aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/noder/stencil.go
blob: 51ef46c7e75491eb67111a36c58b66c9ae64543d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// This file will evolve, since we plan to do a mix of stenciling and passing
// around dictionaries.

package noder

import (
	"bytes"
	"cmd/compile/internal/base"
	"cmd/compile/internal/ir"
	"cmd/compile/internal/typecheck"
	"cmd/compile/internal/types"
	"cmd/internal/src"
	"fmt"
	"strings"
)

// For catching problems as we add more features
// TODO(danscales): remove assertions or replace with base.FatalfAt()
func assert(p bool) {
	if !p {
		panic("assertion failed")
	}
}

// stencil scans functions for instantiated generic function calls and creates the
// required instantiations for simple generic functions. It also creates
// instantiated methods for all fully-instantiated generic types that have been
// encountered already or new ones that are encountered during the stenciling
// process.
func (g *irgen) stencil() {
	g.target.Stencils = make(map[*types.Sym]*ir.Func)

	// Instantiate the methods of instantiated generic types that we have seen so far.
	g.instantiateMethods()

	// Don't use range(g.target.Decls) - we also want to process any new instantiated
	// functions that are created during this loop, in order to handle generic
	// functions calling other generic functions.
	for i := 0; i < len(g.target.Decls); i++ {
		decl := g.target.Decls[i]

		// Look for function instantiations in bodies of non-generic
		// functions or in global assignments (ignore global type and
		// constant declarations).
		switch decl.Op() {
		case ir.ODCLFUNC:
			if decl.Type().HasTParam() {
				// Skip any generic functions
				continue
			}

		case ir.OAS:

		case ir.OAS2:

		default:
			continue
		}

		// For all non-generic code, search for any function calls using
		// generic function instantiations. Then create the needed
		// instantiated function if it hasn't been created yet, and change
		// to calling that function directly.
		modified := false
		foundFuncInst := false
		ir.Visit(decl, func(n ir.Node) {
			if n.Op() == ir.OFUNCINST {
				// We found a function instantiation that is not
				// immediately called.
				foundFuncInst = true
			}
			if n.Op() != ir.OCALL || n.(*ir.CallExpr).X.Op() != ir.OFUNCINST {
				return
			}
			// We have found a function call using a generic function
			// instantiation.
			call := n.(*ir.CallExpr)
			inst := call.X.(*ir.InstExpr)
			st := g.getInstantiationForNode(inst)
			// Replace the OFUNCINST with a direct reference to the
			// new stenciled function
			call.X = st.Nname
			if inst.X.Op() == ir.OCALLPART {
				// When we create an instantiation of a method
				// call, we make it a function. So, move the
				// receiver to be the first arg of the function
				// call.
				withRecv := make([]ir.Node, len(call.Args)+1)
				dot := inst.X.(*ir.SelectorExpr)
				withRecv[0] = dot.X
				copy(withRecv[1:], call.Args)
				call.Args = withRecv
			}
			// Do the typechecking of the Call now, which changes OCALL
			// to OCALLFUNC and does typecheckaste/assignconvfn.
			call.SetTypecheck(0)
			typecheck.Call(call)
			modified = true
		})

		// If we found an OFUNCINST without a corresponding call in the
		// above decl, then traverse the nodes of decl again (with
		// EditChildren rather than Visit), where we actually change the
		// OFUNCINST node to an ONAME for the instantiated function.
		// EditChildren is more expensive than Visit, so we only do this
		// in the infrequent case of an OFUNCINSt without a corresponding
		// call.
		if foundFuncInst {
			var edit func(ir.Node) ir.Node
			edit = func(x ir.Node) ir.Node {
				if x.Op() == ir.OFUNCINST {
					st := g.getInstantiationForNode(x.(*ir.InstExpr))
					return st.Nname
				}
				ir.EditChildren(x, edit)
				return x
			}
			edit(decl)
		}
		if base.Flag.W > 1 && modified {
			ir.Dump(fmt.Sprintf("\nmodified %v", decl), decl)
		}
		// We may have seen new fully-instantiated generic types while
		// instantiating any needed functions/methods in the above
		// function. If so, instantiate all the methods of those types
		// (which will then lead to more function/methods to scan in the loop).
		g.instantiateMethods()
	}

