aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/noder/helpers.go
blob: 1210d4b58cc35b1f452a86e883090c002a81a8b9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package noder

import (
	"go/constant"

	"cmd/compile/internal/base"
	"cmd/compile/internal/ir"
	"cmd/compile/internal/typecheck"
	"cmd/compile/internal/types"
	"cmd/internal/src"
)

// Helpers for constructing typed IR nodes.
//
// TODO(mdempsky): Move into their own package so they can be easily
// reused by iimport and frontend optimizations.
//
// TODO(mdempsky): Update to consistently return already typechecked
// results, rather than leaving the caller responsible for using
// typecheck.Expr or typecheck.Stmt.

type ImplicitNode interface {
	ir.Node
	SetImplicit(x bool)
}

// Implicit returns n after marking it as Implicit.
func Implicit(n ImplicitNode) ImplicitNode {
	n.SetImplicit(true)
	return n
}

// typed returns n after setting its type to typ.
func typed(typ *types.Type, n ir.Node) ir.Node {
	n.SetType(typ)
	n.SetTypecheck(1)
	return n
}

// Values

func Const(pos src.XPos, typ *types.Type, val constant.Value) ir.Node {
	return typed(typ, ir.NewBasicLit(pos, val))
}

func Nil(pos src.XPos, typ *types.Type) ir.Node {
	return typed(typ, ir.NewNilExpr(pos))
}

// Expressions

func Addr(pos src.XPos, x ir.Node) *ir.AddrExpr {
	n := typecheck.NodAddrAt(pos, x)
	switch x.Op() {
	case ir.OARRAYLIT, ir.OMAPLIT, ir.OSLICELIT, ir.OSTRUCTLIT:
		n.SetOp(ir.OPTRLIT)
	}
	typed(types.NewPtr(x.Type()), n)
	return n
}

func Assert(pos src.XPos, x ir.Node, typ *types.Type) ir.Node {
	return typed(typ, ir.NewTypeAssertExpr(pos, x, nil))
}

func Binary(pos src.XPos, op ir.Op, x, y ir.Node) ir.Node {
	switch op {
	case ir.OANDAND, ir.OOROR:
		return typed(x.Type(), ir.NewLogicalExpr(pos, op, x, y))
	case ir.OADD:
		if x.Type().IsString() {
			// TODO(mdempsky): Construct OADDSTR directly.
			return typecheck.Expr(ir.NewBinaryExpr(pos, op, x, y))
		}
		fallthrough
	default:
		return typed(x.Type(), ir.NewBinaryExpr(pos, op, x, y))
	}
}

func Call(pos src.XPos, typ *types.Type, fun ir.Node, args []ir.Node, dots bool) ir.Node {
	n := ir.NewCallExpr(pos, ir.OCALL, fun, args)
	n.IsDDD = dots

	if fun.Op() == ir.OTYPE {
		// Actually a type conversion, not a function call.
		if fun.Type().HasTParam() || args[0].Type().HasTParam() {
			// For type params, don't typecheck until we actually know
			// the type.
			return typed(typ, n)
		}
		return typecheck.Expr(n)
	}

	if fun, ok := fun.(*ir.Name); ok && fun.BuiltinOp != 0 {
		// For Builtin ops, we currently stay with using the old
		// typechecker to transform the call to a more specific expression
		// and possibly use more specific ops. However, for a bunch of the
		// ops, we delay doing the old typechecker if any of the args have
		// type params, for a variety of reasons:
		//
		// OMAKE: hard to choose specific ops OMAKESLICE, etc. until arg type is known
		// OREAL/OIMAG: can't determine type float32/float64 until arg type know
		// OLEN/OCAP: old typechecker will complain if arg is not obviously a slice/array.
		// OAPPEND: old typechecker will complain if arg is not obviously slice, etc.
		//
		// We will eventually break out the transforming functionality
		// needed for builtin's, and call it here or during stenciling, as
		// appropriate.
		switch fun.BuiltinOp {
		case ir.OMAKE, ir.OREAL, ir.OIMAG, ir.OLEN, ir.OCAP, ir.OAPPEND:
			hasTParam := false
			for _, arg := range args {
				if arg.Type().HasTParam() {
					hasTParam = true
					break
				}
			}
			if hasTParam {
				return typed(typ, n)
			}
		}

		switch fun.BuiltinOp {
		case ir.OCLOSE, ir.ODELETE, ir.OPANIC, ir.OPRINT, ir.OPRINTN:
			return typecheck.Stmt(n)
		default:
			return typecheck.Expr(n)
		}
	}

	// Add information, now that we know that fun is actually being called.
	switch fun := fun.(type) {
	case *ir.ClosureExpr:
		fun.Func.SetClosureCalled(true)
	case *ir.SelectorExpr:
		if fun.Op() == ir.OCALLPART {
			op := ir.ODOTMETH
			if fun.X.Type().IsInterface() {
				op = ir.ODOTINTER
			}
			fun.SetOp(op)
			// Set the type to include the receiver, since that's what
			// later parts of the compiler expect
			fun.SetType(fun.Selection.Type)
		}
	}

	if fun.Op() == ir.OXDOT {
		if !fun.(*ir.SelectorExpr).X.Type().HasTParam() {
			base.FatalfAt(pos, "Expecting type param receiver in %v", fun)
		}
		// For methods called in a generic function, don't do any extra
		// transformations. We will do those later when we create the
		// instantiated function and have the correct receiver type.
		typed(typ, n)
		return n
	}
	if fun.Op() != ir.OFUNCINST {
		// If no type params, do normal typechecking, since we're
		// still missing some things done by tcCall (mainly
		// typecheckaste/assignconvfn - implementing assignability of args
		// to params).  This will convert OCALL to OCALLFUNC.
		typecheck.Call(n)
		return n
	}

