aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/noder/stencil.go
blob: 3e3de1908ecd9705991b8c71aaef36f2d07585f3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// This file will evolve, since we plan to do a mix of stenciling and passing
// around dictionaries.

package noder

import (
	"cmd/compile/internal/base"
	"cmd/compile/internal/ir"
	"cmd/compile/internal/reflectdata"
	"cmd/compile/internal/typecheck"
	"cmd/compile/internal/types"
	"cmd/internal/src"
	"fmt"
	"go/constant"
)

func assert(p bool) {
	if !p {
		panic("assertion failed")
	}
}

// stencil scans functions for instantiated generic function calls and creates the
// required instantiations for simple generic functions. It also creates
// instantiated methods for all fully-instantiated generic types that have been
// encountered already or new ones that are encountered during the stenciling
// process.
func (g *irgen) stencil() {
	g.target.Stencils = make(map[*types.Sym]*ir.Func)

	// Instantiate the methods of instantiated generic types that we have seen so far.
	g.instantiateMethods()

	// Don't use range(g.target.Decls) - we also want to process any new instantiated
	// functions that are created during this loop, in order to handle generic
	// functions calling other generic functions.
	for i := 0; i < len(g.target.Decls); i++ {
		decl := g.target.Decls[i]

		// Look for function instantiations in bodies of non-generic
		// functions or in global assignments (ignore global type and
		// constant declarations).
		switch decl.Op() {
		case ir.ODCLFUNC:
			if decl.Type().HasTParam() {
				// Skip any generic functions
				continue
			}
			// transformCall() below depends on CurFunc being set.
			ir.CurFunc = decl.(*ir.Func)

		case ir.OAS, ir.OAS2, ir.OAS2DOTTYPE, ir.OAS2FUNC, ir.OAS2MAPR, ir.OAS2RECV, ir.OASOP:
			// These are all the various kinds of global assignments,
			// whose right-hand-sides might contain a function
			// instantiation.

		default:
			// The other possible ops at the top level are ODCLCONST
			// and ODCLTYPE, which don't have any function
			// instantiations.
			continue
		}

		// For all non-generic code, search for any function calls using
		// generic function instantiations. Then create the needed
		// instantiated function if it hasn't been created yet, and change
		// to calling that function directly.
		modified := false
		closureRequired := false
		ir.Visit(decl, func(n ir.Node) {
			if n.Op() == ir.OFUNCINST {
				// generic F, not immediately called
				closureRequired = true
			}
			if n.Op() == ir.OMETHEXPR && len(n.(*ir.SelectorExpr).X.Type().RParams()) > 0 {
				// T.M, T a type which is generic, not immediately called
				closureRequired = true
			}
			if n.Op() == ir.OCALL && n.(*ir.CallExpr).X.Op() == ir.OFUNCINST {
				// We have found a function call using a generic function
				// instantiation.
				call := n.(*ir.CallExpr)
				inst := call.X.(*ir.InstExpr)
				st := g.getInstantiationForNode(inst)
				// Replace the OFUNCINST with a direct reference to the
				// new stenciled function
				call.X = st.Nname
				if inst.X.Op() == ir.OCALLPART {
					// When we create an instantiation of a method
					// call, we make it a function. So, move the
					// receiver to be the first arg of the function
					// call.
					call.Args.Prepend(inst.X.(*ir.SelectorExpr).X)
				}
				// Add dictionary to argument list.
				dict := reflectdata.GetDictionaryForInstantiation(inst)
				call.Args.Prepend(dict)
				// Transform the Call now, which changes OCALL
				// to OCALLFUNC and does typecheckaste/assignconvfn.
				transformCall(call)
				modified = true
			}
			if n.Op() == ir.OCALLMETH && n.(*ir.CallExpr).X.Op() == ir.ODOTMETH && len(deref(n.(*ir.CallExpr).X.Type().Recv().Type).RParams()) > 0 {
				// Method call on a generic type, which was instantiated by stenciling.
				// Method calls on explicitly instantiated types will have an OFUNCINST
				// and are handled above.
				call := n.(*ir.CallExpr)
				meth := call.X.(*ir.SelectorExpr)
				targs := deref(meth.Type().Recv().Type).RParams()

				t := meth.X.Type()
				baseSym := deref(t).OrigSym
				baseType := baseSym.Def.(*ir.Name).Type()
				var gf *ir.Name
				for _, m := range baseType.Methods().Slice() {
					if meth.Sel == m.Sym {
						gf = m.Nname.(*ir.Name)
						break
					}
				}

				st := g.getInstantiation(gf, targs, true)
				call.SetOp(ir.OCALL)
				call.X = st.Nname
				dict := reflectdata.GetDictionaryForMethod(gf, targs)
				call.Args.Prepend(dict, meth.X)
				// Transform the Call now, which changes OCALL
				// to OCALLFUNC and does typecheckaste/assignconvfn.
				transformCall(call)
				modified = true
			}
		})