}

// instantiateMethods instantiates all the methods of all fully-instantiated
// generic types that have been added to g.instTypeList.
func (g *irgen) instantiateMethods() {
	for i := 0; i < len(g.instTypeList); i++ {
		typ := g.instTypeList[i]
		// Get the base generic type by looking up the symbol of the
		// generic (uninstantiated) name.
		baseSym := typ.Sym().Pkg.Lookup(genericTypeName(typ.Sym()))
		baseType := baseSym.Def.(*ir.Name).Type()
		for j, m := range typ.Methods().Slice() {
			name := m.Nname.(*ir.Name)
			targs := make([]ir.Node, len(typ.RParams()))
			for k, targ := range typ.RParams() {
				targs[k] = ir.TypeNode(targ)
			}
			baseNname := baseType.Methods().Slice()[j].Nname.(*ir.Name)
			name.Func = g.getInstantiation(baseNname, targs, true)
		}
	}
	g.instTypeList = nil

}

// genericSym returns the name of the base generic type for the type named by
// sym. It simply returns the name obtained by removing everything after the
// first bracket ("[").
func genericTypeName(sym *types.Sym) string {
	return sym.Name[0:strings.Index(sym.Name, "[")]
}

// getInstantiationForNode returns the function/method instantiation for a
// InstExpr node inst.
func (g *irgen) getInstantiationForNode(inst *ir.InstExpr) *ir.Func {
	if meth, ok := inst.X.(*ir.SelectorExpr); ok {
		return g.getInstantiation(meth.Selection.Nname.(*ir.Name), inst.Targs, true)
	} else {
		return g.getInstantiation(inst.X.(*ir.Name), inst.Targs, false)
	}
}

// getInstantiation gets the instantiantion of the function or method nameNode
// with the type arguments targs. If the instantiated function is not already
// cached, then it calls genericSubst to create the new instantiation.
func (g *irgen) getInstantiation(nameNode *ir.Name, targs []ir.Node, isMeth bool) *ir.Func {
	sym := makeInstName(nameNode.Sym(), targs, isMeth)
	st := g.target.Stencils[sym]
	if st == nil {
		// If instantiation doesn't exist yet, create it and add
		// to the list of decls.
		st = g.genericSubst(sym, nameNode, targs, isMeth)
		g.target.Stencils[sym] = st
		g.target.Decls = append(g.target.Decls, st)
		if base.Flag.W > 1 {
			ir.Dump(fmt.Sprintf("\nstenciled %v", st), st)
		}
	}
	return st
}

// makeInstName makes the unique name for a stenciled generic function or method,
// based on the name of the function fy=nsym and the targs. It replaces any
// existing bracket type list in the name. makeInstName asserts that fnsym has
// brackets in its name if and only if hasBrackets is true.
// TODO(danscales): remove the assertions and the hasBrackets argument later.
//
// Names of declared generic functions have no brackets originally, so hasBrackets
// should be false. Names of generic methods already have brackets, since the new
// type parameter is specified in the generic type of the receiver (e.g. func
// (func (v *value[T]).set(...) { ... } has the original name (*value[T]).set.
//
// The standard naming is something like: 'genFn[int,bool]' for functions and
// '(*genType[int,bool]).methodName' for methods
func makeInstName(fnsym *types.Sym, targs []ir.Node, hasBrackets bool) *types.Sym {
	b := bytes.NewBufferString("")
	name := fnsym.Name
	i := strings.Index(name, "[")
	assert(hasBrackets == (i >= 0))
	if i >= 0 {
		b.WriteString(name[0:i])
	} else {
		b.WriteString(name)
	}
	b.WriteString("[")
	for i, targ := range targs {
		if i > 0 {
			b.WriteString(",")
		}
		b.WriteString(targ.Type().String())
	}
	b.WriteString("]")
	if i >= 0 {
		i2 := strings.Index(name[i:], "]")
		assert(i2 >= 0)
		b.WriteString(name[i+i2+1:])
	}
	return typecheck.Lookup(b.String())
}

