aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/gc/subr.go
blob: 89baaf7eee9de4691a744e487b4c6e9d2d7bcd79 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package gc

import (
	"cmd/compile/internal/base"
	"cmd/compile/internal/ir"
	"cmd/compile/internal/reflectdata"
	"cmd/compile/internal/typecheck"
	"cmd/compile/internal/types"
	"cmd/internal/src"
	"fmt"
	"sync"
)

// largeStack is info about a function whose stack frame is too large (rare).
type largeStack struct {
	locals int64
	args   int64
	callee int64
	pos    src.XPos
}

var (
	largeStackFramesMu sync.Mutex // protects largeStackFrames
	largeStackFrames   []largeStack
)

// backingArrayPtrLen extracts the pointer and length from a slice or string.
// This constructs two nodes referring to n, so n must be a cheapexpr.
func backingArrayPtrLen(n ir.Node) (ptr, length ir.Node) {
	var init ir.Nodes
	c := cheapexpr(n, &init)
	if c != n || len(init) != 0 {
		base.Fatalf("backingArrayPtrLen not cheap: %v", n)
	}
	ptr = ir.NewUnaryExpr(base.Pos, ir.OSPTR, n)
	if n.Type().IsString() {
		ptr.SetType(types.Types[types.TUINT8].PtrTo())
	} else {
		ptr.SetType(n.Type().Elem().PtrTo())
	}
	length = ir.NewUnaryExpr(base.Pos, ir.OLEN, n)
	length.SetType(types.Types[types.TINT])
	return ptr, length
}

// updateHasCall checks whether expression n contains any function
// calls and sets the n.HasCall flag if so.
func updateHasCall(n ir.Node) {
	if n == nil {
		return
	}
	n.SetHasCall(calcHasCall(n))
}

func calcHasCall(n ir.Node) bool {
	if len(n.Init()) != 0 {
		// TODO(mdempsky): This seems overly conservative.
		return true
	}

	switch n.Op() {
	default:
		base.Fatalf("calcHasCall %+v", n)
		panic("unreachable")

	case ir.OLITERAL, ir.ONIL, ir.ONAME, ir.OTYPE, ir.ONAMEOFFSET:
		if n.HasCall() {
			base.Fatalf("OLITERAL/ONAME/OTYPE should never have calls: %+v", n)
		}
		return false
	case ir.OCALL, ir.OCALLFUNC, ir.OCALLMETH, ir.OCALLINTER:
		return true
	case ir.OANDAND, ir.OOROR:
		// hard with instrumented code
		n := n.(*ir.LogicalExpr)
		if base.Flag.Cfg.Instrumenting {
			return true
		}
		return n.X.HasCall() || n.Y.HasCall()
	case ir.OINDEX, ir.OSLICE, ir.OSLICEARR, ir.OSLICE3, ir.OSLICE3ARR, ir.OSLICESTR,
		ir.ODEREF, ir.ODOTPTR, ir.ODOTTYPE, ir.ODIV, ir.OMOD:
		// These ops might panic, make sure they are done
		// before we start marshaling args for a call. See issue 16760.
		return true

	// When using soft-float, these ops might be rewritten to function calls
	// so we ensure they are evaluated first.
	case ir.OADD, ir.OSUB, ir.OMUL:
		n := n.(*ir.BinaryExpr)
		if thearch.SoftFloat && (types.IsFloat[n.Type().Kind()] || types.IsComplex[n.Type().Kind()]) {
			return true
		}
		return n.X.HasCall() || n.Y.HasCall()
	case ir.ONEG:
		n := n.(*ir.UnaryExpr)
		if thearch.SoftFloat && (types.IsFloat[n.Type().Kind()] || types.IsComplex[n.Type().Kind()]) {
			return true
		}
		return n.X.HasCall()
	case ir.OLT, ir.OEQ, ir.ONE, ir.OLE, ir.OGE, ir.OGT:
		n := n.(*ir.BinaryExpr)
		if thearch.SoftFloat && (types.IsFloat[n.X.Type().Kind()] || types.IsComplex[n.X.Type().Kind()]) {
			return true
		}
		return n.X.HasCall() || n.Y.HasCall()
	case ir.OCONV:
		n := n.(*ir.ConvExpr)
		if thearch.SoftFloat && ((types.IsFloat[n.Type().Kind()] || types.IsComplex[n.Type().Kind()]) || (types.IsFloat[n.X.Type().Kind()] || types.IsComplex[n.X.Type().Kind()])) {
			return true
		}
		return n.X.HasCall()

