aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/ssagen/abi.go
blob: b22a5ef2bef8784405483a2bf186dbc71ed84a19 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package ssagen

import (
	"fmt"
	"io/ioutil"
	"log"
	"os"
	"strings"

	"cmd/compile/internal/base"
	"cmd/compile/internal/escape"
	"cmd/compile/internal/ir"
	"cmd/compile/internal/staticdata"
	"cmd/compile/internal/typecheck"
	"cmd/compile/internal/types"
	"cmd/internal/obj"
	"cmd/internal/objabi"
)

// useNewABIWrapGen returns TRUE if the compiler should generate an
// ABI wrapper for the function 'f'.
func useABIWrapGen(f *ir.Func) bool {
	if !base.Flag.ABIWrap {
		return false
	}

	// Support limit option for bisecting.
	if base.Flag.ABIWrapLimit == 1 {
		return false
	}
	if base.Flag.ABIWrapLimit < 1 {
		return true
	}
	base.Flag.ABIWrapLimit--
	if base.Debug.ABIWrap != 0 && base.Flag.ABIWrapLimit == 1 {
		fmt.Fprintf(os.Stderr, "=-= limit reached after new wrapper for %s\n",
			f.LSym.Name)
	}

	return true
}

// symabiDefs and symabiRefs record the defined and referenced ABIs of
// symbols required by non-Go code. These are keyed by link symbol
// name, where the local package prefix is always `"".`
var symabiDefs, symabiRefs map[string]obj.ABI

func CgoSymABIs() {
	// The linker expects an ABI0 wrapper for all cgo-exported
	// functions.
	for _, prag := range typecheck.Target.CgoPragmas {
		switch prag[0] {
		case "cgo_export_static", "cgo_export_dynamic":
			if symabiRefs == nil {
				symabiRefs = make(map[string]obj.ABI)
			}
			symabiRefs[prag[1]] = obj.ABI0
		}
	}
}

// ReadSymABIs reads a symabis file that specifies definitions and
// references of text symbols by ABI.
//
// The symabis format is a set of lines, where each line is a sequence
// of whitespace-separated fields. The first field is a verb and is
// either "def" for defining a symbol ABI or "ref" for referencing a
// symbol using an ABI. For both "def" and "ref", the second field is
// the symbol name and the third field is the ABI name, as one of the
// named cmd/internal/obj.ABI constants.
func ReadSymABIs(file, myimportpath string) {
	data, err := ioutil.ReadFile(file)
	if err != nil {
		log.Fatalf("-symabis: %v", err)
	}

	symabiDefs = make(map[string]obj.ABI)
	symabiRefs = make(map[string]obj.ABI)

	localPrefix := ""
	if myimportpath != "" {
		// Symbols in this package may be written either as
		// "".X or with the package's import path already in
		// the symbol.
		localPrefix = objabi.PathToPrefix(myimportpath) + "."
	}

	for lineNum, line := range strings.Split(string(data), "\n") {
		lineNum++ // 1-based
		line = strings.TrimSpace(line)
		if line == "" || strings.HasPrefix(line, "#") {
			continue
		}

		parts := strings.Fields(line)
		switch parts[0] {
		case "def", "ref":
			// Parse line.
			if len(parts) != 3 {
				log.Fatalf(`%s:%d: invalid symabi: syntax is "%s sym abi"`, file, lineNum, parts[0])
			}
			sym, abistr := parts[1], parts[2]
			abi, valid := obj.ParseABI(abistr)
			if !valid {
				log.Fatalf(`%s:%d: invalid symabi: unknown abi "%s"`, file, lineNum, abistr)
			}

			// If the symbol is already prefixed with
			// myimportpath, rewrite it to start with ""
			// so it matches the compiler's internal
			// symbol names.
			if localPrefix != "" && strings.HasPrefix(sym, localPrefix) {
				sym = `"".` + sym[len(localPrefix):]
			}

			// Record for later.
			if parts[0] == "def" {
				symabiDefs[sym] = abi
			} else {
				symabiRefs[sym] = abi
			}
		default:
			log.Fatalf(`%s:%d: invalid symabi type "%s"`, file, lineNum, parts[0])
		}
	}
}

// InitLSym defines f's obj.LSym and initializes it based on the
// properties of f. This includes setting the symbol flags and ABI and
// creating and initializing related DWARF symbols.
//
// InitLSym must be called exactly once per function and must be
// called for both functions with bodies and functions without bodies.
// For body-less functions, we only create the LSym; for functions
// with bodies call a helper to setup up / populate the LSym.
func InitLSym(f *ir.Func, hasBody bool) {
	// FIXME: for new-style ABI wrappers, we set up the lsym at the
	// point the wrapper is created.
	if f.LSym != nil && base.Flag.ABIWrap {
		return
	}
	staticdata.NeedFuncSym(f.Sym())
	selectLSym(f, hasBody)
	if hasBody {
		setupTextLSym(f, 0)
	}
}

