aboutsummaryrefslogtreecommitdiff
path: root/src/go/types/initorder.go
blob: d23844027938ae2f4c6ae976723f377d9f3ca3c2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
// Code generated by "go test -run=Generate -write=all"; DO NOT EDIT.

// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package types

import (
	"container/heap"
	"fmt"
	. "internal/types/errors"
	"sort"
)

// initOrder computes the Info.InitOrder for package variables.
func (check *Checker) initOrder() {
	// An InitOrder may already have been computed if a package is
	// built from several calls to (*Checker).Files. Clear it.
	check.Info.InitOrder = check.Info.InitOrder[:0]

	// Compute the object dependency graph and initialize
	// a priority queue with the list of graph nodes.
	pq := nodeQueue(dependencyGraph(check.objMap))
	heap.Init(&pq)

	const debug = false
	if debug {
		fmt.Printf("Computing initialization order for %s\n\n", check.pkg)
		fmt.Println("Object dependency graph:")
		for obj, d := range check.objMap {
			// only print objects that may appear in the dependency graph
			if obj, _ := obj.(dependency); obj != nil {
				if len(d.deps) > 0 {
					fmt.Printf("\t%s depends on\n", obj.Name())
					for dep := range d.deps {
						fmt.Printf("\t\t%s\n", dep.Name())
					}
				} else {
					fmt.Printf("\t%s has no dependencies\n", obj.Name())
				}
			}
		}
		fmt.Println()

		fmt.Println("Transposed object dependency graph (functions eliminated):")
		for _, n := range pq {
			fmt.Printf("\t%s depends on %d nodes\n", n.obj.Name(), n.ndeps)
			for p := range n.pred {
				fmt.Printf("\t\t%s is dependent\n", p.obj.Name())
			}
		}
		fmt.Println()

		fmt.Println("Processing nodes:")
	}

	// Determine initialization order by removing the highest priority node
	// (the one with the fewest dependencies) and its edges from the graph,
	// repeatedly, until there are no nodes left.
	// In a valid Go program, those nodes always have zero dependencies (after
	// removing all incoming dependencies), otherwise there are initialization
	// cycles.
	emitted := make(map[*declInfo]bool)
	for len(pq) > 0 {
		// get the next node
		n := heap.Pop(&pq).(*graphNode)

		if debug {
			fmt.Printf("\t%s (src pos %d) depends on %d nodes now\n",
				n.obj.Name(), n.obj.order(), n.ndeps)
		}

		// if n still depends on other nodes, we have a cycle
		if n.ndeps > 0 {
			cycle := findPath(check.objMap, n.obj, n.obj, make(map[Object]bool))
			// If n.obj is not part of the cycle (e.g., n.obj->b->c->d->c),
			// cycle will be nil. Don't report anything in that case since
			// the cycle is reported when the algorithm gets to an object
			// in the cycle.
			// Furthermore, once an object in the cycle is encountered,
			// the cycle will be broken (dependency count will be reduced
			// below), and so the remaining nodes in the cycle don't trigger
			// another error (unless they are part of multiple cycles).
			if cycle != nil {
				check.reportCycle(cycle)
			}
			// Ok to continue, but the variable initialization order
			// will be incorrect at this point since it assumes no
			// cycle errors.
		}

		// reduce dependency count of all dependent nodes
		// and update priority queue
		for p := range n.pred {
			p.ndeps--
			heap.Fix(&pq, p.index)
		}

		// record the init order for variables with initializers only
		v, _ := n.obj.(*Var)
		info := check.objMap[v]
		if v == nil || !info.hasInitializer() {
			continue
		}

		// n:1 variable declarations such as: a, b = f()
		// introduce a node for each lhs variable (here: a, b);
		// but they all have the same initializer - emit only
		// one, for the first variable seen
		if emitted[info] {
			continue // initializer already emitted, if any
		}
		emitted[info] = true

		infoLhs := info.lhs // possibly nil (see declInfo.lhs field comment)
		if infoLhs == nil {
			infoLhs = []*Var{v}
		}
		init := &Initializer{infoLhs, info.init}
		check.Info.InitOrder = append(check.Info.InitOrder, init)
	}

	if debug {
		fmt.Println()
		fmt.Println("Initialization order:")
		for _, init := range check.Info.InitOrder {
			fmt.Printf("\t%s\n", init)
		}
		fmt.Println()
	}
}

// findPath returns the (reversed) list of objects []Object{to, ... from}
// such that there is a path of object dependencies from 'from' to 'to'.
// If there is no such path, the result is nil.
func findPath(objMap map[Object]*declInfo, from, to Object, seen map[Object]bool) []Object {
	if seen[from] {
		return nil
	}
	seen[from] = true

	for d := range objMap[from].deps {
		if d == to {
			return []Object{d}
		}
		if P := findPath(objMap, d, to, seen); P != nil {
			return append(P, d)
		}
	}

	return nil
}

// reportCycle reports an error for the given cycle.
func (check *Checker) reportCycle(cycle []Object) {
	obj := cycle[0]

