aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/ir/func.go
blob: d20836e0065a5113a21d215901841071054b9a3c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package ir

import (
	"cmd/compile/internal/base"
	"cmd/compile/internal/types"
	"cmd/internal/obj"
	"cmd/internal/objabi"
	"cmd/internal/src"
	"fmt"
	"strings"
	"unicode/utf8"
)

// A Func corresponds to a single function in a Go program
// (and vice versa: each function is denoted by exactly one *Func).
//
// There are multiple nodes that represent a Func in the IR.
//
// The ONAME node (Func.Nname) is used for plain references to it.
// The ODCLFUNC node (the Func itself) is used for its declaration code.
// The OCLOSURE node (Func.OClosure) is used for a reference to a
// function literal.
//
// An imported function will have an ONAME node which points to a Func
// with an empty body.
// A declared function or method has an ODCLFUNC (the Func itself) and an ONAME.
// A function literal is represented directly by an OCLOSURE, but it also
// has an ODCLFUNC (and a matching ONAME) representing the compiled
// underlying form of the closure, which accesses the captured variables
// using a special data structure passed in a register.
//
// A method declaration is represented like functions, except f.Sym
// will be the qualified method name (e.g., "T.m").
//
// A method expression (T.M) is represented as an OMETHEXPR node,
// in which n.Left and n.Right point to the type and method, respectively.
// Each distinct mention of a method expression in the source code
// constructs a fresh node.
//
// A method value (t.M) is represented by ODOTMETH/ODOTINTER
// when it is called directly and by OMETHVALUE otherwise.
// These are like method expressions, except that for ODOTMETH/ODOTINTER,
// the method name is stored in Sym instead of Right.
// Each OMETHVALUE ends up being implemented as a new
// function, a bit like a closure, with its own ODCLFUNC.
// The OMETHVALUE uses n.Func to record the linkage to
// the generated ODCLFUNC, but there is no
// pointer from the Func back to the OMETHVALUE.
type Func struct {
	miniNode
	Body Nodes

	Nname    *Name        // ONAME node
	OClosure *ClosureExpr // OCLOSURE node

	// ONAME nodes for all params/locals for this func/closure, does NOT
	// include closurevars until transforming closures during walk.
	// Names must be listed PPARAMs, PPARAMOUTs, then PAUTOs,
	// with PPARAMs and PPARAMOUTs in order corresponding to the function signature.
	// Anonymous and blank params are declared as ~pNN (for PPARAMs) and ~rNN (for PPARAMOUTs).
	Dcl []*Name

	// ClosureVars lists the free variables that are used within a
	// function literal, but formally declared in an enclosing
	// function. The variables in this slice are the closure function's
	// own copy of the variables, which are used within its function
	// body. They will also each have IsClosureVar set, and will have
	// Byval set if they're captured by value.
	ClosureVars []*Name

	// Enclosed functions that need to be compiled.
	// Populated during walk.
	Closures []*Func

	// Parents records the parent scope of each scope within a
	// function. The root scope (0) has no parent, so the i'th
	// scope's parent is stored at Parents[i-1].
	Parents []ScopeID

	// Marks records scope boundary changes.
	Marks []Mark

	FieldTrack map[*obj.LSym]struct{}
	DebugInfo  interface{}
	LSym       *obj.LSym // Linker object in this function's native ABI (Func.ABI)

	Inl *Inline

	// funcLitGen and goDeferGen track how many closures have been
	// created in this function for function literals and go/defer
	// wrappers, respectively. Used by closureName for creating unique
	// function names.
	//
	// Tracking goDeferGen separately avoids wrappers throwing off
	// function literal numbering (e.g., runtime/trace_test.TestTraceSymbolize.func11).
	funcLitGen int32
	goDeferGen int32

	Label int32 // largest auto-generated label in this function

	Endlineno src.XPos
	WBPos     src.XPos // position of first write barrier; see SetWBPos

