aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/ssa/op.go
blob: 912c5e58d28dfc95dca75a0d02365edd8244104b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package ssa

import (
	"cmd/compile/internal/abi"
	"cmd/compile/internal/ir"
	"cmd/compile/internal/types"
	"cmd/internal/obj"
	"fmt"
	"strings"
)

// An Op encodes the specific operation that a Value performs.
// Opcodes' semantics can be modified by the type and aux fields of the Value.
// For instance, OpAdd can be 32 or 64 bit, signed or unsigned, float or complex, depending on Value.Type.
// Semantics of each op are described in the opcode files in _gen/*Ops.go.
// There is one file for generic (architecture-independent) ops and one file
// for each architecture.
type Op int32

type opInfo struct {
	name              string
	reg               regInfo
	auxType           auxType
	argLen            int32 // the number of arguments, -1 if variable length
	asm               obj.As
	generic           bool      // this is a generic (arch-independent) opcode
	rematerializeable bool      // this op is rematerializeable
	commutative       bool      // this operation is commutative (e.g. addition)
	resultInArg0      bool      // (first, if a tuple) output of v and v.Args[0] must be allocated to the same register
	resultNotInArgs   bool      // outputs must not be allocated to the same registers as inputs
	clobberFlags      bool      // this op clobbers flags register
	needIntTemp       bool      // need a temporary free integer register
	call              bool      // is a function call
	tailCall          bool      // is a tail call
	nilCheck          bool      // this op is a nil check on arg0
	faultOnNilArg0    bool      // this op will fault if arg0 is nil (and aux encodes a small offset)
	faultOnNilArg1    bool      // this op will fault if arg1 is nil (and aux encodes a small offset)
	usesScratch       bool      // this op requires scratch memory space
	hasSideEffects    bool      // for "reasons", not to be eliminated.  E.g., atomic store, #19182.
	zeroWidth         bool      // op never translates into any machine code. example: copy, which may sometimes translate to machine code, is not zero-width.
	unsafePoint       bool      // this op is an unsafe point, i.e. not safe for async preemption
	symEffect         SymEffect // effect this op has on symbol in aux
	scale             uint8     // amd64/386 indexed load scale
}

type inputInfo struct {
	idx  int     // index in Args array
	regs regMask // allowed input registers
}

type outputInfo struct {
	idx  int     // index in output tuple
	regs regMask // allowed output registers
}

type regInfo struct {
	// inputs encodes the register restrictions for an instruction's inputs.
	// Each entry specifies an allowed register set for a particular input.
	// They are listed in the order in which regalloc should pick a register
	// from the register set (most constrained first).
	// Inputs which do not need registers are not listed.
	inputs []inputInfo
	// clobbers encodes the set of registers that are overwritten by
	// the instruction (other than the output registers).
	clobbers regMask
	// outputs is the same as inputs, but for the outputs of the instruction.
	outputs []outputInfo
}

func (r *regInfo) String() string {
	s := ""
	s += "INS:\n"
	for _, i := range r.inputs {
		mask := fmt.Sprintf("%64b", i.regs)
		mask = strings.Replace(mask, "0", ".", -1)
		s += fmt.Sprintf("%2d |%s|\n", i.idx, mask)
	}
	s += "OUTS:\n"
	for _, i := range r.outputs {
		mask := fmt.Sprintf("%64b", i.regs)
		mask = strings.Replace(mask, "0", ".", -1)
		s += fmt.Sprintf("%2d |%s|\n", i.idx, mask)
	}
	s += "CLOBBERS:\n"
	mask := fmt.Sprintf("%64b", r.clobbers)
	mask = strings.Replace(mask, "0", ".", -1)
	s += fmt.Sprintf("   |%s|\n", mask)
	return s
}

type auxType int8

type AuxNameOffset struct {
	Name   *ir.Name
	Offset int64
}

func (a *AuxNameOffset) CanBeAnSSAAux() {}
func (a *AuxNameOffset) String() string {
	return fmt.Sprintf("%s+%d", a.Name.Sym().Name, a.Offset)
}

func (a *AuxNameOffset) FrameOffset() int64 {
	return a.Name.FrameOffset() + a.Offset
}

type AuxCall struct {
	Fn      *obj.LSym
	reg     *regInfo // regInfo for this call
	abiInfo *abi.ABIParamResultInfo
}