		// If we found a reference to a generic instantiation that wasn't an
		// immediate call, then traverse the nodes of decl again (with
		// EditChildren rather than Visit), where we actually change the
		// reference to the instantiation to a closure that captures the
		// dictionary, then does a direct call.
		// EditChildren is more expensive than Visit, so we only do this
		// in the infrequent case of an OFUNCINST without a corresponding
		// call.
		if closureRequired {
			var edit func(ir.Node) ir.Node
			var outer *ir.Func
			if f, ok := decl.(*ir.Func); ok {
				outer = f
			}
			edit = func(x ir.Node) ir.Node {
				ir.EditChildren(x, edit)
				switch {
				case x.Op() == ir.OFUNCINST:
					// TODO: only set outer!=nil if this instantiation uses
					// a type parameter from outer. See comment in buildClosure.
					return g.buildClosure(outer, x)
				case x.Op() == ir.OMETHEXPR && len(deref(x.(*ir.SelectorExpr).X.Type()).RParams()) > 0: // TODO: test for ptr-to-method case
					return g.buildClosure(outer, x)
				}
				return x
			}
			edit(decl)
		}
		if base.Flag.W > 1 && modified {
			ir.Dump(fmt.Sprintf("\nmodified %v", decl), decl)
		}
		ir.CurFunc = nil
		// We may have seen new fully-instantiated generic types while
		// instantiating any needed functions/methods in the above
		// function. If so, instantiate all the methods of those types
		// (which will then lead to more function/methods to scan in the loop).
		g.instantiateMethods()
	}

}

// buildClosure makes a closure to implement x, a OFUNCINST or OMETHEXPR
// of generic type. outer is the containing function (or nil if closure is
// in a global assignment instead of a function).
func (g *irgen) buildClosure(outer *ir.Func, x ir.Node) ir.Node {
	pos := x.Pos()
	var target *ir.Func   // target instantiated function/method
	var dictValue ir.Node // dictionary to use
	var rcvrValue ir.Node // receiver, if a method value
	typ := x.Type()       // type of the closure
	if x.Op() == ir.OFUNCINST {
		inst := x.(*ir.InstExpr)

		// Type arguments we're instantiating with.
		targs := typecheck.TypesOf(inst.Targs)

		// Find the generic function/method.
		var gf *ir.Name
		if inst.X.Op() == ir.ONAME {
			// Instantiating a generic function call.
			gf = inst.X.(*ir.Name)
		} else if inst.X.Op() == ir.OCALLPART {
			// Instantiating a method value x.M.
			se := inst.X.(*ir.SelectorExpr)
			rcvrValue = se.X
			gf = se.Selection.Nname.(*ir.Name)
		} else {
			panic("unhandled")
		}

		// target is the instantiated function we're trying to call.
		// For functions, the target expects a dictionary as its first argument.
		// For method values, the target expects a dictionary and the receiver
		// as its first two arguments.
		target = g.getInstantiation(gf, targs, rcvrValue != nil)

		// The value to use for the dictionary argument.
		if rcvrValue == nil {
			dictValue = reflectdata.GetDictionaryForFunc(gf, targs)
		} else {
			dictValue = reflectdata.GetDictionaryForMethod(gf, targs)
		}
	} else { // ir.OMETHEXPR
		// Method expression T.M where T is a generic type.
		// TODO: Is (*T).M right?
		se := x.(*ir.SelectorExpr)
		targs := se.X.Type().RParams()
		if len(targs) == 0 {
			if se.X.Type().IsPtr() {
				targs = se.X.Type().Elem().RParams()
				if len(targs) == 0 {
					panic("bad")
				}
			}
		}
		t := se.X.Type()
		baseSym := t.OrigSym
		baseType := baseSym.Def.(*ir.Name).Type()
		var gf *ir.Name
		for _, m := range baseType.Methods().Slice() {
			if se.Sel == m.Sym {
				gf = m.Nname.(*ir.Name)
				break
			}
		}
		target = g.getInstantiation(gf, targs, true)
		dictValue = reflectdata.GetDictionaryForMethod(gf, targs)
	}

	// Build a closure to implement a function instantiation.
	//
	//   func f[T any] (int, int) (int, int) { ...whatever... }
	//
	// Then any reference to f[int] not directly called gets rewritten to
	//
	//   .dictN := ... dictionary to use ...
	//   func(a0, a1 int) (r0, r1 int) {
	//     return .inst.f[int](.dictN, a0, a1)
	//   }
	//
	// Similarly for method expressions,
	//
	//   type g[T any] ....
	//   func (rcvr g[T]) f(a0, a1 int) (r0, r1 int) { ... }
	//
	// Any reference to g[int].f not directly called gets rewritten to
	//
	//   .dictN := ... dictionary to use ...
	//   func(rcvr g[int], a0, a1 int) (r0, r1 int) {
	//     return .inst.g[int].f(.dictN, rcvr, a0, a1)
	//   }
	//
	// Also method values
	//
	//   var x g[int]
	//
	// Any reference to x.f not directly called gets rewritten to
	//
	//   .dictN := ... dictionary to use ...
	//   x2 := x
	//   func(a0, a1 int) (r0, r1 int) {
	//     return .inst.g[int].f(.dictN, x2, a0, a1)
	//   }

