aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/gc/subr.go
blob: dffebc58f2d1765dd2fe5b4e4aac75c7b217b5b1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package gc

import (
	"cmd/compile/internal/base"
	"cmd/compile/internal/ir"
	"cmd/compile/internal/types"
	"cmd/internal/src"
	"crypto/md5"
	"encoding/binary"
	"fmt"
	"go/constant"
	"sort"
	"strconv"
	"strings"
	"sync"
	"unicode"
	"unicode/utf8"
)

// largeStack is info about a function whose stack frame is too large (rare).
type largeStack struct {
	locals int64
	args   int64
	callee int64
	pos    src.XPos
}

var (
	largeStackFramesMu sync.Mutex // protects largeStackFrames
	largeStackFrames   []largeStack
)

// hasUniquePos reports whether n has a unique position that can be
// used for reporting error messages.
//
// It's primarily used to distinguish references to named objects,
// whose Pos will point back to their declaration position rather than
// their usage position.
func hasUniquePos(n ir.Node) bool {
	switch n.Op() {
	case ir.ONAME, ir.OPACK:
		return false
	case ir.OLITERAL, ir.ONIL, ir.OTYPE:
		if n.Sym() != nil {
			return false
		}
	}

	if !n.Pos().IsKnown() {
		if base.Flag.K != 0 {
			base.Warn("setlineno: unknown position (line 0)")
		}
		return false
	}

	return true
}

func setlineno(n ir.Node) src.XPos {
	lno := base.Pos
	if n != nil && hasUniquePos(n) {
		base.Pos = n.Pos()
	}
	return lno
}

func lookup(name string) *types.Sym {
	return types.LocalPkg.Lookup(name)
}

// lookupN looks up the symbol starting with prefix and ending with
// the decimal n. If prefix is too long, lookupN panics.
func lookupN(prefix string, n int) *types.Sym {
	var buf [20]byte // plenty long enough for all current users
	copy(buf[:], prefix)
	b := strconv.AppendInt(buf[:len(prefix)], int64(n), 10)
	return types.LocalPkg.LookupBytes(b)
}

// autolabel generates a new Name node for use with
// an automatically generated label.
// prefix is a short mnemonic (e.g. ".s" for switch)
// to help with debugging.
// It should begin with "." to avoid conflicts with
// user labels.
func autolabel(prefix string) *types.Sym {
	if prefix[0] != '.' {
		base.Fatalf("autolabel prefix must start with '.', have %q", prefix)
	}
	fn := Curfn
	if Curfn == nil {
		base.Fatalf("autolabel outside function")
	}
	n := fn.Label
	fn.Label++
	return lookupN(prefix, int(n))
}

// find all the exported symbols in package opkg
// and make them available in the current package
func importdot(opkg *types.Pkg, pack *ir.PkgName) {
	n := 0
	for _, s := range opkg.Syms {
		if s.Def == nil {
			continue
		}
		if !types.IsExported(s.Name) || strings.ContainsRune(s.Name, 0xb7) { // 0xb7 = center dot
			continue
		}
		s1 := lookup(s.Name)
		if s1.Def != nil {
			pkgerror := fmt.Sprintf("during import %q", opkg.Path)
			redeclare(base.Pos, s1, pkgerror)
			continue
		}

		s1.Def = s.Def
		s1.Block = s.Block
		if ir.AsNode(s1.Def).Name() == nil {
			ir.Dump("s1def", ir.AsNode(s1.Def))
			base.Fatalf("missing Name")
		}
		ir.AsNode(s1.Def).Name().PkgName = pack
		s1.Origpkg = opkg
		n++
	}

	if n == 0 {
		// can't possibly be used - there were no symbols
		base.ErrorfAt(pack.Pos(), "imported and not used: %q", opkg.Path)
	}
}

// newname returns a new ONAME Node associated with symbol s.
func NewName(s *types.Sym) *ir.Name {
	n := ir.NewNameAt(base.Pos, s)
	n.Curfn = Curfn
	return n
}

// nodSym makes a Node with Op op and with the Left field set to left
// and the Sym field set to sym. This is for ODOT and friends.
func nodSym(op ir.Op, left ir.Node, sym *types.Sym) ir.Node {
	return nodlSym(base.Pos, op, left, sym)
}