// Reg returns the regInfo for a given call, combining the derived in/out register masks
// with the machine-specific register information in the input i.  (The machine-specific
// regInfo is much handier at the call site than it is when the AuxCall is being constructed,
// therefore do this lazily).
//
// TODO: there is a Clever Hack that allows pre-generation of a small-ish number of the slices
// of inputInfo and outputInfo used here, provided that we are willing to reorder the inputs
// and outputs from calls, so that all integer registers come first, then all floating registers.
// At this point (active development of register ABI) that is very premature,
// but if this turns out to be a cost, we could do it.
func (a *AuxCall) Reg(i *regInfo, c *Config) *regInfo {
	if a.reg.clobbers != 0 {
		// Already updated
		return a.reg
	}
	if a.abiInfo.InRegistersUsed()+a.abiInfo.OutRegistersUsed() == 0 {
		// Shortcut for zero case, also handles old ABI.
		a.reg = i
		return a.reg
	}

	k := len(i.inputs)
	for _, p := range a.abiInfo.InParams() {
		for _, r := range p.Registers {
			m := archRegForAbiReg(r, c)
			a.reg.inputs = append(a.reg.inputs, inputInfo{idx: k, regs: (1 << m)})
			k++
		}
	}
	a.reg.inputs = append(a.reg.inputs, i.inputs...) // These are less constrained, thus should come last
	k = len(i.outputs)
	for _, p := range a.abiInfo.OutParams() {
		for _, r := range p.Registers {
			m := archRegForAbiReg(r, c)
			a.reg.outputs = append(a.reg.outputs, outputInfo{idx: k, regs: (1 << m)})
			k++
		}
	}
	a.reg.outputs = append(a.reg.outputs, i.outputs...)
	a.reg.clobbers = i.clobbers
	return a.reg
}
func (a *AuxCall) ABI() *abi.ABIConfig {
	return a.abiInfo.Config()
}
func (a *AuxCall) ABIInfo() *abi.ABIParamResultInfo {
	return a.abiInfo
}
func (a *AuxCall) ResultReg(c *Config) *regInfo {
	if a.abiInfo.OutRegistersUsed() == 0 {
		return a.reg
	}
	if len(a.reg.inputs) > 0 {
		return a.reg
	}
	k := 0
	for _, p := range a.abiInfo.OutParams() {
		for _, r := range p.Registers {
			m := archRegForAbiReg(r, c)
			a.reg.inputs = append(a.reg.inputs, inputInfo{idx: k, regs: (1 << m)})
			k++
		}
	}
	return a.reg
}

// For ABI register index r, returns the (dense) register number used in
// SSA backend.
func archRegForAbiReg(r abi.RegIndex, c *Config) uint8 {
	var m int8
	if int(r) < len(c.intParamRegs) {
		m = c.intParamRegs[r]
	} else {
		m = c.floatParamRegs[int(r)-len(c.intParamRegs)]
	}
	return uint8(m)
}

// For ABI register index r, returns the register number used in the obj
// package (assembler).
func ObjRegForAbiReg(r abi.RegIndex, c *Config) int16 {
	m := archRegForAbiReg(r, c)
	return c.registers[m].objNum
}

// ArgWidth returns the amount of stack needed for all the inputs
// and outputs of a function or method, including ABI-defined parameter
// slots and ABI-defined spill slots for register-resident parameters.
//
// The name is taken from the types package's ArgWidth(<function type>),
// which predated changes to the ABI; this version handles those changes.
func (a *AuxCall) ArgWidth() int64 {
	return a.abiInfo.ArgWidth()
}

// ParamAssignmentForResult returns the ABI Parameter assignment for result which (indexed 0, 1, etc).
func (a *AuxCall) ParamAssignmentForResult(which int64) *abi.ABIParamAssignment {
	return a.abiInfo.OutParam(int(which))
}

// OffsetOfResult returns the SP offset of result which (indexed 0, 1, etc).
func (a *AuxCall) OffsetOfResult(which int64) int64 {
	n := int64(a.abiInfo.OutParam(int(which)).Offset())
	return n
}

// OffsetOfArg returns the SP offset of argument which (indexed 0, 1, etc).
// If the call is to a method, the receiver is the first argument (i.e., index 0)
func (a *AuxCall) OffsetOfArg(which int64) int64 {
	n := int64(a.abiInfo.InParam(int(which)).Offset())
	return n
}