	// Make a new internal function.
	fn := ir.NewFunc(pos)
	fn.SetIsHiddenClosure(true)

	// This is the dictionary we want to use.
	// It may be a constant, or it may be a dictionary acquired from the outer function's dictionary.
	// For the latter, dictVar is a variable in the outer function's scope, set to the subdictionary
	// read from the outer function's dictionary.
	var dictVar *ir.Name
	var dictAssign *ir.AssignStmt
	if outer != nil {
		// Note: for now this is a compile-time constant, so we don't really need a closure
		// to capture it (a wrapper function would work just as well). But eventually it
		// will be a read of a subdictionary from the parent dictionary.
		dictVar = ir.NewNameAt(pos, typecheck.LookupNum(".dict", g.dnum))
		g.dnum++
		dictVar.Class = ir.PAUTO
		typed(types.Types[types.TUINTPTR], dictVar)
		dictVar.Curfn = outer
		dictAssign = ir.NewAssignStmt(pos, dictVar, dictValue)
		dictAssign.SetTypecheck(1)
		dictVar.Defn = dictAssign
		outer.Dcl = append(outer.Dcl, dictVar)
	}
	// assign the receiver to a temporary.
	var rcvrVar *ir.Name
	var rcvrAssign ir.Node
	if rcvrValue != nil {
		rcvrVar = ir.NewNameAt(pos, typecheck.LookupNum(".rcvr", g.dnum))
		g.dnum++
		rcvrVar.Class = ir.PAUTO
		typed(rcvrValue.Type(), rcvrVar)
		rcvrVar.Curfn = outer
		rcvrAssign = ir.NewAssignStmt(pos, rcvrVar, rcvrValue)
		rcvrAssign.SetTypecheck(1)
		rcvrVar.Defn = rcvrAssign
		outer.Dcl = append(outer.Dcl, rcvrVar)
	}

	// Build formal argument and return lists.
	var formalParams []*types.Field  // arguments of closure
	var formalResults []*types.Field // returns of closure
	for i := 0; i < typ.NumParams(); i++ {
		t := typ.Params().Field(i).Type
		arg := ir.NewNameAt(pos, typecheck.LookupNum("a", i))
		arg.Class = ir.PPARAM
		typed(t, arg)
		arg.Curfn = fn
		fn.Dcl = append(fn.Dcl, arg)
		f := types.NewField(pos, arg.Sym(), t)
		f.Nname = arg
		formalParams = append(formalParams, f)
	}
	for i := 0; i < typ.NumResults(); i++ {
		t := typ.Results().Field(i).Type
		result := ir.NewNameAt(pos, typecheck.LookupNum("r", i)) // TODO: names not needed?
		result.Class = ir.PPARAMOUT
		typed(t, result)
		result.Curfn = fn
		fn.Dcl = append(fn.Dcl, result)
		f := types.NewField(pos, result.Sym(), t)
		f.Nname = result
		formalResults = append(formalResults, f)
	}

	// Build an internal function with the right signature.
	closureType := types.NewSignature(x.Type().Pkg(), nil, nil, formalParams, formalResults)
	sym := typecheck.ClosureName(outer)
	sym.SetFunc(true)
	fn.Nname = ir.NewNameAt(pos, sym)
	fn.Nname.Class = ir.PFUNC
	fn.Nname.Func = fn
	fn.Nname.Defn = fn
	typed(closureType, fn.Nname)
	fn.SetTypecheck(1)

	// Build body of closure. This involves just calling the wrapped function directly
	// with the additional dictionary argument.

	// First, figure out the dictionary argument.
	var dict2Var ir.Node
	if outer != nil {
		// If there's an outer function, the dictionary value will be read from
		// the dictionary of the outer function.
		// TODO: only use a subdictionary if any of the instantiating types
		// depend on the type params of the outer function.
		dict2Var = ir.CaptureName(pos, fn, dictVar)
	} else {
		// No outer function, instantiating types are known concrete types.
		dict2Var = dictValue
	}
	// Also capture the receiver variable.
	var rcvr2Var *ir.Name
	if rcvrValue != nil {
		rcvr2Var = ir.CaptureName(pos, fn, rcvrVar)
	}

	// Build arguments to call inside the closure.
	var args []ir.Node

	// First the dictionary argument.
	args = append(args, dict2Var)
	// Then the receiver.
	if rcvrValue != nil {
		args = append(args, rcvr2Var)
	}
	// Then all the other arguments (including receiver for method expressions).
	for i := 0; i < typ.NumParams(); i++ {
		args = append(args, formalParams[i].Nname.(*ir.Name))
	}

