// test reports whether the trigger condition is satisfied, meaning
// that the exit condition for the _GCoff phase has been met. The exit
// condition should be tested when allocating.
func (t gcTrigger) test() bool {
	if !memstats.enablegc || panicking.Load() != 0 || gcphase != _GCoff {
		return false
	}
	switch t.kind {
	case gcTriggerHeap:
		trigger, _ := gcController.trigger()
		return gcController.heapLive.Load() >= trigger
	case gcTriggerTime:
		if gcController.gcPercent.Load() < 0 {
			return false
		}
		lastgc := int64(atomic.Load64(&memstats.last_gc_nanotime))
		return lastgc != 0 && t.now-lastgc > forcegcperiod
	case gcTriggerCycle:
		// t.n > work.cycles, but accounting for wraparound.
		return int32(t.n-work.cycles.Load()) > 0
	}
	return true
}

// gcStart starts the GC. It transitions from _GCoff to _GCmark (if
// debug.gcstoptheworld == 0) or performs all of GC (if
// debug.gcstoptheworld != 0).
//
// This may return without performing this transition in some cases,
// such as when called on a system stack or with locks held.
func gcStart(trigger gcTrigger) {
	// Since this is called from malloc and malloc is called in
	// the guts of a number of libraries that might be holding
	// locks, don't attempt to start GC in non-preemptible or
	// potentially unstable situations.
	mp := acquirem()
	if gp := getg(); gp == mp.g0 || mp.locks > 1 || mp.preemptoff != "" {
		releasem(mp)
		return
	}
	releasem(mp)
	mp = nil

	// Pick up the remaining unswept/not being swept spans concurrently
	//
	// This shouldn't happen if we're being invoked in background
	// mode since proportional sweep should have just finished
	// sweeping everything, but rounding errors, etc, may leave a
	// few spans unswept. In forced mode, this is necessary since
	// GC can be forced at any point in the sweeping cycle.
	//
	// We check the transition condition continuously here in case
	// this G gets delayed in to the next GC cycle.
	for trigger.test() && sweepone() != ^uintptr(0) {
	}

	// Perform GC initialization and the sweep termination
	// transition.
	semacquire(&work.startSema)
	// Re-check transition condition under transition lock.
	if !trigger.test() {
		semrelease(&work.startSema)
		return
	}

	// In gcstoptheworld debug mode, upgrade the mode accordingly.
	// We do this after re-checking the transition condition so
	// that multiple goroutines that detect the heap trigger don't
	// start multiple STW GCs.
	mode := gcBackgroundMode
	if debug.gcstoptheworld == 1 {
		mode = gcForceMode
	} else if debug.gcstoptheworld == 2 {
		mode = gcForceBlockMode
	}

	// Ok, we're doing it! Stop everybody else
	semacquire(&gcsema)
	semacquire(&worldsema)

	// For stats, check if this GC was forced by the user.
	// Update it under gcsema to avoid gctrace getting wrong values.
	work.userForced = trigger.kind == gcTriggerCycle

	trace := traceAcquire()
	if trace.ok() {
		trace.GCStart()
		traceRelease(trace)
	}

	// Check that all Ps have finished deferred mcache flushes.
	for _, p := range allp {
		if fg := p.mcache.flushGen.Load(); fg != mheap_.sweepgen {
			println("runtime: p", p.id, "flushGen", fg, "!= sweepgen", mheap_.sweepgen)
			throw("p mcache not flushed")
		}
	}

	gcBgMarkStartWorkers()

	systemstack(gcResetMarkState)

	work.stwprocs, work.maxprocs = gomaxprocs, gomaxprocs
	if work.stwprocs > ncpu {
		// This is used to compute CPU time of the STW phases,
		// so it can't be more than ncpu, even if GOMAXPROCS is.
		work.stwprocs = ncpu
	}
	work.heap0 = gcController.heapLive.Load()
	work.pauseNS = 0
	work.mode = mode

	now := nanotime()
	work.tSweepTerm = now
	var stw worldStop
	systemstack(func() {
		stw = stopTheWorldWithSema(stwGCSweepTerm)
	})

	// Accumulate fine-grained stopping time.
	work.cpuStats.accumulateGCPauseTime(stw.stoppingCPUTime, 1)

	// Finish sweep before we start concurrent scan.
	systemstack(func() {
		finishsweep_m()
	})

	// clearpools before we start the GC. If we wait the memory will not be
	// reclaimed until the next GC cycle.
	clearpools()

	work.cycles.Add(1)

	// Assists and workers can start the moment we start
	// the world.
	gcController.startCycle(now, int(gomaxprocs), trigger)

	// Notify the CPU limiter that assists may begin.
	gcCPULimiter.startGCTransition(true, now)

	// In STW mode, disable scheduling of user Gs. This may also
	// disable scheduling of this goroutine, so it may block as
	// soon as we start the world again.
	if mode != gcBackgroundMode {
		schedEnableUser(false)
	}

	// Enter concurrent mark phase and enable
	// write barriers.
	//
	// Because the world is stopped, all Ps will
	// observe that write barriers are enabled by
	// the time we start the world and begin
	// scanning.
	//
	// Write barriers must be enabled before assists are
	// enabled because they must be enabled before
	// any non-leaf heap objects are marked. Since
	// allocations are blocked until assists can
	// happen, we want to enable assists as early as
	// possible.
	setGCPhase(_GCmark)

	gcBgMarkPrepare() // Must happen before assists are enabled.
	gcMarkRootPrepare()

	// Mark all active tinyalloc blocks. Since we're
	// allocating from these, they need to be black like
	// other allocations. The alternative is to blacken
	// the tiny block on every allocation from it, which
	// would slow down the tiny allocator.
	gcMarkTinyAllocs()