// RegsOfResult returns the register(s) used for result which (indexed 0, 1, etc).
func (a *AuxCall) RegsOfResult(which int64) []abi.RegIndex {
	return a.abiInfo.OutParam(int(which)).Registers
}

// RegsOfArg returns the register(s) used for argument which (indexed 0, 1, etc).
// If the call is to a method, the receiver is the first argument (i.e., index 0)
func (a *AuxCall) RegsOfArg(which int64) []abi.RegIndex {
	return a.abiInfo.InParam(int(which)).Registers
}

// NameOfResult returns the ir.Name of result which (indexed 0, 1, etc).
func (a *AuxCall) NameOfResult(which int64) *ir.Name {
	return a.abiInfo.OutParam(int(which)).Name
}

// TypeOfResult returns the type of result which (indexed 0, 1, etc).
func (a *AuxCall) TypeOfResult(which int64) *types.Type {
	return a.abiInfo.OutParam(int(which)).Type
}

// TypeOfArg returns the type of argument which (indexed 0, 1, etc).
// If the call is to a method, the receiver is the first argument (i.e., index 0)
func (a *AuxCall) TypeOfArg(which int64) *types.Type {
	return a.abiInfo.InParam(int(which)).Type
}

// SizeOfResult returns the size of result which (indexed 0, 1, etc).
func (a *AuxCall) SizeOfResult(which int64) int64 {
	return a.TypeOfResult(which).Size()
}

// SizeOfArg returns the size of argument which (indexed 0, 1, etc).
// If the call is to a method, the receiver is the first argument (i.e., index 0)
func (a *AuxCall) SizeOfArg(which int64) int64 {
	return a.TypeOfArg(which).Size()
}

// NResults returns the number of results.
func (a *AuxCall) NResults() int64 {
	return int64(len(a.abiInfo.OutParams()))
}

// LateExpansionResultType returns the result type (including trailing mem)
// for a call that will be expanded later in the SSA phase.
func (a *AuxCall) LateExpansionResultType() *types.Type {
	var tys []*types.Type
	for i := int64(0); i < a.NResults(); i++ {
		tys = append(tys, a.TypeOfResult(i))
	}
	tys = append(tys, types.TypeMem)
	return types.NewResults(tys)
}

// NArgs returns the number of arguments (including receiver, if there is one).
func (a *AuxCall) NArgs() int64 {
	return int64(len(a.abiInfo.InParams()))
}

// String returns "AuxCall{<fn>}"
func (a *AuxCall) String() string {
	var fn string
	if a.Fn == nil {
		fn = "AuxCall{nil" // could be interface/closure etc.
	} else {
		fn = fmt.Sprintf("AuxCall{%v", a.Fn)
	}
	// TODO how much of the ABI should be printed?

	return fn + "}"
}

// StaticAuxCall returns an AuxCall for a static call.
func StaticAuxCall(sym *obj.LSym, paramResultInfo *abi.ABIParamResultInfo) *AuxCall {
	if paramResultInfo == nil {
		panic(fmt.Errorf("Nil paramResultInfo, sym=%v", sym))
	}
	var reg *regInfo
	if paramResultInfo.InRegistersUsed()+paramResultInfo.OutRegistersUsed() > 0 {
		reg = &regInfo{}
	}
	return &AuxCall{Fn: sym, abiInfo: paramResultInfo, reg: reg}
}

// InterfaceAuxCall returns an AuxCall for an interface call.
func InterfaceAuxCall(paramResultInfo *abi.ABIParamResultInfo) *AuxCall {
	var reg *regInfo
	if paramResultInfo.InRegistersUsed()+paramResultInfo.OutRegistersUsed() > 0 {
		reg = &regInfo{}
	}
	return &AuxCall{Fn: nil, abiInfo: paramResultInfo, reg: reg}
}