// nodlSym makes a Node with position Pos, with Op op, and with the Left field set to left
// and the Sym field set to sym. This is for ODOT and friends.
func nodlSym(pos src.XPos, op ir.Op, left ir.Node, sym *types.Sym) ir.Node {
	n := ir.NodAt(pos, op, left, nil)
	n.SetSym(sym)
	return n
}

// methcmp sorts methods by symbol.
type methcmp []*types.Field

func (x methcmp) Len() int           { return len(x) }
func (x methcmp) Swap(i, j int)      { x[i], x[j] = x[j], x[i] }
func (x methcmp) Less(i, j int) bool { return x[i].Sym.Less(x[j].Sym) }

func nodintconst(v int64) ir.Node {
	return ir.NewLiteral(constant.MakeInt64(v))
}

func nodnil() ir.Node {
	n := ir.Nod(ir.ONIL, nil, nil)
	n.SetType(types.Types[types.TNIL])
	return n
}

func nodbool(b bool) ir.Node {
	return ir.NewLiteral(constant.MakeBool(b))
}

func nodstr(s string) ir.Node {
	return ir.NewLiteral(constant.MakeString(s))
}

func isptrto(t *types.Type, et types.Kind) bool {
	if t == nil {
		return false
	}
	if !t.IsPtr() {
		return false
	}
	t = t.Elem()
	if t == nil {
		return false
	}
	if t.Kind() != et {
		return false
	}
	return true
}

// methtype returns the underlying type, if any,
// that owns methods with receiver parameter t.
// The result is either a named type or an anonymous struct.
func methtype(t *types.Type) *types.Type {
	if t == nil {
		return nil
	}

	// Strip away pointer if it's there.
	if t.IsPtr() {
		if t.Sym() != nil {
			return nil
		}
		t = t.Elem()
		if t == nil {
			return nil
		}
	}

	// Must be a named type or anonymous struct.
	if t.Sym() == nil && !t.IsStruct() {
		return nil
	}

	// Check types.
	if issimple[t.Kind()] {
		return t
	}
	switch t.Kind() {
	case types.TARRAY, types.TCHAN, types.TFUNC, types.TMAP, types.TSLICE, types.TSTRING, types.TSTRUCT:
		return t
	}
	return nil
}

// Is type src assignment compatible to type dst?
// If so, return op code to use in conversion.
// If not, return OXXX. In this case, the string return parameter may
// hold a reason why. In all other cases, it'll be the empty string.
func assignop(src, dst *types.Type) (ir.Op, string) {
	if src == dst {
		return ir.OCONVNOP, ""
	}
	if src == nil || dst == nil || src.Kind() == types.TFORW || dst.Kind() == types.TFORW || src.Underlying() == nil || dst.Underlying() == nil {
		return ir.OXXX, ""
	}

	// 1. src type is identical to dst.
	if types.Identical(src, dst) {
		return ir.OCONVNOP, ""
	}

	// 2. src and dst have identical underlying types
	// and either src or dst is not a named type or
	// both are empty interface types.
	// For assignable but different non-empty interface types,
	// we want to recompute the itab. Recomputing the itab ensures
	// that itabs are unique (thus an interface with a compile-time
	// type I has an itab with interface type I).
	if types.Identical(src.Underlying(), dst.Underlying()) {
		if src.IsEmptyInterface() {
			// Conversion between two empty interfaces
			// requires no code.
			return ir.OCONVNOP, ""
		}
		if (src.Sym() == nil || dst.Sym() == nil) && !src.IsInterface() {
			// Conversion between two types, at least one unnamed,
			// needs no conversion. The exception is nonempty interfaces
			// which need to have their itab updated.
			return ir.OCONVNOP, ""
		}
	}

	// 3. dst is an interface type and src implements dst.
	if dst.IsInterface() && src.Kind() != types.TNIL {
		var missing, have *types.Field
		var ptr int
		if implements(src, dst, &missing, &have, &ptr) {
			return ir.OCONVIFACE, ""
		}