	// At this point all Ps have enabled the write
	// barrier, thus maintaining the no white to
	// black invariant. Enable mutator assists to
	// put back-pressure on fast allocating
	// mutators.
	atomic.Store(&gcBlackenEnabled, 1)

	// In STW mode, we could block the instant systemstack
	// returns, so make sure we're not preemptible.
	mp = acquirem()

	// Update the CPU stats pause time.
	//
	// Use maxprocs instead of stwprocs here because the total time
	// computed in the CPU stats is based on maxprocs, and we want them
	// to be comparable.
	work.cpuStats.accumulateGCPauseTime(nanotime()-stw.finishedStopping, work.maxprocs)

	// Concurrent mark.
	systemstack(func() {
		now = startTheWorldWithSema(0, stw)
		work.pauseNS += now - stw.startedStopping
		work.tMark = now

		// Release the CPU limiter.
		gcCPULimiter.finishGCTransition(now)
	})

	// Release the world sema before Gosched() in STW mode
	// because we will need to reacquire it later but before
	// this goroutine becomes runnable again, and we could
	// self-deadlock otherwise.
	semrelease(&worldsema)
	releasem(mp)

	// Make sure we block instead of returning to user code
	// in STW mode.
	if mode != gcBackgroundMode {
		Gosched()
	}

	semrelease(&work.startSema)
}

// gcMarkDoneFlushed counts the number of P's with flushed work.
//
// Ideally this would be a captured local in gcMarkDone, but forEachP
// escapes its callback closure, so it can't capture anything.
//
// This is protected by markDoneSema.
var gcMarkDoneFlushed uint32

// gcMarkDone transitions the GC from mark to mark termination if all
// reachable objects have been marked (that is, there are no grey
// objects and can be no more in the future). Otherwise, it flushes
// all local work to the global queues where it can be discovered by
// other workers.
//
// This should be called when all local mark work has been drained and
// there are no remaining workers. Specifically, when
//
//	work.nwait == work.nproc && !gcMarkWorkAvailable(p)
//
// The calling context must be preemptible.
//
// Flushing local work is important because idle Ps may have local
// work queued. This is the only way to make that work visible and
// drive GC to completion.
//
// It is explicitly okay to have write barriers in this function. If
// it does transition to mark termination, then all reachable objects
// have been marked, so the write barrier cannot shade any more
// objects.
func gcMarkDone() {
	// Ensure only one thread is running the ragged barrier at a
	// time.
	semacquire(&work.markDoneSema)

top:
	// Re-check transition condition under transition lock.
	//
	// It's critical that this checks the global work queues are
	// empty before performing the ragged barrier. Otherwise,
	// there could be global work that a P could take after the P
	// has passed the ragged barrier.
	if !(gcphase == _GCmark && work.nwait == work.nproc && !gcMarkWorkAvailable(nil)) {
		semrelease(&work.markDoneSema)
		return
	}

	// forEachP needs worldsema to execute, and we'll need it to
	// stop the world later, so acquire worldsema now.
	semacquire(&worldsema)

	// Flush all local buffers and collect flushedWork flags.
	gcMarkDoneFlushed = 0
	forEachP(waitReasonGCMarkTermination, func(pp *p) {
		// Flush the write barrier buffer, since this may add
		// work to the gcWork.
		wbBufFlush1(pp)

		// Flush the gcWork, since this may create global work
		// and set the flushedWork flag.
		//
		// TODO(austin): Break up these workbufs to
		// better distribute work.
		pp.gcw.dispose()
		// Collect the flushedWork flag.
		if pp.gcw.flushedWork {
			atomic.Xadd(&gcMarkDoneFlushed, 1)
			pp.gcw.flushedWork = false
		}
	})

	if gcMarkDoneFlushed != 0 {
		// More grey objects were discovered since the
		// previous termination check, so there may be more
		// work to do. Keep going. It's possible the
		// transition condition became true again during the
		// ragged barrier, so re-check it.
		semrelease(&worldsema)
		goto top
	}

	// There was no global work, no local work, and no Ps
	// communicated work since we took markDoneSema. Therefore
	// there are no grey objects and no more objects can be
	// shaded. Transition to mark termination.
	now := nanotime()
	work.tMarkTerm = now
	getg().m.preemptoff = "gcing"
	var stw worldStop
	systemstack(func() {
		stw = stopTheWorldWithSema(stwGCMarkTerm)
	})
	// The gcphase is _GCmark, it will transition to _GCmarktermination
	// below. The important thing is that the wb remains active until
	// all marking is complete. This includes writes made by the GC.

	// Accumulate fine-grained stopping time.
	work.cpuStats.accumulateGCPauseTime(stw.stoppingCPUTime, 1)

	// There is sometimes work left over when we enter mark termination due
	// to write barriers performed after the completion barrier above.
	// Detect this and resume concurrent mark. This is obviously
	// unfortunate.
	//
	// See issue #27993 for details.
	//
	// Switch to the system stack to call wbBufFlush1, though in this case
	// it doesn't matter because we're non-preemptible anyway.
	restart := false
	systemstack(func() {
		for _, p := range allp {
			wbBufFlush1(p)
			if !p.gcw.empty() {
				restart = true
				break
			}
		}
	})
	if restart {
		getg().m.preemptoff = ""
		systemstack(func() {
			// Accumulate the time we were stopped before we had to start again.
			work.cpuStats.accumulateGCPauseTime(nanotime()-stw.finishedStopping, work.maxprocs)