	// Build call itself.
	var innerCall ir.Node = ir.NewCallExpr(pos, ir.OCALL, target.Nname, args)
	if len(formalResults) > 0 {
		innerCall = ir.NewReturnStmt(pos, []ir.Node{innerCall})
	}
	// Finish building body of closure.
	ir.CurFunc = fn
	// TODO: set types directly here instead of using typecheck.Stmt
	typecheck.Stmt(innerCall)
	ir.CurFunc = nil
	fn.Body = []ir.Node{innerCall}
	if outer == nil {
		g.target.Decls = append(g.target.Decls, fn)
	}

	// We're all done with the captured dictionary (and receiver, for method values).
	ir.FinishCaptureNames(pos, outer, fn)

	// Make a closure referencing our new internal function.
	c := ir.NewClosureExpr(pos, fn)
	var init []ir.Node
	if outer != nil {
		init = append(init, dictAssign)
	}
	if rcvrValue != nil {
		init = append(init, rcvrAssign)
	}
	c.SetInit(init)
	typed(x.Type(), c)
	return c
}

// instantiateMethods instantiates all the methods of all fully-instantiated
// generic types that have been added to g.instTypeList.
func (g *irgen) instantiateMethods() {
	for i := 0; i < len(g.instTypeList); i++ {
		typ := g.instTypeList[i]
		// Mark runtime type as needed, since this ensures that the
		// compiler puts out the needed DWARF symbols, when this
		// instantiated type has a different package from the local
		// package.
		typecheck.NeedRuntimeType(typ)
		// Lookup the method on the base generic type, since methods may
		// not be set on imported instantiated types.
		baseSym := typ.OrigSym
		baseType := baseSym.Def.(*ir.Name).Type()
		for j, _ := range typ.Methods().Slice() {
			baseNname := baseType.Methods().Slice()[j].Nname.(*ir.Name)
			// Eagerly generate the instantiations that implement these methods.
			// We don't use the instantiations here, just generate them (and any
			// further instantiations those generate, etc.).
			// Note that we don't set the Func for any methods on instantiated
			// types. Their signatures don't match so that would be confusing.
			// Direct method calls go directly to the instantiations, implemented above.
			// Indirect method calls use wrappers generated in reflectcall. Those wrappers
			// will use these instantiations if they are needed (for interface tables or reflection).
			_ = g.getInstantiation(baseNname, typ.RParams(), true)
		}
	}
	g.instTypeList = nil

}

// getInstantiationForNode returns the function/method instantiation for a
// InstExpr node inst.
func (g *irgen) getInstantiationForNode(inst *ir.InstExpr) *ir.Func {
	if meth, ok := inst.X.(*ir.SelectorExpr); ok {
		return g.getInstantiation(meth.Selection.Nname.(*ir.Name), typecheck.TypesOf(inst.Targs), true)
	} else {
		return g.getInstantiation(inst.X.(*ir.Name), typecheck.TypesOf(inst.Targs), false)
	}
}

// getInstantiation gets the instantiantion of the function or method nameNode
// with the type arguments targs. If the instantiated function is not already
// cached, then it calls genericSubst to create the new instantiation.
func (g *irgen) getInstantiation(nameNode *ir.Name, targs []*types.Type, isMeth bool) *ir.Func {
	if nameNode.Func.Body == nil && nameNode.Func.Inl != nil {
		// If there is no body yet but Func.Inl exists, then we can can
		// import the whole generic body.
		assert(nameNode.Func.Inl.Cost == 1 && nameNode.Sym().Pkg != types.LocalPkg)
		typecheck.ImportBody(nameNode.Func)
		assert(nameNode.Func.Inl.Body != nil)
		nameNode.Func.Body = nameNode.Func.Inl.Body
		nameNode.Func.Dcl = nameNode.Func.Inl.Dcl
	}
	sym := typecheck.MakeInstName(nameNode.Sym(), targs, isMeth)
	st := g.target.Stencils[sym]
	if st == nil {
		// If instantiation doesn't exist yet, create it and add
		// to the list of decls.
		st = g.genericSubst(sym, nameNode, targs, isMeth)
		// This ensures that the linker drops duplicates of this instantiation.
		// All just works!
		st.SetDupok(true)
		g.target.Stencils[sym] = st
		g.target.Decls = append(g.target.Decls, st)
		if base.Flag.W > 1 {
			ir.Dump(fmt.Sprintf("\nstenciled %v", st), st)
		}
	}
	return st
}

// Struct containing info needed for doing the substitution as we create the
// instantiation of a generic function with specified type arguments.
type subster struct {
	g          *irgen
	isMethod   bool     // If a method is being instantiated
	newf       *ir.Func // Func node for the new stenciled function
	ts         typecheck.Tsubster
	dictionary *ir.Name // Name of dictionary variable
}