		// we'll have complained about this method anyway, suppress spurious messages.
		if have != nil && have.Sym == missing.Sym && (have.Type.Broke() || missing.Type.Broke()) {
			return ir.OCONVIFACE, ""
		}

		var why string
		if isptrto(src, types.TINTER) {
			why = fmt.Sprintf(":\n\t%v is pointer to interface, not interface", src)
		} else if have != nil && have.Sym == missing.Sym && have.Nointerface() {
			why = fmt.Sprintf(":\n\t%v does not implement %v (%v method is marked 'nointerface')", src, dst, missing.Sym)
		} else if have != nil && have.Sym == missing.Sym {
			why = fmt.Sprintf(":\n\t%v does not implement %v (wrong type for %v method)\n"+
				"\t\thave %v%0S\n\t\twant %v%0S", src, dst, missing.Sym, have.Sym, have.Type, missing.Sym, missing.Type)
		} else if ptr != 0 {
			why = fmt.Sprintf(":\n\t%v does not implement %v (%v method has pointer receiver)", src, dst, missing.Sym)
		} else if have != nil {
			why = fmt.Sprintf(":\n\t%v does not implement %v (missing %v method)\n"+
				"\t\thave %v%0S\n\t\twant %v%0S", src, dst, missing.Sym, have.Sym, have.Type, missing.Sym, missing.Type)
		} else {
			why = fmt.Sprintf(":\n\t%v does not implement %v (missing %v method)", src, dst, missing.Sym)
		}

		return ir.OXXX, why
	}

	if isptrto(dst, types.TINTER) {
		why := fmt.Sprintf(":\n\t%v is pointer to interface, not interface", dst)
		return ir.OXXX, why
	}

	if src.IsInterface() && dst.Kind() != types.TBLANK {
		var missing, have *types.Field
		var ptr int
		var why string
		if implements(dst, src, &missing, &have, &ptr) {
			why = ": need type assertion"
		}
		return ir.OXXX, why
	}

	// 4. src is a bidirectional channel value, dst is a channel type,
	// src and dst have identical element types, and
	// either src or dst is not a named type.
	if src.IsChan() && src.ChanDir() == types.Cboth && dst.IsChan() {
		if types.Identical(src.Elem(), dst.Elem()) && (src.Sym() == nil || dst.Sym() == nil) {
			return ir.OCONVNOP, ""
		}
	}

	// 5. src is the predeclared identifier nil and dst is a nillable type.
	if src.Kind() == types.TNIL {
		switch dst.Kind() {
		case types.TPTR,
			types.TFUNC,
			types.TMAP,
			types.TCHAN,
			types.TINTER,
			types.TSLICE:
			return ir.OCONVNOP, ""
		}
	}

	// 6. rule about untyped constants - already converted by defaultlit.

	// 7. Any typed value can be assigned to the blank identifier.
	if dst.Kind() == types.TBLANK {
		return ir.OCONVNOP, ""
	}

	return ir.OXXX, ""
}

// Can we convert a value of type src to a value of type dst?
// If so, return op code to use in conversion (maybe OCONVNOP).
// If not, return OXXX. In this case, the string return parameter may
// hold a reason why. In all other cases, it'll be the empty string.
// srcConstant indicates whether the value of type src is a constant.
func convertop(srcConstant bool, src, dst *types.Type) (ir.Op, string) {
	if src == dst {
		return ir.OCONVNOP, ""
	}
	if src == nil || dst == nil {
		return ir.OXXX, ""
	}

	// Conversions from regular to go:notinheap are not allowed
	// (unless it's unsafe.Pointer). These are runtime-specific
	// rules.
	// (a) Disallow (*T) to (*U) where T is go:notinheap but U isn't.
	if src.IsPtr() && dst.IsPtr() && dst.Elem().NotInHeap() && !src.Elem().NotInHeap() {
		why := fmt.Sprintf(":\n\t%v is incomplete (or unallocatable), but %v is not", dst.Elem(), src.Elem())
		return ir.OXXX, why
	}
	// (b) Disallow string to []T where T is go:notinheap.
	if src.IsString() && dst.IsSlice() && dst.Elem().NotInHeap() && (dst.Elem().Kind() == types.ByteType.Kind() || dst.Elem().Kind() == types.RuneType.Kind()) {
		why := fmt.Sprintf(":\n\t%v is incomplete (or unallocatable)", dst.Elem())
		return ir.OXXX, why
	}

	// 1. src can be assigned to dst.
	op, why := assignop(src, dst)
	if op != ir.OXXX {
		return op, why
	}

	// The rules for interfaces are no different in conversions
	// than assignments. If interfaces are involved, stop now
	// with the good message from assignop.
	// Otherwise clear the error.
	if src.IsInterface() || dst.IsInterface() {
		return ir.OXXX, why
	}