	case ir.OAND, ir.OANDNOT, ir.OLSH, ir.OOR, ir.ORSH, ir.OXOR, ir.OCOPY, ir.OCOMPLEX, ir.OEFACE:
		n := n.(*ir.BinaryExpr)
		return n.X.HasCall() || n.Y.HasCall()

	case ir.OAS:
		n := n.(*ir.AssignStmt)
		return n.X.HasCall() || n.Y != nil && n.Y.HasCall()

	case ir.OADDR:
		n := n.(*ir.AddrExpr)
		return n.X.HasCall()
	case ir.OPAREN:
		n := n.(*ir.ParenExpr)
		return n.X.HasCall()
	case ir.OBITNOT, ir.ONOT, ir.OPLUS, ir.ORECV,
		ir.OALIGNOF, ir.OCAP, ir.OCLOSE, ir.OIMAG, ir.OLEN, ir.ONEW,
		ir.OOFFSETOF, ir.OPANIC, ir.OREAL, ir.OSIZEOF,
		ir.OCHECKNIL, ir.OCFUNC, ir.OIDATA, ir.OITAB, ir.ONEWOBJ, ir.OSPTR, ir.OVARDEF, ir.OVARKILL, ir.OVARLIVE:
		n := n.(*ir.UnaryExpr)
		return n.X.HasCall()
	case ir.ODOT, ir.ODOTMETH, ir.ODOTINTER:
		n := n.(*ir.SelectorExpr)
		return n.X.HasCall()

	case ir.OGETG, ir.OCLOSUREREAD, ir.OMETHEXPR:
		return false

	// TODO(rsc): These look wrong in various ways but are what calcHasCall has always done.
	case ir.OADDSTR:
		// TODO(rsc): This used to check left and right, which are not part of OADDSTR.
		return false
	case ir.OBLOCK:
		// TODO(rsc): Surely the block's statements matter.
		return false
	case ir.OCONVIFACE, ir.OCONVNOP, ir.OBYTES2STR, ir.OBYTES2STRTMP, ir.ORUNES2STR, ir.OSTR2BYTES, ir.OSTR2BYTESTMP, ir.OSTR2RUNES, ir.ORUNESTR:
		// TODO(rsc): Some conversions are themselves calls, no?
		n := n.(*ir.ConvExpr)
		return n.X.HasCall()
	case ir.ODOTTYPE2:
		// TODO(rsc): Shouldn't this be up with ODOTTYPE above?
		n := n.(*ir.TypeAssertExpr)
		return n.X.HasCall()
	case ir.OSLICEHEADER:
		// TODO(rsc): What about len and cap?
		n := n.(*ir.SliceHeaderExpr)
		return n.Ptr.HasCall()
	case ir.OAS2DOTTYPE, ir.OAS2FUNC:
		// TODO(rsc): Surely we need to check List and Rlist.
		return false
	}
}

func badtype(op ir.Op, tl, tr *types.Type) {
	var s string
	if tl != nil {
		s += fmt.Sprintf("\n\t%v", tl)
	}
	if tr != nil {
		s += fmt.Sprintf("\n\t%v", tr)
	}

	// common mistake: *struct and *interface.
	if tl != nil && tr != nil && tl.IsPtr() && tr.IsPtr() {
		if tl.Elem().IsStruct() && tr.Elem().IsInterface() {
			s += "\n\t(*struct vs *interface)"
		} else if tl.Elem().IsInterface() && tr.Elem().IsStruct() {
			s += "\n\t(*interface vs *struct)"
		}
	}

	base.Errorf("illegal types for operand: %v%s", op, s)
}

// brcom returns !(op).
// For example, brcom(==) is !=.
func brcom(op ir.Op) ir.Op {
	switch op {
	case ir.OEQ:
		return ir.ONE
	case ir.ONE:
		return ir.OEQ
	case ir.OLT:
		return ir.OGE
	case ir.OGT:
		return ir.OLE
	case ir.OLE:
		return ir.OGT
	case ir.OGE:
		return ir.OLT
	}
	base.Fatalf("brcom: no com for %v\n", op)
	return op
}

// brrev returns reverse(op).
// For example, Brrev(<) is >.
func brrev(op ir.Op) ir.Op {
	switch op {
	case ir.OEQ:
		return ir.OEQ
	case ir.ONE:
		return ir.ONE
	case ir.OLT:
		return ir.OGT
	case ir.OGT:
		return ir.OLT
	case ir.OLE:
		return ir.OGE
	case ir.OGE:
		return ir.OLE
	}
	base.Fatalf("brrev: no rev for %v\n", op)
	return op
}