// genericSubst returns a new function with name newsym. The function is an
// instantiation of a generic function or method specified by namedNode with type
// args targs. For a method with a generic receiver, it returns an instantiated
// function type where the receiver becomes the first parameter. Otherwise the
// instantiated method would still need to be transformed by later compiler
// phases.
func (g *irgen) genericSubst(newsym *types.Sym, nameNode *ir.Name, targs []*types.Type, isMethod bool) *ir.Func {
	var tparams []*types.Type
	if isMethod {
		// Get the type params from the method receiver (after skipping
		// over any pointer)
		recvType := nameNode.Type().Recv().Type
		recvType = deref(recvType)
		tparams = recvType.RParams()
	} else {
		fields := nameNode.Type().TParams().Fields().Slice()
		tparams = make([]*types.Type, len(fields))
		for i, f := range fields {
			tparams[i] = f.Type
		}
	}
	gf := nameNode.Func
	// Pos of the instantiated function is same as the generic function
	newf := ir.NewFunc(gf.Pos())
	newf.Pragma = gf.Pragma // copy over pragmas from generic function to stenciled implementation.
	newf.Nname = ir.NewNameAt(gf.Pos(), newsym)
	newf.Nname.Func = newf
	newf.Nname.Defn = newf
	newsym.Def = newf.Nname
	savef := ir.CurFunc
	// transformCall/transformReturn (called during stenciling of the body)
	// depend on ir.CurFunc being set.
	ir.CurFunc = newf

	assert(len(tparams) == len(targs))

	subst := &subster{
		g:        g,
		isMethod: isMethod,
		newf:     newf,
		ts: typecheck.Tsubster{
			Tparams: tparams,
			Targs:   targs,
			Vars:    make(map[*ir.Name]*ir.Name),
		},
	}

	newf.Dcl = make([]*ir.Name, 0, len(gf.Dcl)+1)

	// Replace the types in the function signature.
	// Ugly: also, we have to insert the Name nodes of the parameters/results into
	// the function type. The current function type has no Nname fields set,
	// because it came via conversion from the types2 type.
	oldt := nameNode.Type()
	// We also transform a generic method type to the corresponding
	// instantiated function type where the dictionary is the first parameter.
	dictionarySym := newsym.Pkg.Lookup(".dict")
	dictionaryType := types.Types[types.TUINTPTR]
	dictionaryName := ir.NewNameAt(gf.Pos(), dictionarySym)
	typed(dictionaryType, dictionaryName)
	dictionaryName.Class = ir.PPARAM
	dictionaryName.Curfn = newf
	newf.Dcl = append(newf.Dcl, dictionaryName)
	for _, n := range gf.Dcl {
		if n.Sym().Name == ".dict" {
			panic("already has dictionary")
		}
		newf.Dcl = append(newf.Dcl, subst.localvar(n))
	}
	dictionaryArg := types.NewField(gf.Pos(), dictionarySym, dictionaryType)
	dictionaryArg.Nname = dictionaryName
	subst.dictionary = dictionaryName
	var args []*types.Field
	args = append(args, dictionaryArg)
	args = append(args, oldt.Recvs().FieldSlice()...)
	args = append(args, oldt.Params().FieldSlice()...)
	newt := types.NewSignature(oldt.Pkg(), nil, nil,
		subst.fields(ir.PPARAM, args, newf.Dcl),
		subst.fields(ir.PPARAMOUT, oldt.Results().FieldSlice(), newf.Dcl))

	typed(newt, newf.Nname)
	ir.MarkFunc(newf.Nname)
	newf.SetTypecheck(1)

	// Make sure name/type of newf is set before substituting the body.
	newf.Body = subst.list(gf.Body)

	// Add code to check that the dictionary is correct.
	newf.Body.Prepend(g.checkDictionary(dictionaryName, targs)...)

	ir.CurFunc = savef
	// Add any new, fully instantiated types seen during the substitution to
	// g.instTypeList.
	g.instTypeList = append(g.instTypeList, subst.ts.InstTypeList...)

	return newf
}

// localvar creates a new name node for the specified local variable and enters it
// in subst.vars. It substitutes type arguments for type parameters in the type of
// name as needed.
func (subst *subster) localvar(name *ir.Name) *ir.Name {
	m := ir.NewNameAt(name.Pos(), name.Sym())
	if name.IsClosureVar() {
		m.SetIsClosureVar(true)
	}
	m.SetType(subst.ts.Typ(name.Type()))
	m.BuiltinOp = name.BuiltinOp
	m.Curfn = subst.newf
	m.Class = name.Class
	assert(name.Class != ir.PEXTERN && name.Class != ir.PFUNC)
	m.Func = name.Func
	subst.ts.Vars[name] = m
	m.SetTypecheck(1)
	return m
}

