aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/ssagen/phi.go
blob: 01ad211282cf3436310e49a325ec8586f8147351 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package ssagen

import (
	"container/heap"
	"fmt"

	"cmd/compile/internal/ir"
	"cmd/compile/internal/ssa"
	"cmd/compile/internal/types"
	"cmd/internal/src"
)

// This file contains the algorithm to place phi nodes in a function.
// For small functions, we use Braun, Buchwald, Hack, Leißa, Mallon, and Zwinkau.
// https://pp.info.uni-karlsruhe.de/uploads/publikationen/braun13cc.pdf
// For large functions, we use Sreedhar & Gao: A Linear Time Algorithm for Placing Φ-Nodes.
// http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.8.1979&rep=rep1&type=pdf

const smallBlocks = 500

const debugPhi = false

// fwdRefAux wraps an arbitrary ir.Node as an ssa.Aux for use with OpFwdref.
type fwdRefAux struct {
	_ [0]func() // ensure ir.Node isn't compared for equality
	N ir.Node
}

func (fwdRefAux) CanBeAnSSAAux() {}

// insertPhis finds all the places in the function where a phi is
// necessary and inserts them.
// Uses FwdRef ops to find all uses of variables, and s.defvars to find
// all definitions.
// Phi values are inserted, and all FwdRefs are changed to a Copy
// of the appropriate phi or definition.
// TODO: make this part of cmd/compile/internal/ssa somehow?
func (s *state) insertPhis() {
	if len(s.f.Blocks) <= smallBlocks {
		sps := simplePhiState{s: s, f: s.f, defvars: s.defvars}
		sps.insertPhis()
		return
	}
	ps := phiState{s: s, f: s.f, defvars: s.defvars}
	ps.insertPhis()
}

type phiState struct {
	s       *state                   // SSA state
	f       *ssa.Func                // function to work on
	defvars []map[ir.Node]*ssa.Value // defined variables at end of each block

	varnum map[ir.Node]int32 // variable numbering

	// properties of the dominator tree
	idom  []*ssa.Block // dominator parents
	tree  []domBlock   // dominator child+sibling
	level []int32      // level in dominator tree (0 = root or unreachable, 1 = children of root, ...)

	// scratch locations
	priq   blockHeap    // priority queue of blocks, higher level (toward leaves) = higher priority
	q      []*ssa.Block // inner loop queue
	queued *sparseSet   // has been put in q
	hasPhi *sparseSet   // has a phi
	hasDef *sparseSet   // has a write of the variable we're processing

	// miscellaneous
	placeholder *ssa.Value // value to use as a "not set yet" placeholder.
}

func (s *phiState) insertPhis() {
	if debugPhi {
		fmt.Println(s.f.String())
	}

	// Find all the variables for which we need to match up reads & writes.
	// This step prunes any basic-block-only variables from consideration.
	// Generate a numbering for these variables.
	s.varnum = map[ir.Node]int32{}
	var vars []ir.Node
	var vartypes []*types.Type
	for _, b := range s.f.Blocks {
		for _, v := range b.Values {
			if v.Op != ssa.OpFwdRef {
				continue
			}
			var_ := v.Aux.(fwdRefAux).N

			// Optimization: look back 1 block for the definition.
			if len(b.Preds) == 1 {
				c := b.Preds[0].Block()
				if w := s.defvars[c.ID][var_]; w != nil {
					v.Op = ssa.OpCopy
					v.Aux = nil
					v.AddArg(w)
					continue
				}
			}

			if _, ok := s.varnum[var_]; ok {
				continue
			}
			s.varnum[var_] = int32(len(vartypes))
			if debugPhi {
				fmt.Printf("var%d = %v\n", len(vartypes), var_)
			}
			vars = append(vars, var_)
			vartypes = append(vartypes, v.Type)
		}
	}

	if len(vartypes) == 0 {
		return
	}

	// Find all definitions of the variables we need to process.
	// defs[n] contains all the blocks in which variable number n is assigned.
	defs := make([][]*ssa.Block, len(vartypes))
	for _, b := range s.f.Blocks {
		for var_ := range s.defvars[b.ID] { // TODO: encode defvars some other way (explicit ops)? make defvars[n] a slice instead of a map.
			if n, ok := s.varnum[var_]; ok {
				defs[n] = append(defs[n], b)
			}
		}
	}