			// Start the world again.
			now := startTheWorldWithSema(0, stw)
			work.pauseNS += now - stw.startedStopping
		})
		semrelease(&worldsema)
		goto top
	}

	gcComputeStartingStackSize()

	// Disable assists and background workers. We must do
	// this before waking blocked assists.
	atomic.Store(&gcBlackenEnabled, 0)

	// Notify the CPU limiter that GC assists will now cease.
	gcCPULimiter.startGCTransition(false, now)

	// Wake all blocked assists. These will run when we
	// start the world again.
	gcWakeAllAssists()

	// Likewise, release the transition lock. Blocked
	// workers and assists will run when we start the
	// world again.
	semrelease(&work.markDoneSema)

	// In STW mode, re-enable user goroutines. These will be
	// queued to run after we start the world.
	schedEnableUser(true)

	// endCycle depends on all gcWork cache stats being flushed.
	// The termination algorithm above ensured that up to
	// allocations since the ragged barrier.
	gcController.endCycle(now, int(gomaxprocs), work.userForced)

	// Perform mark termination. This will restart the world.
	gcMarkTermination(stw)
}

// World must be stopped and mark assists and background workers must be
// disabled.
func gcMarkTermination(stw worldStop) {
	// Start marktermination (write barrier remains enabled for now).
	setGCPhase(_GCmarktermination)

	work.heap1 = gcController.heapLive.Load()
	startTime := nanotime()

	mp := acquirem()
	mp.preemptoff = "gcing"
	mp.traceback = 2
	curgp := mp.curg
	// N.B. The execution tracer is not aware of this status
	// transition and handles it specially based on the
	// wait reason.
	casGToWaitingForGC(curgp, _Grunning, waitReasonGarbageCollection)

	// Run gc on the g0 stack. We do this so that the g stack
	// we're currently running on will no longer change. Cuts
	// the root set down a bit (g0 stacks are not scanned, and
	// we don't need to scan gc's internal state).  We also
	// need to switch to g0 so we can shrink the stack.
	systemstack(func() {
		gcMark(startTime)
		// Must return immediately.
		// The outer function's stack may have moved
		// during gcMark (it shrinks stacks, including the
		// outer function's stack), so we must not refer
		// to any of its variables. Return back to the
		// non-system stack to pick up the new addresses
		// before continuing.
	})

	var stwSwept bool
	systemstack(func() {
		work.heap2 = work.bytesMarked
		if debug.gccheckmark > 0 {
			// Run a full non-parallel, stop-the-world
			// mark using checkmark bits, to check that we
			// didn't forget to mark anything during the
			// concurrent mark process.
			startCheckmarks()
			gcResetMarkState()
			gcw := &getg().m.p.ptr().gcw
			gcDrain(gcw, 0)
			wbBufFlush1(getg().m.p.ptr())
			gcw.dispose()
			endCheckmarks()
		}

		// marking is complete so we can turn the write barrier off
		setGCPhase(_GCoff)
		stwSwept = gcSweep(work.mode)
	})

	mp.traceback = 0
	casgstatus(curgp, _Gwaiting, _Grunning)

	trace := traceAcquire()
	if trace.ok() {
		trace.GCDone()
		traceRelease(trace)
	}

	// all done
	mp.preemptoff = ""

	if gcphase != _GCoff {
		throw("gc done but gcphase != _GCoff")
	}

	// Record heapInUse for scavenger.
	memstats.lastHeapInUse = gcController.heapInUse.load()

	// Update GC trigger and pacing, as well as downstream consumers
	// of this pacing information, for the next cycle.
	systemstack(gcControllerCommit)

	// Update timing memstats
	now := nanotime()
	sec, nsec, _ := time_now()
	unixNow := sec*1e9 + int64(nsec)
	work.pauseNS += now - stw.startedStopping
	work.tEnd = now
	atomic.Store64(&memstats.last_gc_unix, uint64(unixNow)) // must be Unix time to make sense to user
	atomic.Store64(&memstats.last_gc_nanotime, uint64(now)) // monotonic time for us
	memstats.pause_ns[memstats.numgc%uint32(len(memstats.pause_ns))] = uint64(work.pauseNS)
	memstats.pause_end[memstats.numgc%uint32(len(memstats.pause_end))] = uint64(unixNow)
	memstats.pause_total_ns += uint64(work.pauseNS)

	// Accumulate CPU stats.
	//
	// Use maxprocs instead of stwprocs for GC pause time because the total time
	// computed in the CPU stats is based on maxprocs, and we want them to be
	// comparable.
	//
	// Pass gcMarkPhase=true to accumulate so we can get all the latest GC CPU stats
	// in there too.
	work.cpuStats.accumulateGCPauseTime(now-stw.finishedStopping, work.maxprocs)
	work.cpuStats.accumulate(now, true)

	// Compute overall GC CPU utilization.
	// Omit idle marking time from the overall utilization here since it's "free".
	memstats.gc_cpu_fraction = float64(work.cpuStats.GCTotalTime-work.cpuStats.GCIdleTime) / float64(work.cpuStats.TotalTime)

	// Reset assist time and background time stats.
	//
	// Do this now, instead of at the start of the next GC cycle, because
	// these two may keep accumulating even if the GC is not active.
	scavenge.assistTime.Store(0)
	scavenge.backgroundTime.Store(0)

	// Reset idle time stat.
	sched.idleTime.Store(0)

	if work.userForced {
		memstats.numforcedgc++
	}

	// Bump GC cycle count and wake goroutines waiting on sweep.
	lock(&work.sweepWaiters.lock)
	memstats.numgc++
	injectglist(&work.sweepWaiters.list)
	unlock(&work.sweepWaiters.lock)