	Pragma PragmaFlag // go:xxx function annotations

	flags bitset16

	// ABI is a function's "definition" ABI. This is the ABI that
	// this function's generated code is expecting to be called by.
	//
	// For most functions, this will be obj.ABIInternal. It may be
	// a different ABI for functions defined in assembly or ABI wrappers.
	//
	// This is included in the export data and tracked across packages.
	ABI obj.ABI
	// ABIRefs is the set of ABIs by which this function is referenced.
	// For ABIs other than this function's definition ABI, the
	// compiler generates ABI wrapper functions. This is only tracked
	// within a package.
	ABIRefs obj.ABISet

	NumDefers  int32 // number of defer calls in the function
	NumReturns int32 // number of explicit returns in the function

	// NWBRCalls records the LSyms of functions called by this
	// function for go:nowritebarrierrec analysis. Only filled in
	// if nowritebarrierrecCheck != nil.
	NWBRCalls *[]SymAndPos

	// For wrapper functions, WrappedFunc point to the original Func.
	// Currently only used for go/defer wrappers.
	WrappedFunc *Func

	// WasmImport is used by the //go:wasmimport directive to store info about
	// a WebAssembly function import.
	WasmImport *WasmImport
}

// WasmImport stores metadata associated with the //go:wasmimport pragma.
type WasmImport struct {
	Module string
	Name   string
}

// NewFunc returns a new Func with the given name and type.
//
// fpos is the position of the "func" token, and npos is the position
// of the name identifier.
//
// TODO(mdempsky): I suspect there's no need for separate fpos and
// npos.
func NewFunc(fpos, npos src.XPos, sym *types.Sym, typ *types.Type) *Func {
	name := NewNameAt(npos, sym, typ)
	name.Class = PFUNC
	sym.SetFunc(true)

	fn := &Func{Nname: name}
	fn.pos = fpos
	fn.op = ODCLFUNC
	// Most functions are ABIInternal. The importer or symabis
	// pass may override this.
	fn.ABI = obj.ABIInternal
	fn.SetTypecheck(1)

	name.Func = fn

	return fn
}

func (f *Func) isStmt() {}

func (n *Func) copy() Node                                  { panic(n.no("copy")) }
func (n *Func) doChildren(do func(Node) bool) bool          { return doNodes(n.Body, do) }
func (n *Func) editChildren(edit func(Node) Node)           { editNodes(n.Body, edit) }
func (n *Func) editChildrenWithHidden(edit func(Node) Node) { editNodes(n.Body, edit) }

func (f *Func) Type() *types.Type                { return f.Nname.Type() }
func (f *Func) Sym() *types.Sym                  { return f.Nname.Sym() }
func (f *Func) Linksym() *obj.LSym               { return f.Nname.Linksym() }
func (f *Func) LinksymABI(abi obj.ABI) *obj.LSym { return f.Nname.LinksymABI(abi) }

// An Inline holds fields used for function bodies that can be inlined.
type Inline struct {
	Cost int32 // heuristic cost of inlining this function

	// Copy of Func.Dcl for use during inlining. This copy is needed
	// because the function's Dcl may change from later compiler
	// transformations. This field is also populated when a function
	// from another package is imported and inlined.
	Dcl     []*Name
	HaveDcl bool // whether we've loaded Dcl

	// Function properties, encoded as a string (these are used for
	// making inlining decisions). See cmd/compile/internal/inline/inlheur.
	Properties string

	// CanDelayResults reports whether it's safe for the inliner to delay
	// initializing the result parameters until immediately before the
	// "return" statement.
	CanDelayResults bool
}

// A Mark represents a scope boundary.
type Mark struct {
	// Pos is the position of the token that marks the scope
	// change.
	Pos src.XPos