// selectLSym sets up the LSym for a given function, and
// makes calls to helpers to create ABI wrappers if needed.
func selectLSym(f *ir.Func, hasBody bool) {
	if f.LSym != nil {
		base.FatalfAt(f.Pos(), "InitLSym called twice on %v", f)
	}

	if nam := f.Nname; !ir.IsBlank(nam) {

		var wrapperABI obj.ABI
		needABIWrapper := false
		defABI, hasDefABI := symabiDefs[nam.Linksym().Name]
		if hasDefABI && defABI == obj.ABI0 {
			// Symbol is defined as ABI0. Create an
			// Internal -> ABI0 wrapper.
			f.LSym = nam.LinksymABI(obj.ABI0)
			needABIWrapper, wrapperABI = true, obj.ABIInternal
		} else {
			f.LSym = nam.Linksym()
			// No ABI override. Check that the symbol is
			// using the expected ABI.
			want := obj.ABIInternal
			if f.LSym.ABI() != want {
				base.Fatalf("function symbol %s has the wrong ABI %v, expected %v", f.LSym.Name, f.LSym.ABI(), want)
			}
		}
		if f.Pragma&ir.Systemstack != 0 {
			f.LSym.Set(obj.AttrCFunc, true)
		}

		isLinknameExported := nam.Sym().Linkname != "" && (hasBody || hasDefABI)
		if abi, ok := symabiRefs[f.LSym.Name]; (ok && abi == obj.ABI0) || isLinknameExported {
			// Either 1) this symbol is definitely
			// referenced as ABI0 from this package; or 2)
			// this symbol is defined in this package but
			// given a linkname, indicating that it may be
			// referenced from another package. Create an
			// ABI0 -> Internal wrapper so it can be
			// called as ABI0. In case 2, it's important
			// that we know it's defined in this package
			// since other packages may "pull" symbols
			// using linkname and we don't want to create
			// duplicate ABI wrappers.
			if f.LSym.ABI() != obj.ABI0 {
				needABIWrapper, wrapperABI = true, obj.ABI0
			}
		}

		if needABIWrapper {
			if !useABIWrapGen(f) {
				// Fallback: use alias instead. FIXME.

				// These LSyms have the same name as the
				// native function, so we create them directly
				// rather than looking them up. The uniqueness
				// of f.lsym ensures uniqueness of asym.
				asym := &obj.LSym{
					Name: f.LSym.Name,
					Type: objabi.SABIALIAS,
					R:    []obj.Reloc{{Sym: f.LSym}}, // 0 size, so "informational"
				}
				asym.SetABI(wrapperABI)
				asym.Set(obj.AttrDuplicateOK, true)
				base.Ctxt.ABIAliases = append(base.Ctxt.ABIAliases, asym)
			} else {
				if base.Debug.ABIWrap != 0 {
					fmt.Fprintf(os.Stderr, "=-= %v to %v wrapper for %s.%s\n",
						wrapperABI, 1-wrapperABI, types.LocalPkg.Path, f.LSym.Name)
				}
				makeABIWrapper(f, wrapperABI)
			}
		}
	}
}

// makeABIWrapper creates a new function that wraps a cross-ABI call
// to "f".  The wrapper is marked as an ABIWRAPPER.
func makeABIWrapper(f *ir.Func, wrapperABI obj.ABI) {

	// Q: is this needed?
	savepos := base.Pos
	savedclcontext := typecheck.DeclContext
	savedcurfn := ir.CurFunc

	base.Pos = base.AutogeneratedPos
	typecheck.DeclContext = ir.PEXTERN

	// At the moment we don't support wrapping a method, we'd need machinery
	// below to handle the receiver. Panic if we see this scenario.
	ft := f.Nname.Ntype.Type()
	if ft.NumRecvs() != 0 {
		panic("makeABIWrapper support for wrapping methods not implemented")
	}

	// Manufacture a new func type to use for the wrapper.
	var noReceiver *ir.Field
	tfn := ir.NewFuncType(base.Pos,
		noReceiver,
		typecheck.NewFuncParams(ft.Params(), true),
		typecheck.NewFuncParams(ft.Results(), false))