	// Increment the scavenge generation now.
	//
	// This moment represents peak heap in use because we're
	// about to start sweeping.
	mheap_.pages.scav.index.nextGen()

	// Release the CPU limiter.
	gcCPULimiter.finishGCTransition(now)

	// Finish the current heap profiling cycle and start a new
	// heap profiling cycle. We do this before starting the world
	// so events don't leak into the wrong cycle.
	mProf_NextCycle()

	// There may be stale spans in mcaches that need to be swept.
	// Those aren't tracked in any sweep lists, so we need to
	// count them against sweep completion until we ensure all
	// those spans have been forced out.
	//
	// If gcSweep fully swept the heap (for example if the sweep
	// is not concurrent due to a GODEBUG setting), then we expect
	// the sweepLocker to be invalid, since sweeping is done.
	//
	// N.B. Below we might duplicate some work from gcSweep; this is
	// fine as all that work is idempotent within a GC cycle, and
	// we're still holding worldsema so a new cycle can't start.
	sl := sweep.active.begin()
	if !stwSwept && !sl.valid {
		throw("failed to set sweep barrier")
	} else if stwSwept && sl.valid {
		throw("non-concurrent sweep failed to drain all sweep queues")
	}

	systemstack(func() {
		// The memstats updated above must be updated with the world
		// stopped to ensure consistency of some values, such as
		// sched.idleTime and sched.totaltime. memstats also include
		// the pause time (work,pauseNS), forcing computation of the
		// total pause time before the pause actually ends.
		//
		// Here we reuse the same now for start the world so that the
		// time added to /sched/pauses/total/gc:seconds will be
		// consistent with the value in memstats.
		startTheWorldWithSema(now, stw)
	})

	// Flush the heap profile so we can start a new cycle next GC.
	// This is relatively expensive, so we don't do it with the
	// world stopped.
	mProf_Flush()

	// Prepare workbufs for freeing by the sweeper. We do this
	// asynchronously because it can take non-trivial time.
	prepareFreeWorkbufs()

	// Free stack spans. This must be done between GC cycles.
	systemstack(freeStackSpans)

	// Ensure all mcaches are flushed. Each P will flush its own
	// mcache before allocating, but idle Ps may not. Since this
	// is necessary to sweep all spans, we need to ensure all
	// mcaches are flushed before we start the next GC cycle.
	//
	// While we're here, flush the page cache for idle Ps to avoid
	// having pages get stuck on them. These pages are hidden from
	// the scavenger, so in small idle heaps a significant amount
	// of additional memory might be held onto.
	//
	// Also, flush the pinner cache, to avoid leaking that memory
	// indefinitely.
	forEachP(waitReasonFlushProcCaches, func(pp *p) {
		pp.mcache.prepareForSweep()
		if pp.status == _Pidle {
			systemstack(func() {
				lock(&mheap_.lock)
				pp.pcache.flush(&mheap_.pages)
				unlock(&mheap_.lock)
			})
		}
		pp.pinnerCache = nil
	})
	if sl.valid {
		// Now that we've swept stale spans in mcaches, they don't
		// count against unswept spans.
		//
		// Note: this sweepLocker may not be valid if sweeping had
		// already completed during the STW. See the corresponding
		// begin() call that produced sl.
		sweep.active.end(sl)
	}

	// Print gctrace before dropping worldsema. As soon as we drop
	// worldsema another cycle could start and smash the stats
	// we're trying to print.
	if debug.gctrace > 0 {
		util := int(memstats.gc_cpu_fraction * 100)

		var sbuf [24]byte
		printlock()
		print("gc ", memstats.numgc,
			" @", string(itoaDiv(sbuf[:], uint64(work.tSweepTerm-runtimeInitTime)/1e6, 3)), "s ",
			util, "%: ")
		prev := work.tSweepTerm
		for i, ns := range []int64{work.tMark, work.tMarkTerm, work.tEnd} {
			if i != 0 {
				print("+")
			}
			print(string(fmtNSAsMS(sbuf[:], uint64(ns-prev))))
			prev = ns
		}
		print(" ms clock, ")
		for i, ns := range []int64{
			int64(work.stwprocs) * (work.tMark - work.tSweepTerm),
			gcController.assistTime.Load(),
			gcController.dedicatedMarkTime.Load() + gcController.fractionalMarkTime.Load(),
			gcController.idleMarkTime.Load(),
			int64(work.stwprocs) * (work.tEnd - work.tMarkTerm),
		} {
			if i == 2 || i == 3 {
				// Separate mark time components with /.
				print("/")
			} else if i != 0 {
				print("+")
			}
			print(string(fmtNSAsMS(sbuf[:], uint64(ns))))
		}
		print(" ms cpu, ",
			work.heap0>>20, "->", work.heap1>>20, "->", work.heap2>>20, " MB, ",
			gcController.lastHeapGoal>>20, " MB goal, ",
			gcController.lastStackScan.Load()>>20, " MB stacks, ",
			gcController.globalsScan.Load()>>20, " MB globals, ",
			work.maxprocs, " P")
		if work.userForced {
			print(" (forced)")
		}
		print("\n")
		printunlock()
	}

	// Set any arena chunks that were deferred to fault.
	lock(&userArenaState.lock)
	faultList := userArenaState.fault
	userArenaState.fault = nil
	unlock(&userArenaState.lock)
	for _, lc := range faultList {
		lc.mspan.setUserArenaChunkToFault()
	}

	// Enable huge pages on some metadata if we cross a heap threshold.
	if gcController.heapGoal() > minHeapForMetadataHugePages {
		systemstack(func() {
			mheap_.enableMetadataHugePages()
		})
	}

	semrelease(&worldsema)
	semrelease(&gcsema)
	// Careful: another GC cycle may start now.