	// Scope identifies the innermost scope to the right of Pos.
	Scope ScopeID
}

// A ScopeID represents a lexical scope within a function.
type ScopeID int32

const (
	funcDupok      = 1 << iota // duplicate definitions ok
	funcWrapper                // hide frame from users (elide in tracebacks, don't count as a frame for recover())
	funcABIWrapper             // is an ABI wrapper (also set flagWrapper)
	funcNeedctxt               // function uses context register (has closure variables)
	// true if closure inside a function; false if a simple function or a
	// closure in a global variable initialization
	funcIsHiddenClosure
	funcIsDeadcodeClosure        // true if closure is deadcode
	funcHasDefer                 // contains a defer statement
	funcNilCheckDisabled         // disable nil checks when compiling this function
	funcInlinabilityChecked      // inliner has already determined whether the function is inlinable
	funcNeverReturns             // function never returns (in most cases calls panic(), os.Exit(), or equivalent)
	funcOpenCodedDeferDisallowed // can't do open-coded defers
	funcClosureResultsLost       // closure is called indirectly and we lost track of its results; used by escape analysis
	funcPackageInit              // compiler emitted .init func for package
)

type SymAndPos struct {
	Sym *obj.LSym // LSym of callee
	Pos src.XPos  // line of call
}

func (f *Func) Dupok() bool                    { return f.flags&funcDupok != 0 }
func (f *Func) Wrapper() bool                  { return f.flags&funcWrapper != 0 }
func (f *Func) ABIWrapper() bool               { return f.flags&funcABIWrapper != 0 }
func (f *Func) Needctxt() bool                 { return f.flags&funcNeedctxt != 0 }
func (f *Func) IsHiddenClosure() bool          { return f.flags&funcIsHiddenClosure != 0 }
func (f *Func) IsDeadcodeClosure() bool        { return f.flags&funcIsDeadcodeClosure != 0 }
func (f *Func) HasDefer() bool                 { return f.flags&funcHasDefer != 0 }
func (f *Func) NilCheckDisabled() bool         { return f.flags&funcNilCheckDisabled != 0 }
func (f *Func) InlinabilityChecked() bool      { return f.flags&funcInlinabilityChecked != 0 }
func (f *Func) NeverReturns() bool             { return f.flags&funcNeverReturns != 0 }
func (f *Func) OpenCodedDeferDisallowed() bool { return f.flags&funcOpenCodedDeferDisallowed != 0 }
func (f *Func) ClosureResultsLost() bool       { return f.flags&funcClosureResultsLost != 0 }
func (f *Func) IsPackageInit() bool            { return f.flags&funcPackageInit != 0 }

func (f *Func) SetDupok(b bool)                    { f.flags.set(funcDupok, b) }
func (f *Func) SetWrapper(b bool)                  { f.flags.set(funcWrapper, b) }
func (f *Func) SetABIWrapper(b bool)               { f.flags.set(funcABIWrapper, b) }
func (f *Func) SetNeedctxt(b bool)                 { f.flags.set(funcNeedctxt, b) }
func (f *Func) SetIsHiddenClosure(b bool)          { f.flags.set(funcIsHiddenClosure, b) }
func (f *Func) SetIsDeadcodeClosure(b bool)        { f.flags.set(funcIsDeadcodeClosure, b) }
func (f *Func) SetHasDefer(b bool)                 { f.flags.set(funcHasDefer, b) }
func (f *Func) SetNilCheckDisabled(b bool)         { f.flags.set(funcNilCheckDisabled, b) }
func (f *Func) SetInlinabilityChecked(b bool)      { f.flags.set(funcInlinabilityChecked, b) }
func (f *Func) SetNeverReturns(b bool)             { f.flags.set(funcNeverReturns, b) }
func (f *Func) SetOpenCodedDeferDisallowed(b bool) { f.flags.set(funcOpenCodedDeferDisallowed, b) }
func (f *Func) SetClosureResultsLost(b bool)       { f.flags.set(funcClosureResultsLost, b) }
func (f *Func) SetIsPackageInit(b bool)            { f.flags.set(funcPackageInit, b) }

func (f *Func) SetWBPos(pos src.XPos) {
	if base.Debug.WB != 0 {
		base.WarnfAt(pos, "write barrier")
	}
	if !f.WBPos.IsKnown() {
		f.WBPos = pos
	}
}