	// 2. Ignoring struct tags, src and dst have identical underlying types.
	if types.IdenticalIgnoreTags(src.Underlying(), dst.Underlying()) {
		return ir.OCONVNOP, ""
	}

	// 3. src and dst are unnamed pointer types and, ignoring struct tags,
	// their base types have identical underlying types.
	if src.IsPtr() && dst.IsPtr() && src.Sym() == nil && dst.Sym() == nil {
		if types.IdenticalIgnoreTags(src.Elem().Underlying(), dst.Elem().Underlying()) {
			return ir.OCONVNOP, ""
		}
	}

	// 4. src and dst are both integer or floating point types.
	if (src.IsInteger() || src.IsFloat()) && (dst.IsInteger() || dst.IsFloat()) {
		if simtype[src.Kind()] == simtype[dst.Kind()] {
			return ir.OCONVNOP, ""
		}
		return ir.OCONV, ""
	}

	// 5. src and dst are both complex types.
	if src.IsComplex() && dst.IsComplex() {
		if simtype[src.Kind()] == simtype[dst.Kind()] {
			return ir.OCONVNOP, ""
		}
		return ir.OCONV, ""
	}

	// Special case for constant conversions: any numeric
	// conversion is potentially okay. We'll validate further
	// within evconst. See #38117.
	if srcConstant && (src.IsInteger() || src.IsFloat() || src.IsComplex()) && (dst.IsInteger() || dst.IsFloat() || dst.IsComplex()) {
		return ir.OCONV, ""
	}

	// 6. src is an integer or has type []byte or []rune
	// and dst is a string type.
	if src.IsInteger() && dst.IsString() {
		return ir.ORUNESTR, ""
	}

	if src.IsSlice() && dst.IsString() {
		if src.Elem().Kind() == types.ByteType.Kind() {
			return ir.OBYTES2STR, ""
		}
		if src.Elem().Kind() == types.RuneType.Kind() {
			return ir.ORUNES2STR, ""
		}
	}

	// 7. src is a string and dst is []byte or []rune.
	// String to slice.
	if src.IsString() && dst.IsSlice() {
		if dst.Elem().Kind() == types.ByteType.Kind() {
			return ir.OSTR2BYTES, ""
		}
		if dst.Elem().Kind() == types.RuneType.Kind() {
			return ir.OSTR2RUNES, ""
		}
	}

	// 8. src is a pointer or uintptr and dst is unsafe.Pointer.
	if (src.IsPtr() || src.IsUintptr()) && dst.IsUnsafePtr() {
		return ir.OCONVNOP, ""
	}

	// 9. src is unsafe.Pointer and dst is a pointer or uintptr.
	if src.IsUnsafePtr() && (dst.IsPtr() || dst.IsUintptr()) {
		return ir.OCONVNOP, ""
	}

	// src is map and dst is a pointer to corresponding hmap.
	// This rule is needed for the implementation detail that
	// go gc maps are implemented as a pointer to a hmap struct.
	if src.Kind() == types.TMAP && dst.IsPtr() &&
		src.MapType().Hmap == dst.Elem() {
		return ir.OCONVNOP, ""
	}

	return ir.OXXX, ""
}

func assignconv(n ir.Node, t *types.Type, context string) ir.Node {
	return assignconvfn(n, t, func() string { return context })
}

// Convert node n for assignment to type t.
func assignconvfn(n ir.Node, t *types.Type, context func() string) ir.Node {
	if n == nil || n.Type() == nil || n.Type().Broke() {
		return n
	}

	if t.Kind() == types.TBLANK && n.Type().Kind() == types.TNIL {
		base.Errorf("use of untyped nil")
	}

	n = convlit1(n, t, false, context)
	if n.Type() == nil {
		return n
	}
	if t.Kind() == types.TBLANK {
		return n
	}