// Struct containing info needed for doing the substitution as we create the
// instantiation of a generic function with specified type arguments.
type subster struct {
	g        *irgen
	isMethod bool     // If a method is being instantiated
	newf     *ir.Func // Func node for the new stenciled function
	tparams  []*types.Field
	targs    []ir.Node
	// The substitution map from name nodes in the generic function to the
	// name nodes in the new stenciled function.
	vars map[*ir.Name]*ir.Name
}

// genericSubst returns a new function with name newsym. The function is an
// instantiation of a generic function or method specified by namedNode with type
// args targs. For a method with a generic receiver, it returns an instantiated
// function type where the receiver becomes the first parameter. Otherwise the
// instantiated method would still need to be transformed by later compiler
// phases.
func (g *irgen) genericSubst(newsym *types.Sym, nameNode *ir.Name, targs []ir.Node, isMethod bool) *ir.Func {
	var tparams []*types.Field
	if isMethod {
		// Get the type params from the method receiver (after skipping
		// over any pointer)
		recvType := nameNode.Type().Recv().Type
		recvType = deref(recvType)
		tparams = make([]*types.Field, len(recvType.RParams()))
		for i, rparam := range recvType.RParams() {
			tparams[i] = types.NewField(src.NoXPos, nil, rparam)
		}
	} else {
		tparams = nameNode.Type().TParams().Fields().Slice()
	}
	gf := nameNode.Func
	// Pos of the instantiated function is same as the generic function
	newf := ir.NewFunc(gf.Pos())
	newf.Nname = ir.NewNameAt(gf.Pos(), newsym)
	newf.Nname.Func = newf
	newf.Nname.Defn = newf
	newsym.Def = newf.Nname

	assert(len(tparams) == len(targs))

	subst := &subster{
		g:        g,
		isMethod: isMethod,
		newf:     newf,
		tparams:  tparams,
		targs:    targs,
		vars:     make(map[*ir.Name]*ir.Name),
	}

	newf.Dcl = make([]*ir.Name, len(gf.Dcl))
	for i, n := range gf.Dcl {
		newf.Dcl[i] = subst.node(n).(*ir.Name)
	}
	newf.Body = subst.list(gf.Body)

	// Ugly: we have to insert the Name nodes of the parameters/results into
	// the function type. The current function type has no Nname fields set,
	// because it came via conversion from the types2 type.
	oldt := nameNode.Type()
	// We also transform a generic method type to the corresponding
	// instantiated function type where the receiver is the first parameter.
	newt := types.NewSignature(oldt.Pkg(), nil, nil,
		subst.fields(ir.PPARAM, append(oldt.Recvs().FieldSlice(), oldt.Params().FieldSlice()...), newf.Dcl),
		subst.fields(ir.PPARAMOUT, oldt.Results().FieldSlice(), newf.Dcl))

	newf.Nname.Ntype = ir.TypeNode(newt)
	newf.Nname.SetType(newt)
	ir.MarkFunc(newf.Nname)
	newf.SetTypecheck(1)
	newf.Nname.SetTypecheck(1)
	// TODO(danscales) - remove later, but avoid confusion for now.
	newf.Pragma = ir.Noinline
	return newf
}

// node is like DeepCopy(), but creates distinct ONAME nodes, and also descends
// into closures. It substitutes type arguments for type parameters in all the new
// nodes.
func (subst *subster) node(n ir.Node) ir.Node {
	// Use closure to capture all state needed by the ir.EditChildren argument.
	var edit func(ir.Node) ir.Node
	edit = func(x ir.Node) ir.Node {
		switch x.Op() {
		case ir.OTYPE:
			return ir.TypeNode(subst.typ(x.Type()))