// return side effect-free n, appending side effects to init.
// result is assignable if n is.
func safeexpr(n ir.Node, init *ir.Nodes) ir.Node {
	if n == nil {
		return nil
	}

	if len(n.Init()) != 0 {
		walkstmtlist(n.Init())
		init.Append(n.PtrInit().Take()...)
	}

	switch n.Op() {
	case ir.ONAME, ir.OLITERAL, ir.ONIL, ir.ONAMEOFFSET:
		return n

	case ir.OLEN, ir.OCAP:
		n := n.(*ir.UnaryExpr)
		l := safeexpr(n.X, init)
		if l == n.X {
			return n
		}
		a := ir.Copy(n).(*ir.UnaryExpr)
		a.X = l
		return walkexpr(typecheck.Expr(a), init)

	case ir.ODOT, ir.ODOTPTR:
		n := n.(*ir.SelectorExpr)
		l := safeexpr(n.X, init)
		if l == n.X {
			return n
		}
		a := ir.Copy(n).(*ir.SelectorExpr)
		a.X = l
		return walkexpr(typecheck.Expr(a), init)

	case ir.ODEREF:
		n := n.(*ir.StarExpr)
		l := safeexpr(n.X, init)
		if l == n.X {
			return n
		}
		a := ir.Copy(n).(*ir.StarExpr)
		a.X = l
		return walkexpr(typecheck.Expr(a), init)

	case ir.OINDEX, ir.OINDEXMAP:
		n := n.(*ir.IndexExpr)
		l := safeexpr(n.X, init)
		r := safeexpr(n.Index, init)
		if l == n.X && r == n.Index {
			return n
		}
		a := ir.Copy(n).(*ir.IndexExpr)
		a.X = l
		a.Index = r
		return walkexpr(typecheck.Expr(a), init)

	case ir.OSTRUCTLIT, ir.OARRAYLIT, ir.OSLICELIT:
		n := n.(*ir.CompLitExpr)
		if isStaticCompositeLiteral(n) {
			return n
		}
	}

	// make a copy; must not be used as an lvalue
	if ir.IsAssignable(n) {
		base.Fatalf("missing lvalue case in safeexpr: %v", n)
	}
	return cheapexpr(n, init)
}

func copyexpr(n ir.Node, t *types.Type, init *ir.Nodes) ir.Node {
	l := typecheck.Temp(t)
	appendWalkStmt(init, ir.NewAssignStmt(base.Pos, l, n))
	return l
}

// return side-effect free and cheap n, appending side effects to init.
// result may not be assignable.
func cheapexpr(n ir.Node, init *ir.Nodes) ir.Node {
	switch n.Op() {
	case ir.ONAME, ir.OLITERAL, ir.ONIL:
		return n
	}

	return copyexpr(n, n.Type(), init)
}

func ngotype(n ir.Node) *types.Sym {
	if n.Type() != nil {
		return reflectdata.TypeSym(n.Type())
	}
	return nil
}

// itabType loads the _type field from a runtime.itab struct.
func itabType(itab ir.Node) ir.Node {
	typ := ir.NewSelectorExpr(base.Pos, ir.ODOTPTR, itab, nil)
	typ.SetType(types.NewPtr(types.Types[types.TUINT8]))
	typ.SetTypecheck(1)
	typ.Offset = int64(types.PtrSize) // offset of _type in runtime.itab
	typ.SetBounded(true)              // guaranteed not to fault
	return typ
}

// ifaceData loads the data field from an interface.
// The concrete type must be known to have type t.
// It follows the pointer if !isdirectiface(t).
func ifaceData(pos src.XPos, n ir.Node, t *types.Type) ir.Node {
	if t.IsInterface() {
		base.Fatalf("ifaceData interface: %v", t)
	}
	ptr := ir.NewUnaryExpr(pos, ir.OIDATA, n)
	if types.IsDirectIface(t) {
		ptr.SetType(t)
		ptr.SetTypecheck(1)
		return ptr
	}
	ptr.SetType(types.NewPtr(t))
	ptr.SetTypecheck(1)
	ind := ir.NewStarExpr(pos, ptr)
	ind.SetType(t)
	ind.SetTypecheck(1)
	ind.SetBounded(true)
	return ind
}