	// Reuse f's types.Sym to create a new ODCLFUNC/function.
	fn := typecheck.DeclFunc(f.Nname.Sym(), tfn)
	fn.SetDupok(true)
	fn.SetWrapper(true) // ignore frame for panic+recover matching

	// Select LSYM now.
	asym := base.Ctxt.LookupABI(f.LSym.Name, wrapperABI)
	asym.Type = objabi.STEXT
	if fn.LSym != nil {
		panic("unexpected")
	}
	fn.LSym = asym

	// ABI0-to-ABIInternal wrappers will be mainly loading params from
	// stack into registers (and/or storing stack locations back to
	// registers after the wrapped call); in most cases they won't
	// need to allocate stack space, so it should be OK to mark them
	// as NOSPLIT in these cases. In addition, my assumption is that
	// functions written in assembly are NOSPLIT in most (but not all)
	// cases. In the case of an ABIInternal target that has too many
	// parameters to fit into registers, the wrapper would need to
	// allocate stack space, but this seems like an unlikely scenario.
	// Hence: mark these wrappers NOSPLIT.
	//
	// ABIInternal-to-ABI0 wrappers on the other hand will be taking
	// things in registers and pushing them onto the stack prior to
	// the ABI0 call, meaning that they will always need to allocate
	// stack space. If the compiler marks them as NOSPLIT this seems
	// as though it could lead to situations where the the linker's
	// nosplit-overflow analysis would trigger a link failure. On the
	// other hand if they not tagged NOSPLIT then this could cause
	// problems when building the runtime (since there may be calls to
	// asm routine in cases where it's not safe to grow the stack). In
	// most cases the wrapper would be (in effect) inlined, but are
	// there (perhaps) indirect calls from the runtime that could run
	// into trouble here.
	// FIXME: at the moment all.bash does not pass when I leave out
	// NOSPLIT for these wrappers, so all are currently tagged with NOSPLIT.
	setupTextLSym(fn, obj.NOSPLIT|obj.ABIWRAPPER)

	// Generate call. Use tail call if no params and no returns,
	// but a regular call otherwise.
	//
	// Note: ideally we would be using a tail call in cases where
	// there are params but no returns for ABI0->ABIInternal wrappers,
	// provided that all params fit into registers (e.g. we don't have
	// to allocate any stack space). Doing this will require some
	// extra work in typecheck/walk/ssa, might want to add a new node
	// OTAILCALL or something to this effect.
	var tail ir.Node
	if tfn.Type().NumResults() == 0 && tfn.Type().NumParams() == 0 && tfn.Type().NumRecvs() == 0 && !(base.Ctxt.Arch.Name == "ppc64le" && base.Ctxt.Flag_dynlink) {

		tail = ir.NewTailCallStmt(base.Pos, f.Nname)
	} else {
		call := ir.NewCallExpr(base.Pos, ir.OCALL, f.Nname, nil, nil)
		call.Args = ir.ParamNames(tfn.Type())
		call.IsDDD = tfn.Type().IsVariadic()
		tail = call
		if tfn.Type().NumResults() > 0 {
			n := ir.NewReturnStmt(base.Pos, nil)
			n.Results = []ir.Node{call}
			tail = n
		}
	}
	fn.Body.Append(tail)

	typecheck.FinishFuncBody()
	if base.Debug.DclStack != 0 {
		types.CheckDclstack()
	}

	typecheck.Func(fn)
	ir.CurFunc = fn
	typecheck.Stmts(fn.Body)

	escape.Batch([]*ir.Func{fn}, false)

	typecheck.Target.Decls = append(typecheck.Target.Decls, fn)

	// Restore previous context.
	base.Pos = savepos
	typecheck.DeclContext = savedclcontext
	ir.CurFunc = savedcurfn
}

// setupTextLsym initializes the LSym for a with-body text symbol.
func setupTextLSym(f *ir.Func, flag int) {
	if f.Dupok() {
		flag |= obj.DUPOK
	}
	if f.Wrapper() {
		flag |= obj.WRAPPER
	}
	if f.Needctxt() {
		flag |= obj.NEEDCTXT
	}
	if f.Pragma&ir.Nosplit != 0 {
		flag |= obj.NOSPLIT
	}
	if f.ReflectMethod() {
		flag |= obj.REFLECTMETHOD
	}

	// Clumsy but important.
	// See test/recover.go for test cases and src/reflect/value.go
	// for the actual functions being considered.
	if base.Ctxt.Pkgpath == "reflect" {
		switch f.Sym().Name {
		case "callReflect", "callMethod":
			flag |= obj.WRAPPER
		}
	}

	base.Ctxt.InitTextSym(f.LSym, flag)
}