// FuncName returns the name (without the package) of the function f.
func FuncName(f *Func) string {
	if f == nil || f.Nname == nil {
		return "<nil>"
	}
	return f.Sym().Name
}

// PkgFuncName returns the name of the function referenced by f, with package
// prepended.
//
// This differs from the compiler's internal convention where local functions
// lack a package. This is primarily useful when the ultimate consumer of this
// is a human looking at message.
func PkgFuncName(f *Func) string {
	if f == nil || f.Nname == nil {
		return "<nil>"
	}
	s := f.Sym()
	pkg := s.Pkg

	return pkg.Path + "." + s.Name
}

// LinkFuncName returns the name of the function f, as it will appear in the
// symbol table of the final linked binary.
func LinkFuncName(f *Func) string {
	if f == nil || f.Nname == nil {
		return "<nil>"
	}
	s := f.Sym()
	pkg := s.Pkg

	return objabi.PathToPrefix(pkg.Path) + "." + s.Name
}

// ParseLinkFuncName parsers a symbol name (as returned from LinkFuncName) back
// to the package path and local symbol name.
func ParseLinkFuncName(name string) (pkg, sym string, err error) {
	pkg, sym = splitPkg(name)
	if pkg == "" {
		return "", "", fmt.Errorf("no package path in name")
	}

	pkg, err = objabi.PrefixToPath(pkg) // unescape
	if err != nil {
		return "", "", fmt.Errorf("malformed package path: %v", err)
	}

	return pkg, sym, nil
}

// Borrowed from x/mod.
func modPathOK(r rune) bool {
	if r < utf8.RuneSelf {
		return r == '-' || r == '.' || r == '_' || r == '~' ||
			'0' <= r && r <= '9' ||
			'A' <= r && r <= 'Z' ||
			'a' <= r && r <= 'z'
	}
	return false
}

func escapedImportPathOK(r rune) bool {
	return modPathOK(r) || r == '+' || r == '/' || r == '%'
}

// splitPkg splits the full linker symbol name into package and local symbol
// name.
func splitPkg(name string) (pkgpath, sym string) {
	// package-sym split is at first dot after last the / that comes before
	// any characters illegal in a package path.

	lastSlashIdx := 0
	for i, r := range name {
		// Catches cases like:
		// * example.foo[sync/atomic.Uint64].
		// * example%2ecom.foo[sync/atomic.Uint64].
		//
		// Note that name is still escaped; unescape occurs after splitPkg.
		if !escapedImportPathOK(r) {
			break
		}
		if r == '/' {
			lastSlashIdx = i
		}
	}
	for i := lastSlashIdx; i < len(name); i++ {
		r := name[i]
		if r == '.' {
			return name[:i], name[i+1:]
		}
	}

	return "", name
}

var CurFunc *Func

// WithFunc invokes do with CurFunc and base.Pos set to curfn and
// curfn.Pos(), respectively, and then restores their previous values
// before returning.
func WithFunc(curfn *Func, do func()) {
	oldfn, oldpos := CurFunc, base.Pos
	defer func() { CurFunc, base.Pos = oldfn, oldpos }()

	CurFunc, base.Pos = curfn, curfn.Pos()
	do()
}

func FuncSymName(s *types.Sym) string {
	return s.Name + "·f"
}

// ClosureDebugRuntimeCheck applies boilerplate checks for debug flags
// and compiling runtime.
func ClosureDebugRuntimeCheck(clo *ClosureExpr) {
	if base.Debug.Closure > 0 {
		if clo.Esc() == EscHeap {
			base.WarnfAt(clo.Pos(), "heap closure, captured vars = %v", clo.Func.ClosureVars)
		} else {
			base.WarnfAt(clo.Pos(), "stack closure, captured vars = %v", clo.Func.ClosureVars)
		}
	}
	if base.Flag.CompilingRuntime && clo.Esc() == EscHeap && !clo.IsGoWrap {
		base.ErrorfAt(clo.Pos(), 0, "heap-allocated closure %s, not allowed in runtime", FuncName(clo.Func))
	}
}