// checkDictionary returns code that does runtime consistency checks
// between the dictionary and the types it should contain.
func (g *irgen) checkDictionary(name *ir.Name, targs []*types.Type) (code []ir.Node) {
	if false {
		return // checking turned off
	}
	// TODO: when moving to GCshape, this test will become harder. Call into
	// runtime to check the expected shape is correct?
	pos := name.Pos()
	// Convert dictionary to *[N]uintptr
	d := ir.NewConvExpr(pos, ir.OCONVNOP, types.Types[types.TUNSAFEPTR], name)
	d.SetTypecheck(1)
	d = ir.NewConvExpr(pos, ir.OCONVNOP, types.NewArray(types.Types[types.TUINTPTR], int64(len(targs))).PtrTo(), d)
	d.SetTypecheck(1)

	// Check that each type entry in the dictionary is correct.
	for i, t := range targs {
		want := reflectdata.TypePtr(t)
		typed(types.Types[types.TUINTPTR], want)
		deref := ir.NewStarExpr(pos, d)
		typed(d.Type().Elem(), deref)
		idx := ir.NewConstExpr(constant.MakeUint64(uint64(i)), name) // TODO: what to set orig to?
		typed(types.Types[types.TUINTPTR], idx)
		got := ir.NewIndexExpr(pos, deref, idx)
		typed(types.Types[types.TUINTPTR], got)
		cond := ir.NewBinaryExpr(pos, ir.ONE, want, got)
		typed(types.Types[types.TBOOL], cond)
		panicArg := ir.NewNilExpr(pos)
		typed(types.NewInterface(types.LocalPkg, nil), panicArg)
		then := ir.NewUnaryExpr(pos, ir.OPANIC, panicArg)
		then.SetTypecheck(1)
		x := ir.NewIfStmt(pos, cond, []ir.Node{then}, nil)
		x.SetTypecheck(1)
		code = append(code, x)
	}
	return
}

// getDictionaryType returns a *runtime._type from the dictionary corresponding to the input type.
// The input type must be a type parameter (TODO: or a local derived type).
func (subst *subster) getDictionaryType(pos src.XPos, t *types.Type) ir.Node {
	tparams := subst.ts.Tparams
	var i = 0
	for i = range tparams {
		if t == tparams[i] {
			break
		}
	}
	if i == len(tparams) {
		base.Fatalf(fmt.Sprintf("couldn't find type param %+v", t))
	}

	// Convert dictionary to *[N]uintptr
	// All entries in the dictionary are pointers. They all point to static data, though, so we
	// treat them as uintptrs so the GC doesn't need to keep track of them.
	d := ir.NewConvExpr(pos, ir.OCONVNOP, types.Types[types.TUNSAFEPTR], subst.dictionary)
	d.SetTypecheck(1)
	d = ir.NewConvExpr(pos, ir.OCONVNOP, types.NewArray(types.Types[types.TUINTPTR], int64(len(tparams))).PtrTo(), d)
	d.SetTypecheck(1)

	// Load entry i out of the dictionary.
	deref := ir.NewStarExpr(pos, d)
	typed(d.Type().Elem(), deref)
	idx := ir.NewConstExpr(constant.MakeUint64(uint64(i)), subst.dictionary) // TODO: what to set orig to?
	typed(types.Types[types.TUINTPTR], idx)
	r := ir.NewIndexExpr(pos, deref, idx)
	typed(types.Types[types.TUINT8].PtrTo(), r) // standard typing of a *runtime._type in the compiler is *byte
	return r
}

// node is like DeepCopy(), but substitutes ONAME nodes based on subst.ts.vars, and
// also descends into closures. It substitutes type arguments for type parameters
// in all the new nodes.
func (subst *subster) node(n ir.Node) ir.Node {
	// Use closure to capture all state needed by the ir.EditChildren argument.
	var edit func(ir.Node) ir.Node
	edit = func(x ir.Node) ir.Node {
		switch x.Op() {
		case ir.OTYPE:
			return ir.TypeNode(subst.ts.Typ(x.Type()))

		case ir.ONAME:
			if v := subst.ts.Vars[x.(*ir.Name)]; v != nil {
				return v
			}
			return x
		case ir.ONONAME:
			// This handles the identifier in a type switch guard
			fallthrough
		case ir.OLITERAL, ir.ONIL:
			if x.Sym() != nil {
				return x
			}
		}
		m := ir.Copy(x)
		if _, isExpr := m.(ir.Expr); isExpr {
			t := x.Type()
			if t == nil {
				// t can be nil only if this is a call that has no
				// return values, so allow that and otherwise give
				// an error.
				_, isCallExpr := m.(*ir.CallExpr)
				_, isStructKeyExpr := m.(*ir.StructKeyExpr)
				if !isCallExpr && !isStructKeyExpr && x.Op() != ir.OPANIC &&
					x.Op() != ir.OCLOSE {
					base.Fatalf(fmt.Sprintf("Nil type for %v", x))
				}
			} else if x.Op() != ir.OCLOSURE {
				m.SetType(subst.ts.Typ(x.Type()))
			}
		}
		ir.EditChildren(m, edit)