	// Convert ideal bool from comparison to plain bool
	// if the next step is non-bool (like interface{}).
	if n.Type() == types.UntypedBool && !t.IsBoolean() {
		if n.Op() == ir.ONAME || n.Op() == ir.OLITERAL {
			r := ir.Nod(ir.OCONVNOP, n, nil)
			r.SetType(types.Types[types.TBOOL])
			r.SetTypecheck(1)
			r.SetImplicit(true)
			n = r
		}
	}

	if types.Identical(n.Type(), t) {
		return n
	}

	op, why := assignop(n.Type(), t)
	if op == ir.OXXX {
		base.Errorf("cannot use %L as type %v in %s%s", n, t, context(), why)
		op = ir.OCONV
	}

	r := ir.Nod(op, n, nil)
	r.SetType(t)
	r.SetTypecheck(1)
	r.SetImplicit(true)
	return r
}

// backingArrayPtrLen extracts the pointer and length from a slice or string.
// This constructs two nodes referring to n, so n must be a cheapexpr.
func backingArrayPtrLen(n ir.Node) (ptr, len ir.Node) {
	var init ir.Nodes
	c := cheapexpr(n, &init)
	if c != n || init.Len() != 0 {
		base.Fatalf("backingArrayPtrLen not cheap: %v", n)
	}
	ptr = ir.Nod(ir.OSPTR, n, nil)
	if n.Type().IsString() {
		ptr.SetType(types.Types[types.TUINT8].PtrTo())
	} else {
		ptr.SetType(n.Type().Elem().PtrTo())
	}
	len = ir.Nod(ir.OLEN, n, nil)
	len.SetType(types.Types[types.TINT])
	return ptr, len
}

func syslook(name string) ir.Node {
	s := Runtimepkg.Lookup(name)
	if s == nil || s.Def == nil {
		base.Fatalf("syslook: can't find runtime.%s", name)
	}
	return ir.AsNode(s.Def)
}

// typehash computes a hash value for type t to use in type switch statements.
func typehash(t *types.Type) uint32 {
	p := t.LongString()

	// Using MD5 is overkill, but reduces accidental collisions.
	h := md5.Sum([]byte(p))
	return binary.LittleEndian.Uint32(h[:4])
}

// updateHasCall checks whether expression n contains any function
// calls and sets the n.HasCall flag if so.
func updateHasCall(n ir.Node) {
	if n == nil {
		return
	}
	n.SetHasCall(calcHasCall(n))
}

func calcHasCall(n ir.Node) bool {
	if n.Init().Len() != 0 {
		// TODO(mdempsky): This seems overly conservative.
		return true
	}

	switch n.Op() {
	case ir.OLITERAL, ir.ONIL, ir.ONAME, ir.OTYPE:
		if n.HasCall() {
			base.Fatalf("OLITERAL/ONAME/OTYPE should never have calls: %+v", n)
		}
		return false
	case ir.OCALL, ir.OCALLFUNC, ir.OCALLMETH, ir.OCALLINTER:
		return true
	case ir.OANDAND, ir.OOROR:
		// hard with instrumented code
		if instrumenting {
			return true
		}
	case ir.OINDEX, ir.OSLICE, ir.OSLICEARR, ir.OSLICE3, ir.OSLICE3ARR, ir.OSLICESTR,
		ir.ODEREF, ir.ODOTPTR, ir.ODOTTYPE, ir.ODIV, ir.OMOD:
		// These ops might panic, make sure they are done
		// before we start marshaling args for a call. See issue 16760.
		return true

	// When using soft-float, these ops might be rewritten to function calls
	// so we ensure they are evaluated first.
	case ir.OADD, ir.OSUB, ir.ONEG, ir.OMUL:
		if thearch.SoftFloat && (isFloat[n.Type().Kind()] || isComplex[n.Type().Kind()]) {
			return true
		}
	case ir.OLT, ir.OEQ, ir.ONE, ir.OLE, ir.OGE, ir.OGT:
		if thearch.SoftFloat && (isFloat[n.Left().Type().Kind()] || isComplex[n.Left().Type().Kind()]) {
			return true
		}
	case ir.OCONV:
		if thearch.SoftFloat && ((isFloat[n.Type().Kind()] || isComplex[n.Type().Kind()]) || (isFloat[n.Left().Type().Kind()] || isComplex[n.Left().Type().Kind()])) {
			return true
		}
	}

	if n.Left() != nil && n.Left().HasCall() {
		return true
	}
	if n.Right() != nil && n.Right().HasCall() {
		return true
	}
	return false
}

func badtype(op ir.Op, tl, tr *types.Type) {
	var s string
	if tl != nil {
		s += fmt.Sprintf("\n\t%v", tl)
	}
	if tr != nil {
		s += fmt.Sprintf("\n\t%v", tr)
	}