		case ir.ONAME:
			name := x.(*ir.Name)
			if v := subst.vars[name]; v != nil {
				return v
			}
			m := ir.NewNameAt(name.Pos(), name.Sym())
			if name.IsClosureVar() {
				m.SetIsClosureVar(true)
			}
			t := x.Type()
			if t == nil {
				assert(name.BuiltinOp != 0)
			} else {
				newt := subst.typ(t)
				m.SetType(newt)
			}
			m.BuiltinOp = name.BuiltinOp
			m.Curfn = subst.newf
			m.Class = name.Class
			m.Func = name.Func
			subst.vars[name] = m
			m.SetTypecheck(1)
			return m
		case ir.OLITERAL, ir.ONIL:
			if x.Sym() != nil {
				return x
			}
		}
		m := ir.Copy(x)
		if _, isExpr := m.(ir.Expr); isExpr {
			t := x.Type()
			if t == nil {
				// t can be nil only if this is a call that has no
				// return values, so allow that and otherwise give
				// an error.
				_, isCallExpr := m.(*ir.CallExpr)
				_, isStructKeyExpr := m.(*ir.StructKeyExpr)
				if !isCallExpr && !isStructKeyExpr && x.Op() != ir.OPANIC &&
					x.Op() != ir.OCLOSE {
					base.Fatalf(fmt.Sprintf("Nil type for %v", x))
				}
			} else if x.Op() != ir.OCLOSURE {
				m.SetType(subst.typ(x.Type()))
			}
		}
		ir.EditChildren(m, edit)

		switch x.Op() {
		case ir.OLITERAL:
			t := m.Type()
			if t != x.Type() {
				// types2 will give us a constant with a type T,
				// if an untyped constant is used with another
				// operand of type T (in a provably correct way).
				// When we substitute in the type args during
				// stenciling, we now know the real type of the
				// constant. We may then need to change the
				// BasicLit.val to be the correct type (e.g.
				// convert an int64Val constant to a floatVal
				// constant).
				m.SetType(types.UntypedInt) // use any untyped type for DefaultLit to work
				m = typecheck.DefaultLit(m, t)
			}

		case ir.OXDOT:
			// A method value/call via a type param will have been left as an
			// OXDOT. When we see this during stenciling, finish the
			// typechecking, now that we have the instantiated receiver type.
			// We need to do this now, since the access/selection to the
			// method for the real type is very different from the selection
			// for the type param.
			m.SetTypecheck(0)
			// m will transform to an OCALLPART
			typecheck.Expr(m)

		case ir.OCALL:
			call := m.(*ir.CallExpr)
			if call.X.Op() == ir.OTYPE {
				// Do typechecking on a conversion, now that we
				// know the type argument.
				m.SetTypecheck(0)
				m = typecheck.Expr(m)
			} else if call.X.Op() == ir.OCALLPART {
				// Redo the typechecking, now that we know the method
				// value is being called.
				call.X.(*ir.SelectorExpr).SetOp(ir.OXDOT)
				call.X.SetTypecheck(0)
				call.X.SetType(nil)
				typecheck.Callee(call.X)
				call.SetTypecheck(0)
				typecheck.Call(call)
			} else if call.X.Op() == ir.ODOT || call.X.Op() == ir.ODOTPTR {
				// An OXDOT for a generic receiver was resolved to
				// an access to a field which has a function
				// value. Typecheck the call to that function, now
				// that the OXDOT was resolved.
				call.SetTypecheck(0)
				typecheck.Call(call)
			} else if name := call.X.Name(); name != nil {
				switch name.BuiltinOp {
				case ir.OMAKE, ir.OREAL, ir.OIMAG, ir.OLEN, ir.OCAP, ir.OAPPEND:
					// Call old typechecker (to do any
					// transformations) now that we know the
					// type of the args.
					m.SetTypecheck(0)
					m = typecheck.Expr(m)
				default:
					base.FatalfAt(call.Pos(), "Unexpected builtin op")
				}

			} else if call.X.Op() != ir.OFUNCINST {
				// A call with an OFUNCINST will get typechecked
				// in stencil() once we have created & attached the
				// instantiation to be called.
				base.FatalfAt(call.Pos(), "Expecting OCALLPART or OTYPE or OFUNCINST or builtin with CALL")
			}

		case ir.OCLOSURE:
			x := x.(*ir.ClosureExpr)
			// Need to save/duplicate x.Func.Nname,
			// x.Func.Nname.Ntype, x.Func.Dcl, x.Func.ClosureVars, and
			// x.Func.Body.
			oldfn := x.Func
			newfn := ir.NewFunc(oldfn.Pos())
			if oldfn.ClosureCalled() {
				newfn.SetClosureCalled(true)
			}
			newfn.SetIsHiddenClosure(true)
			m.(*ir.ClosureExpr).Func = newfn
			// Closure name can already have brackets, if it derives
			// from a generic method
			newsym := makeInstName(oldfn.Nname.Sym(), subst.targs, subst.isMethod)
			newfn.Nname = ir.NewNameAt(oldfn.Nname.Pos(), newsym)
			newfn.Nname.Func = newfn
			newfn.Nname.Defn = newfn
			ir.MarkFunc(newfn.Nname)
			newfn.OClosure = m.(*ir.ClosureExpr)

