aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/ir/expr.go
blob: 39a408fdc79b3e2b99f4735b52c4ffcd2c226a37 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package ir

import (
	"cmd/compile/internal/base"
	"cmd/compile/internal/types"
	"cmd/internal/src"
	"go/constant"
)

func maybeDo(x Node, err error, do func(Node) error) error {
	if x != nil && err == nil {
		err = do(x)
	}
	return err
}

func maybeDoList(x Nodes, err error, do func(Node) error) error {
	if err == nil {
		err = DoList(x, do)
	}
	return err
}

func maybeEdit(x Node, edit func(Node) Node) Node {
	if x == nil {
		return x
	}
	return edit(x)
}

// An Expr is a Node that can appear as an expression.
type Expr interface {
	Node
	isExpr()
}

// A miniExpr is a miniNode with extra fields common to expressions.
// TODO(rsc): Once we are sure about the contents, compact the bools
// into a bit field and leave extra bits available for implementations
// embedding miniExpr. Right now there are ~60 unused bits sitting here.
type miniExpr struct {
	miniNode
	typ   *types.Type
	init  Nodes       // TODO(rsc): Don't require every Node to have an init
	opt   interface{} // TODO(rsc): Don't require every Node to have an opt?
	flags bitset8
}

const (
	miniExprHasCall = 1 << iota
	miniExprNonNil
	miniExprTransient
	miniExprBounded
	miniExprImplicit // for use by implementations; not supported by every Expr
)

func (*miniExpr) isExpr() {}

func (n *miniExpr) Type() *types.Type     { return n.typ }
func (n *miniExpr) SetType(x *types.Type) { n.typ = x }
func (n *miniExpr) Opt() interface{}      { return n.opt }
func (n *miniExpr) SetOpt(x interface{})  { n.opt = x }
func (n *miniExpr) HasCall() bool         { return n.flags&miniExprHasCall != 0 }
func (n *miniExpr) SetHasCall(b bool)     { n.flags.set(miniExprHasCall, b) }
func (n *miniExpr) NonNil() bool          { return n.flags&miniExprNonNil != 0 }
func (n *miniExpr) MarkNonNil()           { n.flags |= miniExprNonNil }
func (n *miniExpr) Transient() bool       { return n.flags&miniExprTransient != 0 }
func (n *miniExpr) SetTransient(b bool)   { n.flags.set(miniExprTransient, b) }
func (n *miniExpr) Bounded() bool         { return n.flags&miniExprBounded != 0 }
func (n *miniExpr) SetBounded(b bool)     { n.flags.set(miniExprBounded, b) }
func (n *miniExpr) Init() Nodes           { return n.init }
func (n *miniExpr) PtrInit() *Nodes       { return &n.init }
func (n *miniExpr) SetInit(x Nodes)       { n.init = x }

func toNtype(x Node) Ntype {
	if x == nil {
		return nil
	}
	if _, ok := x.(Ntype); !ok {
		Dump("not Ntype", x)
	}
	return x.(Ntype)
}

// An AddStringExpr is a string concatenation Expr[0] + Exprs[1] + ... + Expr[len(Expr)-1].
type AddStringExpr struct {
	miniExpr
	List     Nodes
	Prealloc *Name
}

func NewAddStringExpr(pos src.XPos, list []Node) *AddStringExpr {
	n := &AddStringExpr{}
	n.pos = pos
	n.op = OADDSTR
	n.List.Set(list)
	return n
}

// An AddrExpr is an address-of expression &X.
// It may end up being a normal address-of or an allocation of a composite literal.
type AddrExpr struct {
	miniExpr
	X     Node
	Alloc Node // preallocated storage if any
}

func NewAddrExpr(pos src.XPos, x Node) *AddrExpr {
	n := &AddrExpr{X: x}
	n.op = OADDR
	n.pos = pos
	return n
}

func (n *AddrExpr) Implicit() bool     { return n.flags&miniExprImplicit != 0 }
func (n *AddrExpr) SetImplicit(b bool) { n.flags.set(miniExprImplicit, b) }

func (n *AddrExpr) SetOp(op Op) {
	switch op {
	default:
		panic(n.no("SetOp " + op.String()))
	case OADDR, OPTRLIT:
		n.op = op
	}
}