// IsTrivialClosure reports whether closure clo has an
// empty list of captured vars.
func IsTrivialClosure(clo *ClosureExpr) bool {
	return len(clo.Func.ClosureVars) == 0
}

// globClosgen is like Func.Closgen, but for the global scope.
var globClosgen int32

// closureName generates a new unique name for a closure within outerfn at pos.
func closureName(outerfn *Func, pos src.XPos, why Op) *types.Sym {
	pkg := types.LocalPkg
	outer := "glob."
	var prefix string
	switch why {
	default:
		base.FatalfAt(pos, "closureName: bad Op: %v", why)
	case OCLOSURE:
		if outerfn == nil || outerfn.OClosure == nil {
			prefix = "func"
		}
	case OGO:
		prefix = "gowrap"
	case ODEFER:
		prefix = "deferwrap"
	}
	gen := &globClosgen

	// There may be multiple functions named "_". In those
	// cases, we can't use their individual Closgens as it
	// would lead to name clashes.
	if outerfn != nil && !IsBlank(outerfn.Nname) {
		pkg = outerfn.Sym().Pkg
		outer = FuncName(outerfn)

		if why == OCLOSURE {
			gen = &outerfn.funcLitGen
		} else {
			gen = &outerfn.goDeferGen
		}
	}

	// If this closure was created due to inlining, then incorporate any
	// inlined functions' names into the closure's linker symbol name
	// too (#60324).
	if inlIndex := base.Ctxt.InnermostPos(pos).Base().InliningIndex(); inlIndex >= 0 {
		names := []string{outer}
		base.Ctxt.InlTree.AllParents(inlIndex, func(call obj.InlinedCall) {
			names = append(names, call.Name)
		})
		outer = strings.Join(names, ".")
	}

	*gen++
	return pkg.Lookup(fmt.Sprintf("%s.%s%d", outer, prefix, *gen))
}

// NewClosureFunc creates a new Func to represent a function literal
// with the given type.
//
// fpos the position used for the underlying ODCLFUNC and ONAME,
// whereas cpos is the position used for the OCLOSURE. They're
// separate because in the presence of inlining, the OCLOSURE node
// should have an inline-adjusted position, whereas the ODCLFUNC and
// ONAME must not.
//
// outerfn is the enclosing function, if any. The returned function is
// appending to pkg.Funcs.
//
// why is the reason we're generating this Func. It can be OCLOSURE
// (for a normal function literal) or OGO or ODEFER (for wrapping a
// call expression that has parameters or results).
func NewClosureFunc(fpos, cpos src.XPos, why Op, typ *types.Type, outerfn *Func, pkg *Package) *Func {
	fn := NewFunc(fpos, fpos, closureName(outerfn, cpos, why), typ)
	fn.SetIsHiddenClosure(outerfn != nil)
	if outerfn != nil {
		fn.SetDupok(outerfn.Dupok()) // if the outer function is dupok, so is the closure
	}

	clo := &ClosureExpr{Func: fn}
	clo.op = OCLOSURE
	clo.pos = cpos
	clo.SetType(typ)
	clo.SetTypecheck(1)
	fn.OClosure = clo

	fn.Nname.Defn = fn
	pkg.Funcs = append(pkg.Funcs, fn)

	return fn
}

// IsFuncPCIntrinsic returns whether n is a direct call of internal/abi.FuncPCABIxxx functions.
func IsFuncPCIntrinsic(n *CallExpr) bool {
	if n.Op() != OCALLFUNC || n.Fun.Op() != ONAME {
		return false
	}
	fn := n.Fun.(*Name).Sym()
	return (fn.Name == "FuncPCABI0" || fn.Name == "FuncPCABIInternal") &&
		fn.Pkg.Path == "internal/abi"
}