		m.SetTypecheck(1)
		if typecheck.IsCmp(x.Op()) {
			transformCompare(m.(*ir.BinaryExpr))
		} else {
			switch x.Op() {
			case ir.OSLICE, ir.OSLICE3:
				transformSlice(m.(*ir.SliceExpr))

			case ir.OADD:
				m = transformAdd(m.(*ir.BinaryExpr))

			case ir.OINDEX:
				transformIndex(m.(*ir.IndexExpr))

			case ir.OAS2:
				as2 := m.(*ir.AssignListStmt)
				transformAssign(as2, as2.Lhs, as2.Rhs)

			case ir.OAS:
				as := m.(*ir.AssignStmt)
				if as.Y != nil {
					// transformAssign doesn't handle the case
					// of zeroing assignment of a dcl (rhs[0] is nil).
					lhs, rhs := []ir.Node{as.X}, []ir.Node{as.Y}
					transformAssign(as, lhs, rhs)
				}

			case ir.OASOP:
				as := m.(*ir.AssignOpStmt)
				transformCheckAssign(as, as.X)

			case ir.ORETURN:
				transformReturn(m.(*ir.ReturnStmt))

			case ir.OSEND:
				transformSend(m.(*ir.SendStmt))

			}
		}

		switch x.Op() {
		case ir.OLITERAL:
			t := m.Type()
			if t != x.Type() {
				// types2 will give us a constant with a type T,
				// if an untyped constant is used with another
				// operand of type T (in a provably correct way).
				// When we substitute in the type args during
				// stenciling, we now know the real type of the
				// constant. We may then need to change the
				// BasicLit.val to be the correct type (e.g.
				// convert an int64Val constant to a floatVal
				// constant).
				m.SetType(types.UntypedInt) // use any untyped type for DefaultLit to work
				m = typecheck.DefaultLit(m, t)
			}

		case ir.OXDOT:
			// A method value/call via a type param will have been
			// left as an OXDOT. When we see this during stenciling,
			// finish the transformation, now that we have the
			// instantiated receiver type. We need to do this now,
			// since the access/selection to the method for the real
			// type is very different from the selection for the type
			// param. m will be transformed to an OCALLPART node. It
			// will be transformed to an ODOTMETH or ODOTINTER node if
			// we find in the OCALL case below that the method value
			// is actually called.
			transformDot(m.(*ir.SelectorExpr), false)
			m.SetTypecheck(1)

		case ir.OCALL:
			call := m.(*ir.CallExpr)
			switch call.X.Op() {
			case ir.OTYPE:
				// Transform the conversion, now that we know the
				// type argument.
				m = transformConvCall(m.(*ir.CallExpr))

			case ir.OCALLPART:
				// Redo the transformation of OXDOT, now that we
				// know the method value is being called. Then
				// transform the call.
				call.X.(*ir.SelectorExpr).SetOp(ir.OXDOT)
				transformDot(call.X.(*ir.SelectorExpr), true)
				transformCall(call)

			case ir.ODOT, ir.ODOTPTR:
				// An OXDOT for a generic receiver was resolved to
				// an access to a field which has a function
				// value. Transform the call to that function, now
				// that the OXDOT was resolved.
				transformCall(call)

			case ir.ONAME:
				name := call.X.Name()
				if name.BuiltinOp != ir.OXXX {
					switch name.BuiltinOp {
					case ir.OMAKE, ir.OREAL, ir.OIMAG, ir.OLEN, ir.OCAP, ir.OAPPEND:
						// Transform these builtins now that we
						// know the type of the args.
						m = transformBuiltin(call)
					default:
						base.FatalfAt(call.Pos(), "Unexpected builtin op")
					}
				} else {
					// This is the case of a function value that was a
					// type parameter (implied to be a function via a
					// structural constraint) which is now resolved.
					transformCall(call)
				}

			case ir.OCLOSURE:
				transformCall(call)

			case ir.OFUNCINST:
				// A call with an OFUNCINST will get transformed
				// in stencil() once we have created & attached the
				// instantiation to be called.