// A BasicLit is a literal of basic type.
type BasicLit struct {
	miniExpr
	val constant.Value
}

func NewBasicLit(pos src.XPos, val constant.Value) Node {
	n := &BasicLit{val: val}
	n.op = OLITERAL
	n.pos = pos
	if k := val.Kind(); k != constant.Unknown {
		n.SetType(idealType(k))
	}
	return n
}

func (n *BasicLit) Val() constant.Value       { return n.val }
func (n *BasicLit) SetVal(val constant.Value) { n.val = val }

// A BinaryExpr is a binary expression X Op Y,
// or Op(X, Y) for builtin functions that do not become calls.
type BinaryExpr struct {
	miniExpr
	X Node
	Y Node
}

func NewBinaryExpr(pos src.XPos, op Op, x, y Node) *BinaryExpr {
	n := &BinaryExpr{X: x, Y: y}
	n.pos = pos
	n.SetOp(op)
	return n
}

func (n *BinaryExpr) SetOp(op Op) {
	switch op {
	default:
		panic(n.no("SetOp " + op.String()))
	case OADD, OADDSTR, OAND, OANDNOT, ODIV, OEQ, OGE, OGT, OLE,
		OLSH, OLT, OMOD, OMUL, ONE, OOR, ORSH, OSUB, OXOR,
		OCOPY, OCOMPLEX,
		OEFACE:
		n.op = op
	}
}

// A CallUse records how the result of the call is used:
type CallUse int

const (
	_ CallUse = iota

	CallUseExpr // single expression result is used
	CallUseList // list of results are used
	CallUseStmt // results not used - call is a statement
)

// A CallExpr is a function call X(Args).
type CallExpr struct {
	miniExpr
	orig     Node
	X        Node
	Args     Nodes
	Rargs    Nodes // TODO(rsc): Delete.
	Body     Nodes // TODO(rsc): Delete.
	IsDDD    bool
	Use      CallUse
	NoInline bool
}

func NewCallExpr(pos src.XPos, op Op, fun Node, args []Node) *CallExpr {
	n := &CallExpr{X: fun}
	n.pos = pos
	n.orig = n
	n.SetOp(op)
	n.Args.Set(args)
	return n
}

func (*CallExpr) isStmt() {}

func (n *CallExpr) Orig() Node     { return n.orig }
func (n *CallExpr) SetOrig(x Node) { n.orig = x }

func (n *CallExpr) SetOp(op Op) {
	switch op {
	default:
		panic(n.no("SetOp " + op.String()))
	case OCALL, OCALLFUNC, OCALLINTER, OCALLMETH,
		OAPPEND, ODELETE, OGETG, OMAKE, OPRINT, OPRINTN, ORECOVER:
		n.op = op
	}
}

// A CallPartExpr is a method expression X.Method (uncalled).
type CallPartExpr struct {
	miniExpr
	Func     *Func
	X        Node
	Method   *types.Field
	Prealloc *Name
}

func NewCallPartExpr(pos src.XPos, x Node, method *types.Field, fn *Func) *CallPartExpr {
	n := &CallPartExpr{Func: fn, X: x, Method: method}
	n.op = OCALLPART
	n.pos = pos
	n.typ = fn.Type()
	n.Func = fn
	return n
}

func (n *CallPartExpr) Sym() *types.Sym { return n.Method.Sym }

// A ClosureExpr is a function literal expression.
type ClosureExpr struct {
	miniExpr
	Func     *Func
	Prealloc *Name
}

func NewClosureExpr(pos src.XPos, fn *Func) *ClosureExpr {
	n := &ClosureExpr{Func: fn}
	n.op = OCLOSURE
	n.pos = pos
	return n
}

// A ClosureRead denotes reading a variable stored within a closure struct.
type ClosureReadExpr struct {
	miniExpr
	Offset int64
}

func NewClosureRead(typ *types.Type, offset int64) *ClosureReadExpr {
	n := &ClosureReadExpr{Offset: offset}
	n.typ = typ
	n.op = OCLOSUREREAD
	return n
}