// IsIfaceOfFunc inspects whether n is an interface conversion from a direct
// reference of a func. If so, it returns referenced Func; otherwise nil.
//
// This is only usable before walk.walkConvertInterface, which converts to an
// OMAKEFACE.
func IsIfaceOfFunc(n Node) *Func {
	if n, ok := n.(*ConvExpr); ok && n.Op() == OCONVIFACE {
		if name, ok := n.X.(*Name); ok && name.Op() == ONAME && name.Class == PFUNC {
			return name.Func
		}
	}
	return nil
}

// FuncPC returns a uintptr-typed expression that evaluates to the PC of a
// function as uintptr, as returned by internal/abi.FuncPC{ABI0,ABIInternal}.
//
// n should be a Node of an interface type, as is passed to
// internal/abi.FuncPC{ABI0,ABIInternal}.
//
// TODO(prattmic): Since n is simply an interface{} there is no assertion that
// it is actually a function at all. Perhaps we should emit a runtime type
// assertion?
func FuncPC(pos src.XPos, n Node, wantABI obj.ABI) Node {
	if !n.Type().IsInterface() {
		base.ErrorfAt(pos, 0, "internal/abi.FuncPC%s expects an interface value, got %v", wantABI, n.Type())
	}

	if fn := IsIfaceOfFunc(n); fn != nil {
		name := fn.Nname
		abi := fn.ABI
		if abi != wantABI {
			base.ErrorfAt(pos, 0, "internal/abi.FuncPC%s expects an %v function, %s is defined as %v", wantABI, wantABI, name.Sym().Name, abi)
		}
		var e Node = NewLinksymExpr(pos, name.LinksymABI(abi), types.Types[types.TUINTPTR])
		e = NewAddrExpr(pos, e)
		e.SetType(types.Types[types.TUINTPTR].PtrTo())
		e = NewConvExpr(pos, OCONVNOP, types.Types[types.TUINTPTR], e)
		e.SetTypecheck(1)
		return e
	}
	// fn is not a defined function. It must be ABIInternal.
	// Read the address from func value, i.e. *(*uintptr)(idata(fn)).
	if wantABI != obj.ABIInternal {
		base.ErrorfAt(pos, 0, "internal/abi.FuncPC%s does not accept func expression, which is ABIInternal", wantABI)
	}
	var e Node = NewUnaryExpr(pos, OIDATA, n)
	e.SetType(types.Types[types.TUINTPTR].PtrTo())
	e.SetTypecheck(1)
	e = NewStarExpr(pos, e)
	e.SetType(types.Types[types.TUINTPTR])
	e.SetTypecheck(1)
	return e
}

// DeclareParams creates Names for all of the parameters in fn's
// signature and adds them to fn.Dcl.
//
// If setNname is true, then it also sets types.Field.Nname for each
// parameter.
func (fn *Func) DeclareParams(setNname bool) {
	if fn.Dcl != nil {
		base.FatalfAt(fn.Pos(), "%v already has Dcl", fn)
	}

	declareParams := func(params []*types.Field, ctxt Class, prefix string, offset int) {
		for i, param := range params {
			sym := param.Sym
			if sym == nil || sym.IsBlank() {
				sym = fn.Sym().Pkg.LookupNum(prefix, i)
			}

			name := NewNameAt(param.Pos, sym, param.Type)
			name.Class = ctxt
			name.Curfn = fn
			fn.Dcl[offset+i] = name

			if setNname {
				param.Nname = name
			}
		}
	}

	sig := fn.Type()
	params := sig.RecvParams()
	results := sig.Results()

	fn.Dcl = make([]*Name, len(params)+len(results))
	declareParams(params, PPARAM, "~p", 0)
	declareParams(results, PPARAMOUT, "~r", len(params))
}