	// common mistake: *struct and *interface.
	if tl != nil && tr != nil && tl.IsPtr() && tr.IsPtr() {
		if tl.Elem().IsStruct() && tr.Elem().IsInterface() {
			s += "\n\t(*struct vs *interface)"
		} else if tl.Elem().IsInterface() && tr.Elem().IsStruct() {
			s += "\n\t(*interface vs *struct)"
		}
	}

	base.Errorf("illegal types for operand: %v%s", op, s)
}

// brcom returns !(op).
// For example, brcom(==) is !=.
func brcom(op ir.Op) ir.Op {
	switch op {
	case ir.OEQ:
		return ir.ONE
	case ir.ONE:
		return ir.OEQ
	case ir.OLT:
		return ir.OGE
	case ir.OGT:
		return ir.OLE
	case ir.OLE:
		return ir.OGT
	case ir.OGE:
		return ir.OLT
	}
	base.Fatalf("brcom: no com for %v\n", op)
	return op
}

// brrev returns reverse(op).
// For example, Brrev(<) is >.
func brrev(op ir.Op) ir.Op {
	switch op {
	case ir.OEQ:
		return ir.OEQ
	case ir.ONE:
		return ir.ONE
	case ir.OLT:
		return ir.OGT
	case ir.OGT:
		return ir.OLT
	case ir.OLE:
		return ir.OGE
	case ir.OGE:
		return ir.OLE
	}
	base.Fatalf("brrev: no rev for %v\n", op)
	return op
}

// return side effect-free n, appending side effects to init.
// result is assignable if n is.
func safeexpr(n ir.Node, init *ir.Nodes) ir.Node {
	if n == nil {
		return nil
	}

	if n.Init().Len() != 0 {
		walkstmtlist(n.Init().Slice())
		init.AppendNodes(n.PtrInit())
	}

	switch n.Op() {
	case ir.ONAME, ir.OLITERAL, ir.ONIL:
		return n

	case ir.ODOT, ir.OLEN, ir.OCAP:
		l := safeexpr(n.Left(), init)
		if l == n.Left() {
			return n
		}
		r := ir.Copy(n)
		r.SetLeft(l)
		r = typecheck(r, ctxExpr)
		r = walkexpr(r, init)
		return r

	case ir.ODOTPTR, ir.ODEREF:
		l := safeexpr(n.Left(), init)
		if l == n.Left() {
			return n
		}
		a := ir.Copy(n)
		a.SetLeft(l)
		a = walkexpr(a, init)
		return a

	case ir.OINDEX, ir.OINDEXMAP:
		l := safeexpr(n.Left(), init)
		r := safeexpr(n.Right(), init)
		if l == n.Left() && r == n.Right() {
			return n
		}
		a := ir.Copy(n)
		a.SetLeft(l)
		a.SetRight(r)
		a = walkexpr(a, init)
		return a

	case ir.OSTRUCTLIT, ir.OARRAYLIT, ir.OSLICELIT:
		if isStaticCompositeLiteral(n) {
			return n
		}
	}

	// make a copy; must not be used as an lvalue
	if islvalue(n) {
		base.Fatalf("missing lvalue case in safeexpr: %v", n)
	}
	return cheapexpr(n, init)
}

func copyexpr(n ir.Node, t *types.Type, init *ir.Nodes) ir.Node {
	l := temp(t)
	a := ir.Nod(ir.OAS, l, n)
	a = typecheck(a, ctxStmt)
	a = walkexpr(a, init)
	init.Append(a)
	return l
}

// return side-effect free and cheap n, appending side effects to init.
// result may not be assignable.
func cheapexpr(n ir.Node, init *ir.Nodes) ir.Node {
	switch n.Op() {
	case ir.ONAME, ir.OLITERAL, ir.ONIL:
		return n
	}

	return copyexpr(n, n.Type(), init)
}

// Code to resolve elided DOTs in embedded types.