// A CompLitExpr is a composite literal Type{Vals}.
// Before type-checking, the type is Ntype.
type CompLitExpr struct {
	miniExpr
	orig     Node
	Ntype    Ntype
	List     Nodes // initialized values
	Prealloc *Name
	Len      int64 // backing array length for OSLICELIT
}

func NewCompLitExpr(pos src.XPos, op Op, typ Ntype, list []Node) *CompLitExpr {
	n := &CompLitExpr{Ntype: typ}
	n.pos = pos
	n.SetOp(op)
	n.List.Set(list)
	n.orig = n
	return n
}

func (n *CompLitExpr) Orig() Node         { return n.orig }
func (n *CompLitExpr) SetOrig(x Node)     { n.orig = x }
func (n *CompLitExpr) Implicit() bool     { return n.flags&miniExprImplicit != 0 }
func (n *CompLitExpr) SetImplicit(b bool) { n.flags.set(miniExprImplicit, b) }

func (n *CompLitExpr) SetOp(op Op) {
	switch op {
	default:
		panic(n.no("SetOp " + op.String()))
	case OARRAYLIT, OCOMPLIT, OMAPLIT, OSTRUCTLIT, OSLICELIT:
		n.op = op
	}
}

type ConstExpr struct {
	miniExpr
	val  constant.Value
	orig Node
}

func NewConstExpr(val constant.Value, orig Node) Node {
	n := &ConstExpr{orig: orig, val: val}
	n.op = OLITERAL
	n.pos = orig.Pos()
	n.SetType(orig.Type())
	n.SetTypecheck(orig.Typecheck())
	n.SetDiag(orig.Diag())
	return n
}

func (n *ConstExpr) Sym() *types.Sym     { return n.orig.Sym() }
func (n *ConstExpr) Orig() Node          { return n.orig }
func (n *ConstExpr) SetOrig(orig Node)   { panic(n.no("SetOrig")) }
func (n *ConstExpr) Val() constant.Value { return n.val }

// A ConvExpr is a conversion Type(X).
// It may end up being a value or a type.
type ConvExpr struct {
	miniExpr
	X Node
}

func NewConvExpr(pos src.XPos, op Op, typ *types.Type, x Node) *ConvExpr {
	n := &ConvExpr{X: x}
	n.pos = pos
	n.typ = typ
	n.SetOp(op)
	return n
}

func (n *ConvExpr) Implicit() bool     { return n.flags&miniExprImplicit != 0 }
func (n *ConvExpr) SetImplicit(b bool) { n.flags.set(miniExprImplicit, b) }

func (n *ConvExpr) SetOp(op Op) {
	switch op {
	default:
		panic(n.no("SetOp " + op.String()))
	case OCONV, OCONVIFACE, OCONVNOP, OBYTES2STR, OBYTES2STRTMP, ORUNES2STR, OSTR2BYTES, OSTR2BYTESTMP, OSTR2RUNES, ORUNESTR:
		n.op = op
	}
}

// An IndexExpr is an index expression X[Y].
type IndexExpr struct {
	miniExpr
	X        Node
	Index    Node
	Assigned bool
}

func NewIndexExpr(pos src.XPos, x, index Node) *IndexExpr {
	n := &IndexExpr{X: x, Index: index}
	n.pos = pos
	n.op = OINDEX
	return n
}

func (n *IndexExpr) SetOp(op Op) {
	switch op {
	default:
		panic(n.no("SetOp " + op.String()))
	case OINDEX, OINDEXMAP:
		n.op = op
	}
}

// A KeyExpr is a Key: Value composite literal key.
type KeyExpr struct {
	miniExpr
	Key   Node
	Value Node
}

func NewKeyExpr(pos src.XPos, key, value Node) *KeyExpr {
	n := &KeyExpr{Key: key, Value: value}
	n.pos = pos
	n.op = OKEY
	return n
}