	// Leave the op as OCALL, which indicates the call still needs typechecking.
	n.Use = ir.CallUseExpr
	if fun.Type().NumResults() == 0 {
		n.Use = ir.CallUseStmt
	}
	typed(typ, n)
	return n
}

func Compare(pos src.XPos, typ *types.Type, op ir.Op, x, y ir.Node) ir.Node {
	n := ir.NewBinaryExpr(pos, op, x, y)
	if !types.Identical(x.Type(), y.Type()) {
		// TODO(mdempsky): Handle subtleties of constructing mixed-typed comparisons.
		n = typecheck.Expr(n).(*ir.BinaryExpr)
	}
	return typed(typ, n)
}

func Deref(pos src.XPos, x ir.Node) *ir.StarExpr {
	n := ir.NewStarExpr(pos, x)
	typed(x.Type().Elem(), n)
	return n
}

func DotField(pos src.XPos, x ir.Node, index int) *ir.SelectorExpr {
	op, typ := ir.ODOT, x.Type()
	if typ.IsPtr() {
		op, typ = ir.ODOTPTR, typ.Elem()
	}
	if !typ.IsStruct() {
		base.FatalfAt(pos, "DotField of non-struct: %L", x)
	}

	// TODO(mdempsky): This is the backend's responsibility.
	types.CalcSize(typ)

	field := typ.Field(index)
	return dot(pos, field.Type, op, x, field)
}

func DotMethod(pos src.XPos, x ir.Node, index int) *ir.SelectorExpr {
	method := method(x.Type(), index)

	// Method value.
	typ := typecheck.NewMethodType(method.Type, nil)
	return dot(pos, typ, ir.OCALLPART, x, method)
}

// MethodExpr returns a OMETHEXPR node with the indicated index into the methods
// of typ. The receiver type is set from recv, which is different from typ if the
// method was accessed via embedded fields. Similarly, the X value of the
// ir.SelectorExpr is recv, the original OTYPE node before passing through the
// embedded fields.
func MethodExpr(pos src.XPos, recv ir.Node, embed *types.Type, index int) *ir.SelectorExpr {
	method := method(embed, index)
	typ := typecheck.NewMethodType(method.Type, recv.Type())
	// The method expression T.m requires a wrapper when T
	// is different from m's declared receiver type. We
	// normally generate these wrappers while writing out
	// runtime type descriptors, which is always done for
	// types declared at package scope. However, we need
	// to make sure to generate wrappers for anonymous
	// receiver types too.
	if recv.Sym() == nil {
		typecheck.NeedRuntimeType(recv.Type())
	}
	return dot(pos, typ, ir.OMETHEXPR, recv, method)
}

func dot(pos src.XPos, typ *types.Type, op ir.Op, x ir.Node, selection *types.Field) *ir.SelectorExpr {
	n := ir.NewSelectorExpr(pos, op, x, selection.Sym)
	n.Selection = selection
	typed(typ, n)
	return n
}

// TODO(mdempsky): Move to package types.
func method(typ *types.Type, index int) *types.Field {
	if typ.IsInterface() {
		return typ.Field(index)
	}
	return types.ReceiverBaseType(typ).Methods().Index(index)
}

func Index(pos src.XPos, typ *types.Type, x, index ir.Node) ir.Node {
	n := ir.NewIndexExpr(pos, x, index)
	// TODO(danscales): Temporary fix. Need to separate out the
	// transformations done by the old typechecker (in tcIndex()), to be
	// called here or after stenciling.
	if x.Type().HasTParam() && x.Type().Kind() != types.TMAP &&
		x.Type().Kind() != types.TSLICE && x.Type().Kind() != types.TARRAY {
		// Old typechecker will complain if arg is not obviously a slice/array/map.
		typed(typ, n)
		return n
	}
	return typecheck.Expr(n)
}

func Slice(pos src.XPos, x, low, high, max ir.Node) ir.Node {
	op := ir.OSLICE
	if max != nil {
		op = ir.OSLICE3
	}
	// TODO(mdempsky): Avoid typecheck.Expr.
	return typecheck.Expr(ir.NewSliceExpr(pos, op, x, low, high, max))
}

func Unary(pos src.XPos, op ir.Op, x ir.Node) ir.Node {
	switch op {
	case ir.OADDR:
		return Addr(pos, x)
	case ir.ODEREF:
		return Deref(pos, x)
	}

	typ := x.Type()
	if op == ir.ORECV {
		typ = typ.Elem()
	}
	return typed(typ, ir.NewUnaryExpr(pos, op, x))
}

// Statements

var one = constant.MakeInt64(1)

func IncDec(pos src.XPos, op ir.Op, x ir.Node) ir.Node {
	x = typecheck.AssignExpr(x)
	return ir.NewAssignOpStmt(pos, op, x, typecheck.DefaultLit(ir.NewBasicLit(pos, one), x.Type()))
}