	releasem(mp)
	mp = nil

	// now that gc is done, kick off finalizer thread if needed
	if !concurrentSweep {
		// give the queued finalizers, if any, a chance to run
		Gosched()
	}
}

// gcBgMarkStartWorkers prepares background mark worker goroutines. These
// goroutines will not run until the mark phase, but they must be started while
// the work is not stopped and from a regular G stack. The caller must hold
// worldsema.
func gcBgMarkStartWorkers() {
	// Background marking is performed by per-P G's. Ensure that each P has
	// a background GC G.
	//
	// Worker Gs don't exit if gomaxprocs is reduced. If it is raised
	// again, we can reuse the old workers; no need to create new workers.
	if gcBgMarkWorkerCount >= gomaxprocs {
		return
	}

	// Increment mp.locks when allocating. We are called within gcStart,
	// and thus must not trigger another gcStart via an allocation. gcStart
	// bails when allocating with locks held, so simulate that for these
	// allocations.
	//
	// TODO(prattmic): cleanup gcStart to use a more explicit "in gcStart"
	// check for bailing.
	mp := acquirem()
	ready := make(chan struct{}, 1)
	releasem(mp)

	for gcBgMarkWorkerCount < gomaxprocs {
		mp := acquirem() // See above, we allocate a closure here.
		go gcBgMarkWorker(ready)
		releasem(mp)

		// N.B. we intentionally wait on each goroutine individually
		// rather than starting all in a batch and then waiting once
		// afterwards. By running one goroutine at a time, we can take
		// advantage of runnext to bounce back and forth between
		// workers and this goroutine. In an overloaded application,
		// this can reduce GC start latency by prioritizing these
		// goroutines rather than waiting on the end of the run queue.
		<-ready
		// The worker is now guaranteed to be added to the pool before
		// its P's next findRunnableGCWorker.

		gcBgMarkWorkerCount++
	}
}

// gcBgMarkPrepare sets up state for background marking.
// Mutator assists must not yet be enabled.
func gcBgMarkPrepare() {
	// Background marking will stop when the work queues are empty
	// and there are no more workers (note that, since this is
	// concurrent, this may be a transient state, but mark
	// termination will clean it up). Between background workers
	// and assists, we don't really know how many workers there
	// will be, so we pretend to have an arbitrarily large number
	// of workers, almost all of which are "waiting". While a
	// worker is working it decrements nwait. If nproc == nwait,
	// there are no workers.
	work.nproc = ^uint32(0)
	work.nwait = ^uint32(0)
}

// gcBgMarkWorkerNode is an entry in the gcBgMarkWorkerPool. It points to a single
// gcBgMarkWorker goroutine.
type gcBgMarkWorkerNode struct {
	// Unused workers are managed in a lock-free stack. This field must be first.
	node lfnode

	// The g of this worker.
	gp guintptr

	// Release this m on park. This is used to communicate with the unlock
	// function, which cannot access the G's stack. It is unused outside of
	// gcBgMarkWorker().
	m muintptr
}

func gcBgMarkWorker(ready chan struct{}) {
	gp := getg()

	// We pass node to a gopark unlock function, so it can't be on
	// the stack (see gopark). Prevent deadlock from recursively
	// starting GC by disabling preemption.
	gp.m.preemptoff = "GC worker init"
	node := new(gcBgMarkWorkerNode)
	gp.m.preemptoff = ""

	node.gp.set(gp)

	node.m.set(acquirem())

	ready <- struct{}{}
	// After this point, the background mark worker is generally scheduled
	// cooperatively by gcController.findRunnableGCWorker. While performing
	// work on the P, preemption is disabled because we are working on
	// P-local work buffers. When the preempt flag is set, this puts itself
	// into _Gwaiting to be woken up by gcController.findRunnableGCWorker
	// at the appropriate time.
	//
	// When preemption is enabled (e.g., while in gcMarkDone), this worker
	// may be preempted and schedule as a _Grunnable G from a runq. That is
	// fine; it will eventually gopark again for further scheduling via
	// findRunnableGCWorker.
	//
	// Since we disable preemption before notifying ready, we guarantee that
	// this G will be in the worker pool for the next findRunnableGCWorker.
	// This isn't strictly necessary, but it reduces latency between
	// _GCmark starting and the workers starting.

	for {
		// Go to sleep until woken by
		// gcController.findRunnableGCWorker.
		gopark(func(g *g, nodep unsafe.Pointer) bool {
			node := (*gcBgMarkWorkerNode)(nodep)

			if mp := node.m.ptr(); mp != nil {
				// The worker G is no longer running; release
				// the M.
				//
				// N.B. it is _safe_ to release the M as soon
				// as we are no longer performing P-local mark
				// work.
				//
				// However, since we cooperatively stop work
				// when gp.preempt is set, if we releasem in
				// the loop then the following call to gopark
				// would immediately preempt the G. This is
				// also safe, but inefficient: the G must
				// schedule again only to enter gopark and park
				// again. Thus, we defer the release until
				// after parking the G.
				releasem(mp)
			}

			// Release this G to the pool.
			gcBgMarkWorkerPool.push(&node.node)
			// Note that at this point, the G may immediately be
			// rescheduled and may be running.
			return true
		}, unsafe.Pointer(node), waitReasonGCWorkerIdle, traceBlockSystemGoroutine, 0)

		// Preemption must not occur here, or another G might see
		// p.gcMarkWorkerMode.