// A StructKeyExpr is an Field: Value composite literal key.
type StructKeyExpr struct {
	miniExpr
	Field  *types.Sym
	Value  Node
	Offset int64
}

func NewStructKeyExpr(pos src.XPos, field *types.Sym, value Node) *StructKeyExpr {
	n := &StructKeyExpr{Field: field, Value: value}
	n.pos = pos
	n.op = OSTRUCTKEY
	n.Offset = types.BADWIDTH
	return n
}

func (n *StructKeyExpr) Sym() *types.Sym { return n.Field }

// An InlinedCallExpr is an inlined function call.
type InlinedCallExpr struct {
	miniExpr
	Body       Nodes
	ReturnVars Nodes
}

func NewInlinedCallExpr(pos src.XPos, body, retvars []Node) *InlinedCallExpr {
	n := &InlinedCallExpr{}
	n.pos = pos
	n.op = OINLCALL
	n.Body.Set(body)
	n.ReturnVars.Set(retvars)
	return n
}

// A LogicalExpr is a expression X Op Y where Op is && or ||.
// It is separate from BinaryExpr to make room for statements
// that must be executed before Y but after X.
type LogicalExpr struct {
	miniExpr
	X Node
	Y Node
}

func NewLogicalExpr(pos src.XPos, op Op, x, y Node) *LogicalExpr {
	n := &LogicalExpr{X: x, Y: y}
	n.pos = pos
	n.SetOp(op)
	return n
}

func (n *LogicalExpr) SetOp(op Op) {
	switch op {
	default:
		panic(n.no("SetOp " + op.String()))
	case OANDAND, OOROR:
		n.op = op
	}
}

// A MakeExpr is a make expression: make(Type[, Len[, Cap]]).
// Op is OMAKECHAN, OMAKEMAP, OMAKESLICE, or OMAKESLICECOPY,
// but *not* OMAKE (that's a pre-typechecking CallExpr).
type MakeExpr struct {
	miniExpr
	Len Node
	Cap Node
}

func NewMakeExpr(pos src.XPos, op Op, len, cap Node) *MakeExpr {
	n := &MakeExpr{Len: len, Cap: cap}
	n.pos = pos
	n.SetOp(op)
	return n
}

func (n *MakeExpr) SetOp(op Op) {
	switch op {
	default:
		panic(n.no("SetOp " + op.String()))
	case OMAKECHAN, OMAKEMAP, OMAKESLICE, OMAKESLICECOPY:
		n.op = op
	}
}

// A MethodExpr is a method expression T.M (where T is a type).
type MethodExpr struct {
	miniExpr
	T         *types.Type
	Method    *types.Field
	FuncName_ *Name
}

func NewMethodExpr(pos src.XPos, t *types.Type, method *types.Field) *MethodExpr {
	n := &MethodExpr{T: t, Method: method}
	n.pos = pos
	n.op = OMETHEXPR
	return n
}

func (n *MethodExpr) FuncName() *Name { return n.FuncName_ }
func (n *MethodExpr) Sym() *types.Sym { panic("MethodExpr.Sym") }

// A NilExpr represents the predefined untyped constant nil.
// (It may be copied and assigned a type, though.)
type NilExpr struct {
	miniExpr
	Sym_ *types.Sym // TODO: Remove
}

func NewNilExpr(pos src.XPos) *NilExpr {
	n := &NilExpr{}
	n.pos = pos
	n.op = ONIL
	return n
}

func (n *NilExpr) Sym() *types.Sym     { return n.Sym_ }
func (n *NilExpr) SetSym(x *types.Sym) { n.Sym_ = x }

// A ParenExpr is a parenthesized expression (X).
// It may end up being a value or a type.
type ParenExpr struct {
	miniExpr
	X Node
}

func NewParenExpr(pos src.XPos, x Node) *ParenExpr {
	n := &ParenExpr{X: x}
	n.op = OPAREN
	n.pos = pos
	return n
}

func (n *ParenExpr) Implicit() bool     { return n.flags&miniExprImplicit != 0 }
func (n *ParenExpr) SetImplicit(b bool) { n.flags.set(miniExprImplicit, b) }

func (*ParenExpr) CanBeNtype() {}

// SetOTYPE changes n to be an OTYPE node returning t,
// like all the type nodes in type.go.
func (n *ParenExpr) SetOTYPE(t *types.Type) {
	n.op = OTYPE
	n.typ = t
	t.SetNod(n)
}