			saveNewf := subst.newf
			subst.newf = newfn
			newfn.Dcl = subst.namelist(oldfn.Dcl)
			newfn.ClosureVars = subst.namelist(oldfn.ClosureVars)
			newfn.Body = subst.list(oldfn.Body)
			subst.newf = saveNewf

			// Set Ntype for now to be compatible with later parts of compiler
			newfn.Nname.Ntype = subst.node(oldfn.Nname.Ntype).(ir.Ntype)
			typed(subst.typ(oldfn.Nname.Type()), newfn.Nname)
			typed(newfn.Nname.Type(), m)
			newfn.SetTypecheck(1)
			subst.g.target.Decls = append(subst.g.target.Decls, newfn)
		}
		return m
	}

	return edit(n)
}

func (subst *subster) namelist(l []*ir.Name) []*ir.Name {
	s := make([]*ir.Name, len(l))
	for i, n := range l {
		s[i] = subst.node(n).(*ir.Name)
		if n.Defn != nil {
			s[i].Defn = subst.node(n.Defn)
		}
		if n.Outer != nil {
			s[i].Outer = subst.node(n.Outer).(*ir.Name)
		}
	}
	return s
}

func (subst *subster) list(l []ir.Node) []ir.Node {
	s := make([]ir.Node, len(l))
	for i, n := range l {
		s[i] = subst.node(n)
	}
	return s
}

// tstruct substitutes type params in types of the fields of a structure type. For
// each field, if Nname is set, tstruct also translates the Nname using
// subst.vars, if Nname is in subst.vars. To always force the creation of a new
// (top-level) struct, regardless of whether anything changed with the types or
// names of the struct's fields, set force to true.
func (subst *subster) tstruct(t *types.Type, force bool) *types.Type {
	if t.NumFields() == 0 {
		if t.HasTParam() {
			// For an empty struct, we need to return a new type,
			// since it may now be fully instantiated (HasTParam
			// becomes false).
			return types.NewStruct(t.Pkg(), nil)
		}
		return t
	}
	var newfields []*types.Field
	if force {
		newfields = make([]*types.Field, t.NumFields())
	}
	for i, f := range t.Fields().Slice() {
		t2 := subst.typ(f.Type)
		if (t2 != f.Type || f.Nname != nil) && newfields == nil {
			newfields = make([]*types.Field, t.NumFields())
			for j := 0; j < i; j++ {
				newfields[j] = t.Field(j)
			}
		}
		if newfields != nil {
			// TODO(danscales): make sure this works for the field
			// names of embedded types (which should keep the name of
			// the type param, not the instantiated type).
			newfields[i] = types.NewField(f.Pos, f.Sym, t2)
			if f.Nname != nil {
				// f.Nname may not be in subst.vars[] if this is
				// a function name or a function instantiation type
				// that we are translating
				v := subst.vars[f.Nname.(*ir.Name)]
				// Be careful not to put a nil var into Nname,
				// since Nname is an interface, so it would be a
				// non-nil interface.
				if v != nil {
					newfields[i].Nname = v
				}
			}
		}
	}
	if newfields != nil {
		return types.NewStruct(t.Pkg(), newfields)
	}
	return t

}

// tinter substitutes type params in types of the methods of an interface type.
func (subst *subster) tinter(t *types.Type) *types.Type {
	if t.Methods().Len() == 0 {
		return t
	}
	var newfields []*types.Field
	for i, f := range t.Methods().Slice() {
		t2 := subst.typ(f.Type)
		if (t2 != f.Type || f.Nname != nil) && newfields == nil {
			newfields = make([]*types.Field, t.NumFields())
			for j := 0; j < i; j++ {
				newfields[j] = t.Methods().Slice()[j]
			}
		}
		if newfields != nil {
			newfields[i] = types.NewField(f.Pos, f.Sym, t2)
		}
	}
	if newfields != nil {
		return types.NewInterface(t.Pkg(), newfields)
	}
	return t
}

