aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/vendor/golang.org/x/tools/go/analysis/passes/printf/types.go
blob: 6a5fae44f469f30c81939ca951e8d8980ea6d775 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package printf

import (
	"go/ast"
	"go/types"

	"golang.org/x/tools/go/analysis"
	"golang.org/x/tools/go/analysis/passes/internal/analysisutil"
)

var errorType = types.Universe.Lookup("error").Type().Underlying().(*types.Interface)

// matchArgType reports an error if printf verb t is not appropriate
// for operand arg.
//
// typ is used only for recursive calls; external callers must supply nil.
//
// (Recursion arises from the compound types {map,chan,slice} which
// may be printed with %d etc. if that is appropriate for their element
// types.)
func matchArgType(pass *analysis.Pass, t printfArgType, typ types.Type, arg ast.Expr) bool {
	return matchArgTypeInternal(pass, t, typ, arg, make(map[types.Type]bool))
}

// matchArgTypeInternal is the internal version of matchArgType. It carries a map
// remembering what types are in progress so we don't recur when faced with recursive
// types or mutually recursive types.
func matchArgTypeInternal(pass *analysis.Pass, t printfArgType, typ types.Type, arg ast.Expr, inProgress map[types.Type]bool) bool {
	// %v, %T accept any argument type.
	if t == anyType {
		return true
	}
	if typ == nil {
		// external call
		typ = pass.TypesInfo.Types[arg].Type
		if typ == nil {
			return true // probably a type check problem
		}
	}

	// %w accepts only errors.
	if t == argError {
		return types.ConvertibleTo(typ, errorType)
	}

	// If the type implements fmt.Formatter, we have nothing to check.
	if isFormatter(typ) {
		return true
	}
	// If we can use a string, might arg (dynamically) implement the Stringer or Error interface?
	if t&argString != 0 && isConvertibleToString(pass, typ) {
		return true
	}

	typ = typ.Underlying()
	if inProgress[typ] {
		// We're already looking at this type. The call that started it will take care of it.
		return true
	}
	inProgress[typ] = true

	switch typ := typ.(type) {
	case *types.Signature:
		return t == argPointer

	case *types.Map:
		return t == argPointer ||
			// Recur: map[int]int matches %d.
			(matchArgTypeInternal(pass, t, typ.Key(), arg, inProgress) && matchArgTypeInternal(pass, t, typ.Elem(), arg, inProgress))

	case *types.Chan:
		return t&argPointer != 0

	case *types.Array:
		// Same as slice.
		if types.Identical(typ.Elem().Underlying(), types.Typ[types.Byte]) && t&argString != 0 {
			return true // %s matches []byte
		}
		// Recur: []int matches %d.
		return matchArgTypeInternal(pass, t, typ.Elem(), arg, inProgress)

	case *types.Slice:
		// Same as array.
		if types.Identical(typ.Elem().Underlying(), types.Typ[types.Byte]) && t&argString != 0 {
			return true // %s matches []byte
		}
		if t == argPointer {
			return true // %p prints a slice's 0th element
		}
		// Recur: []int matches %d. But watch out for
		//	type T []T
		// If the element is a pointer type (type T[]*T), it's handled fine by the Pointer case below.
		return matchArgTypeInternal(pass, t, typ.Elem(), arg, inProgress)

	case *types.Pointer:
		// Ugly, but dealing with an edge case: a known pointer to an invalid type,
		// probably something from a failed import.
		if typ.Elem().String() == "invalid type" {
			if false {
				pass.Reportf(arg.Pos(), "printf argument %v is pointer to invalid or unknown type", analysisutil.Format(pass.Fset, arg))
			}
			return true // special case
		}
		// If it's actually a pointer with %p, it prints as one.
		if t == argPointer {
			return true
		}