	// Make dominator tree.
	s.idom = s.f.Idom()
	s.tree = make([]domBlock, s.f.NumBlocks())
	for _, b := range s.f.Blocks {
		p := s.idom[b.ID]
		if p != nil {
			s.tree[b.ID].sibling = s.tree[p.ID].firstChild
			s.tree[p.ID].firstChild = b
		}
	}
	// Compute levels in dominator tree.
	// With parent pointers we can do a depth-first walk without
	// any auxiliary storage.
	s.level = make([]int32, s.f.NumBlocks())
	b := s.f.Entry
levels:
	for {
		if p := s.idom[b.ID]; p != nil {
			s.level[b.ID] = s.level[p.ID] + 1
			if debugPhi {
				fmt.Printf("level %s = %d\n", b, s.level[b.ID])
			}
		}
		if c := s.tree[b.ID].firstChild; c != nil {
			b = c
			continue
		}
		for {
			if c := s.tree[b.ID].sibling; c != nil {
				b = c
				continue levels
			}
			b = s.idom[b.ID]
			if b == nil {
				break levels
			}
		}
	}

	// Allocate scratch locations.
	s.priq.level = s.level
	s.q = make([]*ssa.Block, 0, s.f.NumBlocks())
	s.queued = newSparseSet(s.f.NumBlocks())
	s.hasPhi = newSparseSet(s.f.NumBlocks())
	s.hasDef = newSparseSet(s.f.NumBlocks())
	s.placeholder = s.s.entryNewValue0(ssa.OpUnknown, types.TypeInvalid)

	// Generate phi ops for each variable.
	for n := range vartypes {
		s.insertVarPhis(n, vars[n], defs[n], vartypes[n])
	}

	// Resolve FwdRefs to the correct write or phi.
	s.resolveFwdRefs()

	// Erase variable numbers stored in AuxInt fields of phi ops. They are no longer needed.
	for _, b := range s.f.Blocks {
		for _, v := range b.Values {
			if v.Op == ssa.OpPhi {
				v.AuxInt = 0
			}
			// Any remaining FwdRefs are dead code.
			if v.Op == ssa.OpFwdRef {
				v.Op = ssa.OpUnknown
				v.Aux = nil
			}
		}
	}
}

func (s *phiState) insertVarPhis(n int, var_ ir.Node, defs []*ssa.Block, typ *types.Type) {
	priq := &s.priq
	q := s.q
	queued := s.queued
	queued.clear()
	hasPhi := s.hasPhi
	hasPhi.clear()
	hasDef := s.hasDef
	hasDef.clear()

	// Add defining blocks to priority queue.
	for _, b := range defs {
		priq.a = append(priq.a, b)
		hasDef.add(b.ID)
		if debugPhi {
			fmt.Printf("def of var%d in %s\n", n, b)
		}
	}
	heap.Init(priq)

	// Visit blocks defining variable n, from deepest to shallowest.
	for len(priq.a) > 0 {
		currentRoot := heap.Pop(priq).(*ssa.Block)
		if debugPhi {
			fmt.Printf("currentRoot %s\n", currentRoot)
		}
		// Walk subtree below definition.
		// Skip subtrees we've done in previous iterations.
		// Find edges exiting tree dominated by definition (the dominance frontier).
		// Insert phis at target blocks.
		if queued.contains(currentRoot.ID) {
			s.s.Fatalf("root already in queue")
		}
		q = append(q, currentRoot)
		queued.add(currentRoot.ID)
		for len(q) > 0 {
			b := q[len(q)-1]
			q = q[:len(q)-1]
			if debugPhi {
				fmt.Printf("  processing %s\n", b)
			}

			currentRootLevel := s.level[currentRoot.ID]
			for _, e := range b.Succs {
				c := e.Block()
				// TODO: if the variable is dead at c, skip it.
				if s.level[c.ID] > currentRootLevel {
					// a D-edge, or an edge whose target is in currentRoot's subtree.
					continue
				}
				if hasPhi.contains(c.ID) {
					continue
				}
				// Add a phi to block c for variable n.
				hasPhi.add(c.ID)
				v := c.NewValue0I(currentRoot.Pos, ssa.OpPhi, typ, int64(n)) // TODO: line number right?
				// Note: we store the variable number in the phi's AuxInt field. Used temporarily by phi building.
				if var_.Op() == ir.ONAME {
					s.s.addNamedValue(var_.(*ir.Name), v)
				}
				for range c.Preds {
					v.AddArg(s.placeholder) // Actual args will be filled in by resolveFwdRefs.
				}
				if debugPhi {
					fmt.Printf("new phi for var%d in %s: %s\n", n, c, v)
				}
				if !hasDef.contains(c.ID) {
					// There's now a new definition of this variable in block c.
					// Add it to the priority queue to explore.
					heap.Push(priq, c)
					hasDef.add(c.ID)
				}
			}

			// Visit children if they have not been visited yet.
			for c := s.tree[b.ID].firstChild; c != nil; c = s.tree[c.ID].sibling {
				if !queued.contains(c.ID) {
					q = append(q, c)
					queued.add(c.ID)
				}
			}
		}
	}
}

// resolveFwdRefs links all FwdRef uses up to their nearest dominating definition.
func (s *phiState) resolveFwdRefs() {
	// Do a depth-first walk of the dominator tree, keeping track
	// of the most-recently-seen value for each variable.