// ClosureAuxCall returns an AuxCall for a closure call.
func ClosureAuxCall(paramResultInfo *abi.ABIParamResultInfo) *AuxCall {
	var reg *regInfo
	if paramResultInfo.InRegistersUsed()+paramResultInfo.OutRegistersUsed() > 0 {
		reg = &regInfo{}
	}
	return &AuxCall{Fn: nil, abiInfo: paramResultInfo, reg: reg}
}

func (*AuxCall) CanBeAnSSAAux() {}

// OwnAuxCall returns a function's own AuxCall.
func OwnAuxCall(fn *obj.LSym, paramResultInfo *abi.ABIParamResultInfo) *AuxCall {
	// TODO if this remains identical to ClosureAuxCall above after new ABI is done, should deduplicate.
	var reg *regInfo
	if paramResultInfo.InRegistersUsed()+paramResultInfo.OutRegistersUsed() > 0 {
		reg = &regInfo{}
	}
	return &AuxCall{Fn: fn, abiInfo: paramResultInfo, reg: reg}
}

const (
	auxNone           auxType = iota
	auxBool                   // auxInt is 0/1 for false/true
	auxInt8                   // auxInt is an 8-bit integer
	auxInt16                  // auxInt is a 16-bit integer
	auxInt32                  // auxInt is a 32-bit integer
	auxInt64                  // auxInt is a 64-bit integer
	auxInt128                 // auxInt represents a 128-bit integer.  Always 0.
	auxUInt8                  // auxInt is an 8-bit unsigned integer
	auxFloat32                // auxInt is a float32 (encoded with math.Float64bits)
	auxFloat64                // auxInt is a float64 (encoded with math.Float64bits)
	auxFlagConstant           // auxInt is a flagConstant
	auxCCop                   // auxInt is a ssa.Op that represents a flags-to-bool conversion (e.g. LessThan)
	auxNameOffsetInt8         // aux is a &struct{Name ir.Name, Offset int64}; auxInt is index in parameter registers array
	auxString                 // aux is a string
	auxSym                    // aux is a symbol (a *gc.Node for locals, an *obj.LSym for globals, or nil for none)
	auxSymOff                 // aux is a symbol, auxInt is an offset
	auxSymValAndOff           // aux is a symbol, auxInt is a ValAndOff
	auxTyp                    // aux is a type
	auxTypSize                // aux is a type, auxInt is a size, must have Aux.(Type).Size() == AuxInt
	auxCall                   // aux is a *ssa.AuxCall
	auxCallOff                // aux is a *ssa.AuxCall, AuxInt is int64 param (in+out) size

	// architecture specific aux types
	auxARM64BitField     // aux is an arm64 bitfield lsb and width packed into auxInt
	auxS390XRotateParams // aux is a s390x rotate parameters object encoding start bit, end bit and rotate amount
	auxS390XCCMask       // aux is a s390x 4-bit condition code mask
	auxS390XCCMaskInt8   // aux is a s390x 4-bit condition code mask, auxInt is an int8 immediate
	auxS390XCCMaskUint8  // aux is a s390x 4-bit condition code mask, auxInt is a uint8 immediate
)

// A SymEffect describes the effect that an SSA Value has on the variable
// identified by the symbol in its Aux field.
type SymEffect int8

const (
	SymRead SymEffect = 1 << iota
	SymWrite
	SymAddr

	SymRdWr = SymRead | SymWrite

	SymNone SymEffect = 0
)

// A Sym represents a symbolic offset from a base register.
// Currently a Sym can be one of 3 things:
//   - a *gc.Node, for an offset from SP (the stack pointer)
//   - a *obj.LSym, for an offset from SB (the global pointer)
//   - nil, for no offset
type Sym interface {
	CanBeAnSSASym()
	CanBeAnSSAAux()
}

// A ValAndOff is used by the several opcodes. It holds
// both a value and a pointer offset.
// A ValAndOff is intended to be encoded into an AuxInt field.
// The zero ValAndOff encodes a value of 0 and an offset of 0.
// The high 32 bits hold a value.
// The low 32 bits hold a pointer offset.
type ValAndOff int64

func (x ValAndOff) Val() int32   { return int32(int64(x) >> 32) }
func (x ValAndOff) Val64() int64 { return int64(x) >> 32 }
func (x ValAndOff) Val16() int16 { return int16(int64(x) >> 32) }
func (x ValAndOff) Val8() int8   { return int8(int64(x) >> 32) }

func (x ValAndOff) Off64() int64 { return int64(int32(x)) }
func (x ValAndOff) Off() int32   { return int32(x) }

func (x ValAndOff) String() string {
	return fmt.Sprintf("val=%d,off=%d", x.Val(), x.Off())
}