// instTypeName creates a name for an instantiated type, based on the name of the
// generic type and the type args
func instTypeName(name string, targs []*types.Type) string {
	b := bytes.NewBufferString(name)
	b.WriteByte('[')
	for i, targ := range targs {
		if i > 0 {
			b.WriteByte(',')
		}
		b.WriteString(targ.String())
	}
	b.WriteByte(']')
	return b.String()
}

// typ computes the type obtained by substituting any type parameter in t with the
// corresponding type argument in subst. If t contains no type parameters, the
// result is t; otherwise the result is a new type. It deals with recursive types
// by using TFORW types and finding partially or fully created types via sym.Def.
func (subst *subster) typ(t *types.Type) *types.Type {
	if !t.HasTParam() {
		return t
	}

	if t.Kind() == types.TTYPEPARAM {
		for i, tp := range subst.tparams {
			if tp.Type == t {
				return subst.targs[i].Type()
			}
		}
		// If t is a simple typeparam T, then t has the name/symbol 'T'
		// and t.Underlying() == t.
		//
		// However, consider the type definition: 'type P[T any] T'. We
		// might use this definition so we can have a variant of type T
		// that we can add new methods to. Suppose t is a reference to
		// P[T]. t has the name 'P[T]', but its kind is TTYPEPARAM,
		// because P[T] is defined as T. If we look at t.Underlying(), it
		// is different, because the name of t.Underlying() is 'T' rather
		// than 'P[T]'. But the kind of t.Underlying() is also TTYPEPARAM.
		// In this case, we do the needed recursive substitution in the
		// case statement below.
		if t.Underlying() == t {
			// t is a simple typeparam that didn't match anything in tparam
			return t
		}
		// t is a more complex typeparam (e.g. P[T], as above, whose
		// definition is just T).
		assert(t.Sym() != nil)
	}

	var newsym *types.Sym
	var neededTargs []*types.Type
	var forw *types.Type

	if t.Sym() != nil {
		// Translate the type params for this type according to
		// the tparam/targs mapping from subst.
		neededTargs = make([]*types.Type, len(t.RParams()))
		for i, rparam := range t.RParams() {
			neededTargs[i] = subst.typ(rparam)
		}
		// For a named (defined) type, we have to change the name of the
		// type as well. We do this first, so we can look up if we've
		// already seen this type during this substitution or other
		// definitions/substitutions.
		genName := genericTypeName(t.Sym())
		newsym = t.Sym().Pkg.Lookup(instTypeName(genName, neededTargs))
		if newsym.Def != nil {
			// We've already created this instantiated defined type.
			return newsym.Def.Type()
		}

		// In order to deal with recursive generic types, create a TFORW type
		// initially and set its Def field, so it can be found if this type
		// appears recursively within the type.
		forw = types.New(types.TFORW)
		forw.SetSym(newsym)
		newsym.Def = ir.TypeNode(forw)
		//println("Creating new type by sub", newsym.Name, forw.HasTParam())
		forw.SetRParams(neededTargs)
	}

	var newt *types.Type

	switch t.Kind() {
	case types.TTYPEPARAM:
		if t.Sym() == newsym {
			// The substitution did not change the type.
			return t
		}
		// Substitute the underlying typeparam (e.g. T in P[T], see
		// the example describing type P[T] above).
		newt = subst.typ(t.Underlying())
		assert(newt != t)

	case types.TARRAY:
		elem := t.Elem()
		newelem := subst.typ(elem)
		if newelem != elem {
			newt = types.NewArray(newelem, t.NumElem())
		}

	case types.TPTR:
		elem := t.Elem()
		newelem := subst.typ(elem)
		if newelem != elem {
			newt = types.NewPtr(newelem)
		}

	case types.TSLICE:
		elem := t.Elem()
		newelem := subst.typ(elem)
		if newelem != elem {
			newt = types.NewSlice(newelem)
		}

	case types.TSTRUCT:
		newt = subst.tstruct(t, false)
		if newt == t {
			newt = nil
		}