	// Map from variable ID to SSA value at the current point of the walk.
	values := make([]*ssa.Value, len(s.varnum))
	for i := range values {
		values[i] = s.placeholder
	}

	// Stack of work to do.
	type stackEntry struct {
		b *ssa.Block // block to explore

		// variable/value pair to reinstate on exit
		n int32 // variable ID
		v *ssa.Value

		// Note: only one of b or n,v will be set.
	}
	var stk []stackEntry

	stk = append(stk, stackEntry{b: s.f.Entry})
	for len(stk) > 0 {
		work := stk[len(stk)-1]
		stk = stk[:len(stk)-1]

		b := work.b
		if b == nil {
			// On exit from a block, this case will undo any assignments done below.
			values[work.n] = work.v
			continue
		}

		// Process phis as new defs. They come before FwdRefs in this block.
		for _, v := range b.Values {
			if v.Op != ssa.OpPhi {
				continue
			}
			n := int32(v.AuxInt)
			// Remember the old assignment so we can undo it when we exit b.
			stk = append(stk, stackEntry{n: n, v: values[n]})
			// Record the new assignment.
			values[n] = v
		}

		// Replace a FwdRef op with the current incoming value for its variable.
		for _, v := range b.Values {
			if v.Op != ssa.OpFwdRef {
				continue
			}
			n := s.varnum[v.Aux.(fwdRefAux).N]
			v.Op = ssa.OpCopy
			v.Aux = nil
			v.AddArg(values[n])
		}

		// Establish values for variables defined in b.
		for var_, v := range s.defvars[b.ID] {
			n, ok := s.varnum[var_]
			if !ok {
				// some variable not live across a basic block boundary.
				continue
			}
			// Remember the old assignment so we can undo it when we exit b.
			stk = append(stk, stackEntry{n: n, v: values[n]})
			// Record the new assignment.
			values[n] = v
		}

		// Replace phi args in successors with the current incoming value.
		for _, e := range b.Succs {
			c, i := e.Block(), e.Index()
			for j := len(c.Values) - 1; j >= 0; j-- {
				v := c.Values[j]
				if v.Op != ssa.OpPhi {
					break // All phis will be at the end of the block during phi building.
				}
				// Only set arguments that have been resolved.
				// For very wide CFGs, this significantly speeds up phi resolution.
				// See golang.org/issue/8225.
				if w := values[v.AuxInt]; w.Op != ssa.OpUnknown {
					v.SetArg(i, w)
				}
			}
		}

		// Walk children in dominator tree.
		for c := s.tree[b.ID].firstChild; c != nil; c = s.tree[c.ID].sibling {
			stk = append(stk, stackEntry{b: c})
		}
	}
}

// domBlock contains extra per-block information to record the dominator tree.
type domBlock struct {
	firstChild *ssa.Block // first child of block in dominator tree
	sibling    *ssa.Block // next child of parent in dominator tree
}

// A block heap is used as a priority queue to implement the PiggyBank
// from Sreedhar and Gao.  That paper uses an array which is better
// asymptotically but worse in the common case when the PiggyBank
// holds a sparse set of blocks.
type blockHeap struct {
	a     []*ssa.Block // block IDs in heap
	level []int32      // depth in dominator tree (static, used for determining priority)
}

func (h *blockHeap) Len() int      { return len(h.a) }
func (h *blockHeap) Swap(i, j int) { a := h.a; a[i], a[j] = a[j], a[i] }

func (h *blockHeap) Push(x interface{}) {
	v := x.(*ssa.Block)
	h.a = append(h.a, v)
}
func (h *blockHeap) Pop() interface{} {
	old := h.a
	n := len(old)
	x := old[n-1]
	h.a = old[:n-1]
	return x
}
func (h *blockHeap) Less(i, j int) bool {
	return h.level[h.a[i].ID] > h.level[h.a[j].ID]
}

// TODO: stop walking the iterated domininance frontier when
// the variable is dead. Maybe detect that by checking if the
// node we're on is reverse dominated by all the reads?
// Reverse dominated by the highest common successor of all the reads?