		// Disable preemption so we can use the gcw. If the
		// scheduler wants to preempt us, we'll stop draining,
		// dispose the gcw, and then preempt.
		node.m.set(acquirem())
		pp := gp.m.p.ptr() // P can't change with preemption disabled.

		if gcBlackenEnabled == 0 {
			println("worker mode", pp.gcMarkWorkerMode)
			throw("gcBgMarkWorker: blackening not enabled")
		}

		if pp.gcMarkWorkerMode == gcMarkWorkerNotWorker {
			throw("gcBgMarkWorker: mode not set")
		}

		startTime := nanotime()
		pp.gcMarkWorkerStartTime = startTime
		var trackLimiterEvent bool
		if pp.gcMarkWorkerMode == gcMarkWorkerIdleMode {
			trackLimiterEvent = pp.limiterEvent.start(limiterEventIdleMarkWork, startTime)
		}

		decnwait := atomic.Xadd(&work.nwait, -1)
		if decnwait == work.nproc {
			println("runtime: work.nwait=", decnwait, "work.nproc=", work.nproc)
			throw("work.nwait was > work.nproc")
		}

		systemstack(func() {
			// Mark our goroutine preemptible so its stack
			// can be scanned. This lets two mark workers
			// scan each other (otherwise, they would
			// deadlock). We must not modify anything on
			// the G stack. However, stack shrinking is
			// disabled for mark workers, so it is safe to
			// read from the G stack.
			//
			// N.B. The execution tracer is not aware of this status
			// transition and handles it specially based on the
			// wait reason.
			casGToWaitingForGC(gp, _Grunning, waitReasonGCWorkerActive)
			switch pp.gcMarkWorkerMode {
			default:
				throw("gcBgMarkWorker: unexpected gcMarkWorkerMode")
			case gcMarkWorkerDedicatedMode:
				gcDrainMarkWorkerDedicated(&pp.gcw, true)
				if gp.preempt {
					// We were preempted. This is
					// a useful signal to kick
					// everything out of the run
					// queue so it can run
					// somewhere else.
					if drainQ, n := runqdrain(pp); n > 0 {
						lock(&sched.lock)
						globrunqputbatch(&drainQ, int32(n))
						unlock(&sched.lock)
					}
				}
				// Go back to draining, this time
				// without preemption.
				gcDrainMarkWorkerDedicated(&pp.gcw, false)
			case gcMarkWorkerFractionalMode:
				gcDrainMarkWorkerFractional(&pp.gcw)
			case gcMarkWorkerIdleMode:
				gcDrainMarkWorkerIdle(&pp.gcw)
			}
			casgstatus(gp, _Gwaiting, _Grunning)
		})

		// Account for time and mark us as stopped.
		now := nanotime()
		duration := now - startTime
		gcController.markWorkerStop(pp.gcMarkWorkerMode, duration)
		if trackLimiterEvent {
			pp.limiterEvent.stop(limiterEventIdleMarkWork, now)
		}
		if pp.gcMarkWorkerMode == gcMarkWorkerFractionalMode {
			atomic.Xaddint64(&pp.gcFractionalMarkTime, duration)
		}

		// Was this the last worker and did we run out
		// of work?
		incnwait := atomic.Xadd(&work.nwait, +1)
		if incnwait > work.nproc {
			println("runtime: p.gcMarkWorkerMode=", pp.gcMarkWorkerMode,
				"work.nwait=", incnwait, "work.nproc=", work.nproc)
			throw("work.nwait > work.nproc")
		}

		// We'll releasem after this point and thus this P may run
		// something else. We must clear the worker mode to avoid
		// attributing the mode to a different (non-worker) G in
		// traceGoStart.
		pp.gcMarkWorkerMode = gcMarkWorkerNotWorker

		// If this worker reached a background mark completion
		// point, signal the main GC goroutine.
		if incnwait == work.nproc && !gcMarkWorkAvailable(nil) {
			// We don't need the P-local buffers here, allow
			// preemption because we may schedule like a regular
			// goroutine in gcMarkDone (block on locks, etc).
			releasem(node.m.ptr())
			node.m.set(nil)

			gcMarkDone()
		}
	}
}

// gcMarkWorkAvailable reports whether executing a mark worker
// on p is potentially useful. p may be nil, in which case it only
// checks the global sources of work.
func gcMarkWorkAvailable(p *p) bool {
	if p != nil && !p.gcw.empty() {
		return true
	}
	if !work.full.empty() {
		return true // global work available
	}
	if work.markrootNext < work.markrootJobs {
		return true // root scan work available
	}
	return false
}

// gcMark runs the mark (or, for concurrent GC, mark termination)
// All gcWork caches must be empty.
// STW is in effect at this point.
func gcMark(startTime int64) {
	if debug.allocfreetrace > 0 {
		tracegc()
	}

	if gcphase != _GCmarktermination {
		throw("in gcMark expecting to see gcphase as _GCmarktermination")
	}
	work.tstart = startTime

	// Check that there's no marking work remaining.
	if work.full != 0 || work.markrootNext < work.markrootJobs {
		print("runtime: full=", hex(work.full), " next=", work.markrootNext, " jobs=", work.markrootJobs, " nDataRoots=", work.nDataRoots, " nBSSRoots=", work.nBSSRoots, " nSpanRoots=", work.nSpanRoots, " nStackRoots=", work.nStackRoots, "\n")
		panic("non-empty mark queue after concurrent mark")
	}

	if debug.gccheckmark > 0 {
		// This is expensive when there's a large number of
		// Gs, so only do it if checkmark is also enabled.
		gcMarkRootCheck()
	}

	// Drop allg snapshot. allgs may have grown, in which case
	// this is the only reference to the old backing store and
	// there's no need to keep it around.
	work.stackRoots = nil