	case types.TFUNC:
		newrecvs := subst.tstruct(t.Recvs(), false)
		newparams := subst.tstruct(t.Params(), false)
		newresults := subst.tstruct(t.Results(), false)
		if newrecvs != t.Recvs() || newparams != t.Params() || newresults != t.Results() {
			// If any types have changed, then the all the fields of
			// of recv, params, and results must be copied, because they have
			// offset fields that are dependent, and so must have an
			// independent copy for each new signature.
			var newrecv *types.Field
			if newrecvs.NumFields() > 0 {
				if newrecvs == t.Recvs() {
					newrecvs = subst.tstruct(t.Recvs(), true)
				}
				newrecv = newrecvs.Field(0)
			}
			if newparams == t.Params() {
				newparams = subst.tstruct(t.Params(), true)
			}
			if newresults == t.Results() {
				newresults = subst.tstruct(t.Results(), true)
			}
			newt = types.NewSignature(t.Pkg(), newrecv, t.TParams().FieldSlice(), newparams.FieldSlice(), newresults.FieldSlice())
		}

	case types.TINTER:
		newt = subst.tinter(t)
		if newt == t {
			newt = nil
		}

	case types.TMAP:
		newkey := subst.typ(t.Key())
		newval := subst.typ(t.Elem())
		if newkey != t.Key() || newval != t.Elem() {
			newt = types.NewMap(newkey, newval)
		}

	case types.TCHAN:
		elem := t.Elem()
		newelem := subst.typ(elem)
		if newelem != elem {
			newt = types.NewChan(newelem, t.ChanDir())
			if !newt.HasTParam() {
				// TODO(danscales): not sure why I have to do this
				// only for channels.....
				types.CheckSize(newt)
			}
		}
	}
	if newt == nil {
		// Even though there were typeparams in the type, there may be no
		// change if this is a function type for a function call (which will
		// have its own tparams/targs in the function instantiation).
		return t
	}

	if t.Sym() == nil {
		// Not a named type, so there was no forwarding type and there are
		// no methods to substitute.
		assert(t.Methods().Len() == 0)
		return newt
	}

	forw.SetUnderlying(newt)
	newt = forw

	if t.Kind() != types.TINTER && t.Methods().Len() > 0 {
		// Fill in the method info for the new type.
		var newfields []*types.Field
		newfields = make([]*types.Field, t.Methods().Len())
		for i, f := range t.Methods().Slice() {
			t2 := subst.typ(f.Type)
			oldsym := f.Nname.Sym()
			newsym := makeInstName(oldsym, subst.targs, true)
			var nname *ir.Name
			if newsym.Def != nil {
				nname = newsym.Def.(*ir.Name)
			} else {
				nname = ir.NewNameAt(f.Pos, newsym)
				nname.SetType(t2)
				newsym.Def = nname
			}
			newfields[i] = types.NewField(f.Pos, f.Sym, t2)
			newfields[i].Nname = nname
		}
		newt.Methods().Set(newfields)
		if !newt.HasTParam() {
			// Generate all the methods for a new fully-instantiated type.
			subst.g.instTypeList = append(subst.g.instTypeList, newt)
		}
	}
	return newt
}

// fields sets the Nname field for the Field nodes inside a type signature, based
// on the corresponding in/out parameters in dcl. It depends on the in and out
// parameters being in order in dcl.
func (subst *subster) fields(class ir.Class, oldfields []*types.Field, dcl []*ir.Name) []*types.Field {
	newfields := make([]*types.Field, len(oldfields))
	var i int

	// Find the starting index in dcl of declarations of the class (either
	// PPARAM or PPARAMOUT).
	for i = range dcl {
		if dcl[i].Class == class {
			break
		}
	}

	// Create newfields nodes that are copies of the oldfields nodes, but
	// with substitution for any type params, and with Nname set to be the node in
	// Dcl for the corresponding PPARAM or PPARAMOUT.
	for j := range oldfields {
		newfields[j] = oldfields[j].Copy()
		newfields[j].Type = subst.typ(oldfields[j].Type)
		newfields[j].Nname = dcl[i]
		i++
	}
	return newfields
}

// defer does a single defer of type t, if it is a pointer type.
func deref(t *types.Type) *types.Type {
	if t.IsPtr() {
		return t.Elem()
	}
	return t
}