// validVal reports whether the value can be used
// as an argument to makeValAndOff.
func validVal(val int64) bool {
	return val == int64(int32(val))
}

func makeValAndOff(val, off int32) ValAndOff {
	return ValAndOff(int64(val)<<32 + int64(uint32(off)))
}

func (x ValAndOff) canAdd32(off int32) bool {
	newoff := x.Off64() + int64(off)
	return newoff == int64(int32(newoff))
}
func (x ValAndOff) canAdd64(off int64) bool {
	newoff := x.Off64() + off
	return newoff == int64(int32(newoff))
}

func (x ValAndOff) addOffset32(off int32) ValAndOff {
	if !x.canAdd32(off) {
		panic("invalid ValAndOff.addOffset32")
	}
	return makeValAndOff(x.Val(), x.Off()+off)
}
func (x ValAndOff) addOffset64(off int64) ValAndOff {
	if !x.canAdd64(off) {
		panic("invalid ValAndOff.addOffset64")
	}
	return makeValAndOff(x.Val(), x.Off()+int32(off))
}

// int128 is a type that stores a 128-bit constant.
// The only allowed constant right now is 0, so we can cheat quite a bit.
type int128 int64

type BoundsKind uint8

const (
	BoundsIndex       BoundsKind = iota // indexing operation, 0 <= idx < len failed
	BoundsIndexU                        // ... with unsigned idx
	BoundsSliceAlen                     // 2-arg slicing operation, 0 <= high <= len failed
	BoundsSliceAlenU                    // ... with unsigned high
	BoundsSliceAcap                     // 2-arg slicing operation, 0 <= high <= cap failed
	BoundsSliceAcapU                    // ... with unsigned high
	BoundsSliceB                        // 2-arg slicing operation, 0 <= low <= high failed
	BoundsSliceBU                       // ... with unsigned low
	BoundsSlice3Alen                    // 3-arg slicing operation, 0 <= max <= len failed
	BoundsSlice3AlenU                   // ... with unsigned max
	BoundsSlice3Acap                    // 3-arg slicing operation, 0 <= max <= cap failed
	BoundsSlice3AcapU                   // ... with unsigned max
	BoundsSlice3B                       // 3-arg slicing operation, 0 <= high <= max failed
	BoundsSlice3BU                      // ... with unsigned high
	BoundsSlice3C                       // 3-arg slicing operation, 0 <= low <= high failed
	BoundsSlice3CU                      // ... with unsigned low
	BoundsConvert                       // conversion to array pointer failed
	BoundsKindCount
)

// boundsABI determines which register arguments a bounds check call should use. For an [a:b:c] slice, we do:
//
//	CMPQ c, cap
//	JA   fail1
//	CMPQ b, c
//	JA   fail2
//	CMPQ a, b
//	JA   fail3
//
// fail1: CALL panicSlice3Acap (c, cap)
// fail2: CALL panicSlice3B (b, c)
// fail3: CALL panicSlice3C (a, b)
//
// When we register allocate that code, we want the same register to be used for
// the first arg of panicSlice3Acap and the second arg to panicSlice3B. That way,
// initializing that register once will satisfy both calls.
// That desire ends up dividing the set of bounds check calls into 3 sets. This function
// determines which set to use for a given panic call.
// The first arg for set 0 should be the second arg for set 1.
// The first arg for set 1 should be the second arg for set 2.
func boundsABI(b int64) int {
	switch BoundsKind(b) {
	case BoundsSlice3Alen,
		BoundsSlice3AlenU,
		BoundsSlice3Acap,
		BoundsSlice3AcapU,
		BoundsConvert:
		return 0
	case BoundsSliceAlen,
		BoundsSliceAlenU,
		BoundsSliceAcap,
		BoundsSliceAcapU,
		BoundsSlice3B,
		BoundsSlice3BU:
		return 1
	case BoundsIndex,
		BoundsIndexU,
		BoundsSliceB,
		BoundsSliceBU,
		BoundsSlice3C,
		BoundsSlice3CU:
		return 2
	default:
		panic("bad BoundsKind")
	}
}

// arm64BitField is the GO type of ARM64BitField auxInt.
// if x is an ARM64BitField, then width=x&0xff, lsb=(x>>8)&0xff, and
// width+lsb<64 for 64-bit variant, width+lsb<32 for 32-bit variant.
// the meaning of width and lsb are instruction-dependent.
type arm64BitField int16