		under := typ.Elem().Underlying()
		switch under.(type) {
		case *types.Struct: // see below
		case *types.Array: // see below
		case *types.Slice: // see below
		case *types.Map: // see below
		default:
			// Check whether the rest can print pointers.
			return t&argPointer != 0
		}
		// If it's a top-level pointer to a struct, array, slice, or
		// map, that's equivalent in our analysis to whether we can
		// print the type being pointed to. Pointers in nested levels
		// are not supported to minimize fmt running into loops.
		if len(inProgress) > 1 {
			return false
		}
		return matchArgTypeInternal(pass, t, under, arg, inProgress)

	case *types.Struct:
		return matchStructArgType(pass, t, typ, arg, inProgress)

	case *types.Interface:
		// There's little we can do.
		// Whether any particular verb is valid depends on the argument.
		// The user may have reasonable prior knowledge of the contents of the interface.
		return true

	case *types.Basic:
		switch typ.Kind() {
		case types.UntypedBool,
			types.Bool:
			return t&argBool != 0

		case types.UntypedInt,
			types.Int,
			types.Int8,
			types.Int16,
			types.Int32,
			types.Int64,
			types.Uint,
			types.Uint8,
			types.Uint16,
			types.Uint32,
			types.Uint64,
			types.Uintptr:
			return t&argInt != 0

		case types.UntypedFloat,
			types.Float32,
			types.Float64:
			return t&argFloat != 0

		case types.UntypedComplex,
			types.Complex64,
			types.Complex128:
			return t&argComplex != 0

		case types.UntypedString,
			types.String:
			return t&argString != 0

		case types.UnsafePointer:
			return t&(argPointer|argInt) != 0

		case types.UntypedRune:
			return t&(argInt|argRune) != 0

		case types.UntypedNil:
			return false

		case types.Invalid:
			if false {
				pass.Reportf(arg.Pos(), "printf argument %v has invalid or unknown type", analysisutil.Format(pass.Fset, arg))
			}
			return true // Probably a type check problem.
		}
		panic("unreachable")
	}

	return false
}

func isConvertibleToString(pass *analysis.Pass, typ types.Type) bool {
	if bt, ok := typ.(*types.Basic); ok && bt.Kind() == types.UntypedNil {
		// We explicitly don't want untyped nil, which is
		// convertible to both of the interfaces below, as it
		// would just panic anyway.
		return false
	}
	if types.ConvertibleTo(typ, errorType) {
		return true // via .Error()
	}

	// Does it implement fmt.Stringer?
	if obj, _, _ := types.LookupFieldOrMethod(typ, false, nil, "String"); obj != nil {
		if fn, ok := obj.(*types.Func); ok {
			sig := fn.Type().(*types.Signature)
			if sig.Params().Len() == 0 &&
				sig.Results().Len() == 1 &&
				sig.Results().At(0).Type() == types.Typ[types.String] {
				return true
			}
		}
	}

	return false
}

// hasBasicType reports whether x's type is a types.Basic with the given kind.
func hasBasicType(pass *analysis.Pass, x ast.Expr, kind types.BasicKind) bool {
	t := pass.TypesInfo.Types[x].Type
	if t != nil {
		t = t.Underlying()
	}
	b, ok := t.(*types.Basic)
	return ok && b.Kind() == kind
}

// matchStructArgType reports whether all the elements of the struct match the expected
// type. For instance, with "%d" all the elements must be printable with the "%d" format.
func matchStructArgType(pass *analysis.Pass, t printfArgType, typ *types.Struct, arg ast.Expr, inProgress map[types.Type]bool) bool {
	for i := 0; i < typ.NumFields(); i++ {
		typf := typ.Field(i)
		if !matchArgTypeInternal(pass, t, typf.Type(), arg, inProgress) {
			return false
		}
		if t&argString != 0 && !typf.Exported() && isConvertibleToString(pass, typf.Type()) {
			// Issue #17798: unexported Stringer or error cannot be properly formatted.
			return false
		}
	}
	return true
}