// A ResultExpr represents a direct access to a result slot on the stack frame.
type ResultExpr struct {
	miniExpr
	Offset int64
}

func NewResultExpr(pos src.XPos, typ *types.Type, offset int64) *ResultExpr {
	n := &ResultExpr{Offset: offset}
	n.pos = pos
	n.op = ORESULT
	n.typ = typ
	return n
}

// A NameOffsetExpr refers to an offset within a variable.
// It is like a SelectorExpr but without the field name.
type NameOffsetExpr struct {
	miniExpr
	Name_   *Name
	Offset_ int64
}

func NewNameOffsetExpr(pos src.XPos, name *Name, offset int64, typ *types.Type) *NameOffsetExpr {
	n := &NameOffsetExpr{Name_: name, Offset_: offset}
	n.typ = typ
	n.op = ONAMEOFFSET
	return n
}

// A SelectorExpr is a selector expression X.Sym.
type SelectorExpr struct {
	miniExpr
	X         Node
	Sel       *types.Sym
	Offset    int64
	Selection *types.Field
}

func NewSelectorExpr(pos src.XPos, op Op, x Node, sel *types.Sym) *SelectorExpr {
	n := &SelectorExpr{X: x, Sel: sel}
	n.pos = pos
	n.Offset = types.BADWIDTH
	n.SetOp(op)
	return n
}

func (n *SelectorExpr) SetOp(op Op) {
	switch op {
	default:
		panic(n.no("SetOp " + op.String()))
	case ODOT, ODOTPTR, ODOTMETH, ODOTINTER, OXDOT:
		n.op = op
	}
}

func (n *SelectorExpr) Sym() *types.Sym    { return n.Sel }
func (n *SelectorExpr) Implicit() bool     { return n.flags&miniExprImplicit != 0 }
func (n *SelectorExpr) SetImplicit(b bool) { n.flags.set(miniExprImplicit, b) }

// Before type-checking, bytes.Buffer is a SelectorExpr.
// After type-checking it becomes a Name.
func (*SelectorExpr) CanBeNtype() {}

// A SliceExpr is a slice expression X[Low:High] or X[Low:High:Max].
type SliceExpr struct {
	miniExpr
	X    Node
	List Nodes // TODO(rsc): Use separate Nodes
}

func NewSliceExpr(pos src.XPos, op Op, x Node) *SliceExpr {
	n := &SliceExpr{X: x}
	n.pos = pos
	n.op = op
	return n
}

func (n *SliceExpr) SetOp(op Op) {
	switch op {
	default:
		panic(n.no("SetOp " + op.String()))
	case OSLICE, OSLICEARR, OSLICESTR, OSLICE3, OSLICE3ARR:
		n.op = op
	}
}

// SliceBounds returns n's slice bounds: low, high, and max in expr[low:high:max].
// n must be a slice expression. max is nil if n is a simple slice expression.
func (n *SliceExpr) SliceBounds() (low, high, max Node) {
	if len(n.List) == 0 {
		return nil, nil, nil
	}

	switch n.Op() {
	case OSLICE, OSLICEARR, OSLICESTR:
		s := n.List
		return s[0], s[1], nil
	case OSLICE3, OSLICE3ARR:
		s := n.List
		return s[0], s[1], s[2]
	}
	base.Fatalf("SliceBounds op %v: %v", n.Op(), n)
	return nil, nil, nil
}