	// report a more concise error for self references
	if len(cycle) == 1 {
		check.errorf(obj, InvalidInitCycle, "initialization cycle: %s refers to itself", obj.Name())
		return
	}

	err := check.newError(InvalidInitCycle)
	err.addf(obj, "initialization cycle for %s", obj.Name())
	// subtle loop: print cycle[i] for i = 0, n-1, n-2, ... 1 for len(cycle) = n
	for i := len(cycle) - 1; i >= 0; i-- {
		err.addf(obj, "%s refers to", obj.Name())
		obj = cycle[i]
	}
	// print cycle[0] again to close the cycle
	err.addf(obj, "%s", obj.Name())
	err.report()
}

// ----------------------------------------------------------------------------
// Object dependency graph

// A dependency is an object that may be a dependency in an initialization
// expression. Only constants, variables, and functions can be dependencies.
// Constants are here because constant expression cycles are reported during
// initialization order computation.
type dependency interface {
	Object
	isDependency()
}

// A graphNode represents a node in the object dependency graph.
// Each node p in n.pred represents an edge p->n, and each node
// s in n.succ represents an edge n->s; with a->b indicating that
// a depends on b.
type graphNode struct {
	obj        dependency // object represented by this node
	pred, succ nodeSet    // consumers and dependencies of this node (lazily initialized)
	index      int        // node index in graph slice/priority queue
	ndeps      int        // number of outstanding dependencies before this object can be initialized
}

// cost returns the cost of removing this node, which involves copying each
// predecessor to each successor (and vice-versa).
func (n *graphNode) cost() int {
	return len(n.pred) * len(n.succ)
}

type nodeSet map[*graphNode]bool

func (s *nodeSet) add(p *graphNode) {
	if *s == nil {
		*s = make(nodeSet)
	}
	(*s)[p] = true
}

// dependencyGraph computes the object dependency graph from the given objMap,
// with any function nodes removed. The resulting graph contains only constants
// and variables.
func dependencyGraph(objMap map[Object]*declInfo) []*graphNode {
	// M is the dependency (Object) -> graphNode mapping
	M := make(map[dependency]*graphNode)
	for obj := range objMap {
		// only consider nodes that may be an initialization dependency
		if obj, _ := obj.(dependency); obj != nil {
			M[obj] = &graphNode{obj: obj}
		}
	}

	// compute edges for graph M
	// (We need to include all nodes, even isolated ones, because they still need
	// to be scheduled for initialization in correct order relative to other nodes.)
	for obj, n := range M {
		// for each dependency obj -> d (= deps[i]), create graph edges n->s and s->n
		for d := range objMap[obj].deps {
			// only consider nodes that may be an initialization dependency
			if d, _ := d.(dependency); d != nil {
				d := M[d]
				n.succ.add(d)
				d.pred.add(n)
			}
		}
	}

	var G, funcG []*graphNode // separate non-functions and functions
	for _, n := range M {
		if _, ok := n.obj.(*Func); ok {
			funcG = append(funcG, n)
		} else {
			G = append(G, n)
		}
	}

	// remove function nodes and collect remaining graph nodes in G
	// (Mutually recursive functions may introduce cycles among themselves
	// which are permitted. Yet such cycles may incorrectly inflate the dependency
	// count for variables which in turn may not get scheduled for initialization
	// in correct order.)
	//
	// Note that because we recursively copy predecessors and successors
	// throughout the function graph, the cost of removing a function at
	// position X is proportional to cost * (len(funcG)-X). Therefore, we should
	// remove high-cost functions last.
	sort.Slice(funcG, func(i, j int) bool {
		return funcG[i].cost() < funcG[j].cost()
	})
	for _, n := range funcG {
		// connect each predecessor p of n with each successor s
		// and drop the function node (don't collect it in G)
		for p := range n.pred {
			// ignore self-cycles
			if p != n {
				// Each successor s of n becomes a successor of p, and
				// each predecessor p of n becomes a predecessor of s.
				for s := range n.succ {
					// ignore self-cycles
					if s != n {
						p.succ.add(s)
						s.pred.add(p)
					}
				}
				delete(p.succ, n) // remove edge to n
			}
		}
		for s := range n.succ {
			delete(s.pred, n) // remove edge to n
		}
	}

	// fill in index and ndeps fields
	for i, n := range G {
		n.index = i
		n.ndeps = len(n.succ)
	}

	return G
}

// ----------------------------------------------------------------------------
// Priority queue

// nodeQueue implements the container/heap interface;
// a nodeQueue may be used as a priority queue.
type nodeQueue []*graphNode

func (a nodeQueue) Len() int { return len(a) }

func (a nodeQueue) Swap(i, j int) {
	x, y := a[i], a[j]
	a[i], a[j] = y, x
	x.index, y.index = j, i
}

func (a nodeQueue) Less(i, j int) bool {
	x, y := a[i], a[j]

	// Prioritize all constants before non-constants. See go.dev/issue/66575/.
	_, xConst := x.obj.(*Const)
	_, yConst := y.obj.(*Const)
	if xConst != yConst {
		return xConst
	}

	// nodes are prioritized by number of incoming dependencies (1st key)
	// and source order (2nd key)
	return x.ndeps < y.ndeps || x.ndeps == y.ndeps && x.obj.order() < y.obj.order()
}

func (a *nodeQueue) Push(x any) {
	panic("unreachable")
}

func (a *nodeQueue) Pop() any {
	n := len(*a)
	x := (*a)[n-1]
	x.index = -1 // for safety
	*a = (*a)[:n-1]
	return x
}