// copy of ../ssa/sparseset.go
// TODO: move this file to ../ssa, then use sparseSet there.
type sparseSet struct {
	dense  []ssa.ID
	sparse []int32
}

// newSparseSet returns a sparseSet that can represent
// integers between 0 and n-1
func newSparseSet(n int) *sparseSet {
	return &sparseSet{dense: nil, sparse: make([]int32, n)}
}

func (s *sparseSet) contains(x ssa.ID) bool {
	i := s.sparse[x]
	return i < int32(len(s.dense)) && s.dense[i] == x
}

func (s *sparseSet) add(x ssa.ID) {
	i := s.sparse[x]
	if i < int32(len(s.dense)) && s.dense[i] == x {
		return
	}
	s.dense = append(s.dense, x)
	s.sparse[x] = int32(len(s.dense)) - 1
}

func (s *sparseSet) clear() {
	s.dense = s.dense[:0]
}

// Variant to use for small functions.
type simplePhiState struct {
	s         *state                   // SSA state
	f         *ssa.Func                // function to work on
	fwdrefs   []*ssa.Value             // list of FwdRefs to be processed
	defvars   []map[ir.Node]*ssa.Value // defined variables at end of each block
	reachable []bool                   // which blocks are reachable
}

func (s *simplePhiState) insertPhis() {
	s.reachable = ssa.ReachableBlocks(s.f)

	// Find FwdRef ops.
	for _, b := range s.f.Blocks {
		for _, v := range b.Values {
			if v.Op != ssa.OpFwdRef {
				continue
			}
			s.fwdrefs = append(s.fwdrefs, v)
			var_ := v.Aux.(fwdRefAux).N
			if _, ok := s.defvars[b.ID][var_]; !ok {
				s.defvars[b.ID][var_] = v // treat FwdDefs as definitions.
			}
		}
	}

	var args []*ssa.Value

loop:
	for len(s.fwdrefs) > 0 {
		v := s.fwdrefs[len(s.fwdrefs)-1]
		s.fwdrefs = s.fwdrefs[:len(s.fwdrefs)-1]
		b := v.Block
		var_ := v.Aux.(fwdRefAux).N
		if b == s.f.Entry {
			// No variable should be live at entry.
			s.s.Fatalf("Value live at entry. It shouldn't be. func %s, node %v, value %v", s.f.Name, var_, v)
		}
		if !s.reachable[b.ID] {
			// This block is dead.
			// It doesn't matter what we use here as long as it is well-formed.
			v.Op = ssa.OpUnknown
			v.Aux = nil
			continue
		}
		// Find variable value on each predecessor.
		args = args[:0]
		for _, e := range b.Preds {
			args = append(args, s.lookupVarOutgoing(e.Block(), v.Type, var_, v.Pos))
		}

		// Decide if we need a phi or not. We need a phi if there
		// are two different args (which are both not v).
		var w *ssa.Value
		for _, a := range args {
			if a == v {
				continue // self-reference
			}
			if a == w {
				continue // already have this witness
			}
			if w != nil {
				// two witnesses, need a phi value
				v.Op = ssa.OpPhi
				v.AddArgs(args...)
				v.Aux = nil
				continue loop
			}
			w = a // save witness
		}
		if w == nil {
			s.s.Fatalf("no witness for reachable phi %s", v)
		}
		// One witness. Make v a copy of w.
		v.Op = ssa.OpCopy
		v.Aux = nil
		v.AddArg(w)
	}
}

// lookupVarOutgoing finds the variable's value at the end of block b.
func (s *simplePhiState) lookupVarOutgoing(b *ssa.Block, t *types.Type, var_ ir.Node, line src.XPos) *ssa.Value {
	for {
		if v := s.defvars[b.ID][var_]; v != nil {
			return v
		}
		// The variable is not defined by b and we haven't looked it up yet.
		// If b has exactly one predecessor, loop to look it up there.
		// Otherwise, give up and insert a new FwdRef and resolve it later.
		if len(b.Preds) != 1 {
			break
		}
		b = b.Preds[0].Block()
		if !s.reachable[b.ID] {
			// This is rare; it happens with oddly interleaved infinite loops in dead code.
			// See issue 19783.
			break
		}
	}
	// Generate a FwdRef for the variable and return that.
	v := b.NewValue0A(line, ssa.OpFwdRef, t, fwdRefAux{N: var_})
	s.defvars[b.ID][var_] = v
	if var_.Op() == ir.ONAME {
		s.s.addNamedValue(var_.(*ir.Name), v)
	}
	s.fwdrefs = append(s.fwdrefs, v)
	return v
}