	// Clear out buffers and double-check that all gcWork caches
	// are empty. This should be ensured by gcMarkDone before we
	// enter mark termination.
	//
	// TODO: We could clear out buffers just before mark if this
	// has a non-negligible impact on STW time.
	for _, p := range allp {
		// The write barrier may have buffered pointers since
		// the gcMarkDone barrier. However, since the barrier
		// ensured all reachable objects were marked, all of
		// these must be pointers to black objects. Hence we
		// can just discard the write barrier buffer.
		if debug.gccheckmark > 0 {
			// For debugging, flush the buffer and make
			// sure it really was all marked.
			wbBufFlush1(p)
		} else {
			p.wbBuf.reset()
		}

		gcw := &p.gcw
		if !gcw.empty() {
			printlock()
			print("runtime: P ", p.id, " flushedWork ", gcw.flushedWork)
			if gcw.wbuf1 == nil {
				print(" wbuf1=<nil>")
			} else {
				print(" wbuf1.n=", gcw.wbuf1.nobj)
			}
			if gcw.wbuf2 == nil {
				print(" wbuf2=<nil>")
			} else {
				print(" wbuf2.n=", gcw.wbuf2.nobj)
			}
			print("\n")
			throw("P has cached GC work at end of mark termination")
		}
		// There may still be cached empty buffers, which we
		// need to flush since we're going to free them. Also,
		// there may be non-zero stats because we allocated
		// black after the gcMarkDone barrier.
		gcw.dispose()
	}

	// Flush scanAlloc from each mcache since we're about to modify
	// heapScan directly. If we were to flush this later, then scanAlloc
	// might have incorrect information.
	//
	// Note that it's not important to retain this information; we know
	// exactly what heapScan is at this point via scanWork.
	for _, p := range allp {
		c := p.mcache
		if c == nil {
			continue
		}
		c.scanAlloc = 0
	}

	// Reset controller state.
	gcController.resetLive(work.bytesMarked)
}

// gcSweep must be called on the system stack because it acquires the heap
// lock. See mheap for details.
//
// Returns true if the heap was fully swept by this function.
//
// The world must be stopped.
//
//go:systemstack
func gcSweep(mode gcMode) bool {
	assertWorldStopped()

	if gcphase != _GCoff {
		throw("gcSweep being done but phase is not GCoff")
	}

	lock(&mheap_.lock)
	mheap_.sweepgen += 2
	sweep.active.reset()
	mheap_.pagesSwept.Store(0)
	mheap_.sweepArenas = mheap_.allArenas
	mheap_.reclaimIndex.Store(0)
	mheap_.reclaimCredit.Store(0)
	unlock(&mheap_.lock)

	sweep.centralIndex.clear()

	if !concurrentSweep || mode == gcForceBlockMode {
		// Special case synchronous sweep.
		// Record that no proportional sweeping has to happen.
		lock(&mheap_.lock)
		mheap_.sweepPagesPerByte = 0
		unlock(&mheap_.lock)
		// Flush all mcaches.
		for _, pp := range allp {
			pp.mcache.prepareForSweep()
		}
		// Sweep all spans eagerly.
		for sweepone() != ^uintptr(0) {
		}
		// Free workbufs eagerly.
		prepareFreeWorkbufs()
		for freeSomeWbufs(false) {
		}
		// All "free" events for this mark/sweep cycle have
		// now happened, so we can make this profile cycle
		// available immediately.
		mProf_NextCycle()
		mProf_Flush()
		return true
	}

	// Background sweep.
	lock(&sweep.lock)
	if sweep.parked {
		sweep.parked = false
		ready(sweep.g, 0, true)
	}
	unlock(&sweep.lock)
	return false
}

// gcResetMarkState resets global state prior to marking (concurrent
// or STW) and resets the stack scan state of all Gs.
//
// This is safe to do without the world stopped because any Gs created
// during or after this will start out in the reset state.
//
// gcResetMarkState must be called on the system stack because it acquires
// the heap lock. See mheap for details.
//
//go:systemstack
func gcResetMarkState() {
	// This may be called during a concurrent phase, so lock to make sure
	// allgs doesn't change.
	forEachG(func(gp *g) {
		gp.gcscandone = false // set to true in gcphasework
		gp.gcAssistBytes = 0
	})

	// Clear page marks. This is just 1MB per 64GB of heap, so the
	// time here is pretty trivial.
	lock(&mheap_.lock)
	arenas := mheap_.allArenas
	unlock(&mheap_.lock)
	for _, ai := range arenas {
		ha := mheap_.arenas[ai.l1()][ai.l2()]
		clear(ha.pageMarks[:])
	}

	work.bytesMarked = 0
	work.initialHeapLive = gcController.heapLive.Load()
}

// Hooks for other packages

var poolcleanup func()
var boringCaches []unsafe.Pointer  // for crypto/internal/boring
var uniqueMapCleanup chan struct{} // for unique

//go:linkname sync_runtime_registerPoolCleanup sync.runtime_registerPoolCleanup
func sync_runtime_registerPoolCleanup(f func()) {
	poolcleanup = f
}

//go:linkname boring_registerCache crypto/internal/boring/bcache.registerCache
func boring_registerCache(p unsafe.Pointer) {
	boringCaches = append(boringCaches, p)
}

//go:linkname unique_runtime_registerUniqueMapCleanup unique.runtime_registerUniqueMapCleanup
func unique_runtime_registerUniqueMapCleanup(f func()) {
	// Start the goroutine in the runtime so it's counted as a system goroutine.
	uniqueMapCleanup = make(chan struct{}, 1)
	go func(cleanup func()) {
		for {
			<-uniqueMapCleanup
			cleanup()
		}
	}(f)
}

func clearpools() {
	// clear sync.Pools
	if poolcleanup != nil {
		poolcleanup()
	}