// SetSliceBounds sets n's slice bounds, where n is a slice expression.
// n must be a slice expression. If max is non-nil, n must be a full slice expression.
func (n *SliceExpr) SetSliceBounds(low, high, max Node) {
	switch n.Op() {
	case OSLICE, OSLICEARR, OSLICESTR:
		if max != nil {
			base.Fatalf("SetSliceBounds %v given three bounds", n.Op())
		}
		s := n.List
		if s == nil {
			if low == nil && high == nil {
				return
			}
			n.List = []Node{low, high}
			return
		}
		s[0] = low
		s[1] = high
		return
	case OSLICE3, OSLICE3ARR:
		s := n.List
		if s == nil {
			if low == nil && high == nil && max == nil {
				return
			}
			n.List = []Node{low, high, max}
			return
		}
		s[0] = low
		s[1] = high
		s[2] = max
		return
	}
	base.Fatalf("SetSliceBounds op %v: %v", n.Op(), n)
}

// IsSlice3 reports whether o is a slice3 op (OSLICE3, OSLICE3ARR).
// o must be a slicing op.
func (o Op) IsSlice3() bool {
	switch o {
	case OSLICE, OSLICEARR, OSLICESTR:
		return false
	case OSLICE3, OSLICE3ARR:
		return true
	}
	base.Fatalf("IsSlice3 op %v", o)
	return false
}

// A SliceHeader expression constructs a slice header from its parts.
type SliceHeaderExpr struct {
	miniExpr
	Ptr    Node
	LenCap Nodes // TODO(rsc): Split into two Node fields
}

func NewSliceHeaderExpr(pos src.XPos, typ *types.Type, ptr, len, cap Node) *SliceHeaderExpr {
	n := &SliceHeaderExpr{Ptr: ptr}
	n.pos = pos
	n.op = OSLICEHEADER
	n.typ = typ
	n.LenCap = []Node{len, cap}
	return n
}

// A StarExpr is a dereference expression *X.
// It may end up being a value or a type.
type StarExpr struct {
	miniExpr
	X Node
}

func NewStarExpr(pos src.XPos, x Node) *StarExpr {
	n := &StarExpr{X: x}
	n.op = ODEREF
	n.pos = pos
	return n
}

func (n *StarExpr) Implicit() bool     { return n.flags&miniExprImplicit != 0 }
func (n *StarExpr) SetImplicit(b bool) { n.flags.set(miniExprImplicit, b) }

func (*StarExpr) CanBeNtype() {}

// SetOTYPE changes n to be an OTYPE node returning t,
// like all the type nodes in type.go.
func (n *StarExpr) SetOTYPE(t *types.Type) {
	n.op = OTYPE
	n.X = nil
	n.typ = t
	t.SetNod(n)
}

// A TypeAssertionExpr is a selector expression X.(Type).
// Before type-checking, the type is Ntype.
type TypeAssertExpr struct {
	miniExpr
	X     Node
	Ntype Node  // TODO: Should be Ntype, but reused as address of type structure
	Itab  Nodes // Itab[0] is itab
}

func NewTypeAssertExpr(pos src.XPos, x Node, typ Ntype) *TypeAssertExpr {
	n := &TypeAssertExpr{X: x, Ntype: typ}
	n.pos = pos
	n.op = ODOTTYPE
	return n
}

func (n *TypeAssertExpr) SetOp(op Op) {
	switch op {
	default:
		panic(n.no("SetOp " + op.String()))
	case ODOTTYPE, ODOTTYPE2:
		n.op = op
	}
}

// A UnaryExpr is a unary expression Op X,
// or Op(X) for a builtin function that does not end up being a call.
type UnaryExpr struct {
	miniExpr
	X Node
}

func NewUnaryExpr(pos src.XPos, op Op, x Node) *UnaryExpr {
	n := &UnaryExpr{X: x}
	n.pos = pos
	n.SetOp(op)
	return n
}

func (n *UnaryExpr) SetOp(op Op) {
	switch op {
	default:
		panic(n.no("SetOp " + op.String()))
	case OBITNOT, ONEG, ONOT, OPLUS, ORECV,
		OALIGNOF, OCAP, OCLOSE, OIMAG, OLEN, ONEW,
		OOFFSETOF, OPANIC, OREAL, OSIZEOF,
		OCHECKNIL, OCFUNC, OIDATA, OITAB, ONEWOBJ, OSPTR, OVARDEF, OVARKILL, OVARLIVE:
		n.op = op
	}
}