			default:
				base.FatalfAt(call.Pos(), fmt.Sprintf("Unexpected op with CALL during stenciling: %v", call.X.Op()))
			}

		case ir.OCLOSURE:
			x := x.(*ir.ClosureExpr)
			// Need to duplicate x.Func.Nname, x.Func.Dcl, x.Func.ClosureVars, and
			// x.Func.Body.
			oldfn := x.Func
			newfn := ir.NewFunc(oldfn.Pos())
			if oldfn.ClosureCalled() {
				newfn.SetClosureCalled(true)
			}
			newfn.SetIsHiddenClosure(true)
			m.(*ir.ClosureExpr).Func = newfn
			// Closure name can already have brackets, if it derives
			// from a generic method
			newsym := typecheck.MakeInstName(oldfn.Nname.Sym(), subst.ts.Targs, subst.isMethod)
			newfn.Nname = ir.NewNameAt(oldfn.Nname.Pos(), newsym)
			newfn.Nname.Func = newfn
			newfn.Nname.Defn = newfn
			ir.MarkFunc(newfn.Nname)
			newfn.OClosure = m.(*ir.ClosureExpr)

			saveNewf := subst.newf
			ir.CurFunc = newfn
			subst.newf = newfn
			newfn.Dcl = subst.namelist(oldfn.Dcl)
			newfn.ClosureVars = subst.namelist(oldfn.ClosureVars)

			typed(subst.ts.Typ(oldfn.Nname.Type()), newfn.Nname)
			typed(newfn.Nname.Type(), m)
			newfn.SetTypecheck(1)

			// Make sure type of closure function is set before doing body.
			newfn.Body = subst.list(oldfn.Body)
			subst.newf = saveNewf
			ir.CurFunc = saveNewf

			subst.g.target.Decls = append(subst.g.target.Decls, newfn)

		case ir.OCONVIFACE:
			x := x.(*ir.ConvExpr)
			// TODO: handle converting from derived types. For now, just from naked
			// type parameters.
			if x.X.Type().IsTypeParam() {
				// Load the actual runtime._type of the type parameter from the dictionary.
				rt := subst.getDictionaryType(m.Pos(), x.X.Type())

				// At this point, m is an interface type with a data word we want.
				// But the type word represents a gcshape type, which we don't want.
				// Replace with the instantiated type loaded from the dictionary.
				m = ir.NewUnaryExpr(m.Pos(), ir.OIDATA, m)
				typed(types.Types[types.TUNSAFEPTR], m)
				m = ir.NewBinaryExpr(m.Pos(), ir.OEFACE, rt, m)
				if !x.Type().IsEmptyInterface() {
					// We just built an empty interface{}. Type it as such,
					// then assert it to the required non-empty interface.
					typed(types.NewInterface(types.LocalPkg, nil), m)
					m = ir.NewTypeAssertExpr(m.Pos(), m, nil)
				}
				typed(x.Type(), m)
				// TODO: we're throwing away the type word of the original version
				// of m here (it would be OITAB(m)), which probably took some
				// work to generate. Can we avoid generating it at all?
				// (The linker will throw them away if not needed, so it would just
				// save toolchain work, not binary size.)
			}
		}
		return m
	}

	return edit(n)
}

func (subst *subster) namelist(l []*ir.Name) []*ir.Name {
	s := make([]*ir.Name, len(l))
	for i, n := range l {
		s[i] = subst.localvar(n)
		if n.Defn != nil {
			s[i].Defn = subst.node(n.Defn)
		}
		if n.Outer != nil {
			s[i].Outer = subst.node(n.Outer).(*ir.Name)
		}
	}
	return s
}

func (subst *subster) list(l []ir.Node) []ir.Node {
	s := make([]ir.Node, len(l))
	for i, n := range l {
		s[i] = subst.node(n)
	}
	return s
}

// fields sets the Nname field for the Field nodes inside a type signature, based
// on the corresponding in/out parameters in dcl. It depends on the in and out
// parameters being in order in dcl.
func (subst *subster) fields(class ir.Class, oldfields []*types.Field, dcl []*ir.Name) []*types.Field {
	// Find the starting index in dcl of declarations of the class (either
	// PPARAM or PPARAMOUT).
	var i int
	for i = range dcl {
		if dcl[i].Class == class {
			break
		}
	}

	// Create newfields nodes that are copies of the oldfields nodes, but
	// with substitution for any type params, and with Nname set to be the node in
	// Dcl for the corresponding PPARAM or PPARAMOUT.
	newfields := make([]*types.Field, len(oldfields))
	for j := range oldfields {
		newfields[j] = oldfields[j].Copy()
		newfields[j].Type = subst.ts.Typ(oldfields[j].Type)
		// A PPARAM field will be missing from dcl if its name is
		// unspecified or specified as "_". So, we compare the dcl sym
		// with the field sym (or sym of the field's Nname node). (Unnamed
		// results still have a name like ~r2 in their Nname node.) If
		// they don't match, this dcl (if there is one left) must apply to
		// a later field.
		if i < len(dcl) && (dcl[i].Sym() == oldfields[j].Sym ||
			(oldfields[j].Nname != nil && dcl[i].Sym() == oldfields[j].Nname.Sym())) {
			newfields[j].Nname = dcl[i]
			i++
		}
	}
	return newfields
}

// defer does a single defer of type t, if it is a pointer type.
func deref(t *types.Type) *types.Type {
	if t.IsPtr() {
		return t.Elem()
	}
	return t
}