	// clear boringcrypto caches
	for _, p := range boringCaches {
		atomicstorep(p, nil)
	}

	// clear unique maps
	if uniqueMapCleanup != nil {
		select {
		case uniqueMapCleanup <- struct{}{}:
		default:
		}
	}

	// Clear central sudog cache.
	// Leave per-P caches alone, they have strictly bounded size.
	// Disconnect cached list before dropping it on the floor,
	// so that a dangling ref to one entry does not pin all of them.
	lock(&sched.sudoglock)
	var sg, sgnext *sudog
	for sg = sched.sudogcache; sg != nil; sg = sgnext {
		sgnext = sg.next
		sg.next = nil
	}
	sched.sudogcache = nil
	unlock(&sched.sudoglock)

	// Clear central defer pool.
	// Leave per-P pools alone, they have strictly bounded size.
	lock(&sched.deferlock)
	// disconnect cached list before dropping it on the floor,
	// so that a dangling ref to one entry does not pin all of them.
	var d, dlink *_defer
	for d = sched.deferpool; d != nil; d = dlink {
		dlink = d.link
		d.link = nil
	}
	sched.deferpool = nil
	unlock(&sched.deferlock)
}

// Timing

// itoaDiv formats val/(10**dec) into buf.
func itoaDiv(buf []byte, val uint64, dec int) []byte {
	i := len(buf) - 1
	idec := i - dec
	for val >= 10 || i >= idec {
		buf[i] = byte(val%10 + '0')
		i--
		if i == idec {
			buf[i] = '.'
			i--
		}
		val /= 10
	}
	buf[i] = byte(val + '0')
	return buf[i:]
}

// fmtNSAsMS nicely formats ns nanoseconds as milliseconds.
func fmtNSAsMS(buf []byte, ns uint64) []byte {
	if ns >= 10e6 {
		// Format as whole milliseconds.
		return itoaDiv(buf, ns/1e6, 0)
	}
	// Format two digits of precision, with at most three decimal places.
	x := ns / 1e3
	if x == 0 {
		buf[0] = '0'
		return buf[:1]
	}
	dec := 3
	for x >= 100 {
		x /= 10
		dec--
	}
	return itoaDiv(buf, x, dec)
}

// Helpers for testing GC.

// gcTestMoveStackOnNextCall causes the stack to be moved on a call
// immediately following the call to this. It may not work correctly
// if any other work appears after this call (such as returning).
// Typically the following call should be marked go:noinline so it
// performs a stack check.
//
// In rare cases this may not cause the stack to move, specifically if
// there's a preemption between this call and the next.
func gcTestMoveStackOnNextCall() {
	gp := getg()
	gp.stackguard0 = stackForceMove
}

// gcTestIsReachable performs a GC and returns a bit set where bit i
// is set if ptrs[i] is reachable.
func gcTestIsReachable(ptrs ...unsafe.Pointer) (mask uint64) {
	// This takes the pointers as unsafe.Pointers in order to keep
	// them live long enough for us to attach specials. After
	// that, we drop our references to them.

	if len(ptrs) > 64 {
		panic("too many pointers for uint64 mask")
	}

	// Block GC while we attach specials and drop our references
	// to ptrs. Otherwise, if a GC is in progress, it could mark
	// them reachable via this function before we have a chance to
	// drop them.
	semacquire(&gcsema)

	// Create reachability specials for ptrs.
	specials := make([]*specialReachable, len(ptrs))
	for i, p := range ptrs {
		lock(&mheap_.speciallock)
		s := (*specialReachable)(mheap_.specialReachableAlloc.alloc())
		unlock(&mheap_.speciallock)
		s.special.kind = _KindSpecialReachable
		if !addspecial(p, &s.special) {
			throw("already have a reachable special (duplicate pointer?)")
		}
		specials[i] = s
		// Make sure we don't retain ptrs.
		ptrs[i] = nil
	}

	semrelease(&gcsema)

	// Force a full GC and sweep.
	GC()

	// Process specials.
	for i, s := range specials {
		if !s.done {
			printlock()
			println("runtime: object", i, "was not swept")
			throw("IsReachable failed")
		}
		if s.reachable {
			mask |= 1 << i
		}
		lock(&mheap_.speciallock)
		mheap_.specialReachableAlloc.free(unsafe.Pointer(s))
		unlock(&mheap_.speciallock)
	}

	return mask
}

// gcTestPointerClass returns the category of what p points to, one of:
// "heap", "stack", "data", "bss", "other". This is useful for checking
// that a test is doing what it's intended to do.
//
// This is nosplit simply to avoid extra pointer shuffling that may
// complicate a test.
//
//go:nosplit
func gcTestPointerClass(p unsafe.Pointer) string {
	p2 := uintptr(noescape(p))
	gp := getg()
	if gp.stack.lo <= p2 && p2 < gp.stack.hi {
		return "stack"
	}
	if base, _, _ := findObject(p2, 0, 0); base != 0 {
		return "heap"
	}
	for _, datap := range activeModules() {
		if datap.data <= p2 && p2 < datap.edata || datap.noptrdata <= p2 && p2 < datap.enoptrdata {
			return "data"
		}
		if datap.bss <= p2 && p2 < datap.ebss || datap.noptrbss <= p2 && p2 <= datap.enoptrbss {
			return "bss"
		}
	}
	KeepAlive(p)
	return "other"
}