// A Dlist stores a pointer to a TFIELD Type embedded within
// a TSTRUCT or TINTER Type.
type Dlist struct {
	field *types.Field
}

// dotlist is used by adddot1 to record the path of embedded fields
// used to access a target field or method.
// Must be non-nil so that dotpath returns a non-nil slice even if d is zero.
var dotlist = make([]Dlist, 10)

// lookdot0 returns the number of fields or methods named s associated
// with Type t. If exactly one exists, it will be returned in *save
// (if save is not nil).
func lookdot0(s *types.Sym, t *types.Type, save **types.Field, ignorecase bool) int {
	u := t
	if u.IsPtr() {
		u = u.Elem()
	}

	c := 0
	if u.IsStruct() || u.IsInterface() {
		for _, f := range u.Fields().Slice() {
			if f.Sym == s || (ignorecase && f.IsMethod() && strings.EqualFold(f.Sym.Name, s.Name)) {
				if save != nil {
					*save = f
				}
				c++
			}
		}
	}

	u = t
	if t.Sym() != nil && t.IsPtr() && !t.Elem().IsPtr() {
		// If t is a defined pointer type, then x.m is shorthand for (*x).m.
		u = t.Elem()
	}
	u = methtype(u)
	if u != nil {
		for _, f := range u.Methods().Slice() {
			if f.Embedded == 0 && (f.Sym == s || (ignorecase && strings.EqualFold(f.Sym.Name, s.Name))) {
				if save != nil {
					*save = f
				}
				c++
			}
		}
	}

	return c
}

// adddot1 returns the number of fields or methods named s at depth d in Type t.
// If exactly one exists, it will be returned in *save (if save is not nil),
// and dotlist will contain the path of embedded fields traversed to find it,
// in reverse order. If none exist, more will indicate whether t contains any
// embedded fields at depth d, so callers can decide whether to retry at
// a greater depth.
func adddot1(s *types.Sym, t *types.Type, d int, save **types.Field, ignorecase bool) (c int, more bool) {
	if t.Recur() {
		return
	}
	t.SetRecur(true)
	defer t.SetRecur(false)

	var u *types.Type
	d--
	if d < 0 {
		// We've reached our target depth. If t has any fields/methods
		// named s, then we're done. Otherwise, we still need to check
		// below for embedded fields.
		c = lookdot0(s, t, save, ignorecase)
		if c != 0 {
			return c, false
		}
	}

	u = t
	if u.IsPtr() {
		u = u.Elem()
	}
	if !u.IsStruct() && !u.IsInterface() {
		return c, false
	}

	for _, f := range u.Fields().Slice() {
		if f.Embedded == 0 || f.Sym == nil {
			continue
		}
		if d < 0 {
			// Found an embedded field at target depth.
			return c, true
		}
		a, more1 := adddot1(s, f.Type, d, save, ignorecase)
		if a != 0 && c == 0 {
			dotlist[d].field = f
		}
		c += a
		if more1 {
			more = true
		}
	}

	return c, more
}

// dotpath computes the unique shortest explicit selector path to fully qualify
// a selection expression x.f, where x is of type t and f is the symbol s.
// If no such path exists, dotpath returns nil.
// If there are multiple shortest paths to the same depth, ambig is true.
func dotpath(s *types.Sym, t *types.Type, save **types.Field, ignorecase bool) (path []Dlist, ambig bool) {
	// The embedding of types within structs imposes a tree structure onto
	// types: structs parent the types they embed, and types parent their
	// fields or methods. Our goal here is to find the shortest path to
	// a field or method named s in the subtree rooted at t. To accomplish
	// that, we iteratively perform depth-first searches of increasing depth
	// until we either find the named field/method or exhaust the tree.
	for d := 0; ; d++ {
		if d > len(dotlist) {
			dotlist = append(dotlist, Dlist{})
		}
		if c, more := adddot1(s, t, d, save, ignorecase); c == 1 {
			return dotlist[:d], false
		} else if c > 1 {
			return nil, true
		} else if !more {
			return nil, false
		}
	}
}

// in T.field
// find missing fields that
// will give shortest unique addressing.
// modify the tree with missing type names.
func adddot(n ir.Node) ir.Node {
	n.SetLeft(typecheck(n.Left(), ctxType|ctxExpr))
	if n.Left().Diag() {
		n.SetDiag(true)
	}
	t := n.Left().Type()
	if t == nil {
		return n
	}

	if n.Left().Op() == ir.OTYPE {
		return n
	}

	s := n.Sym()
	if s == nil {
		return n
	}

	switch path, ambig := dotpath(s, t, nil, false); {
	case path != nil:
		// rebuild elided dots
		for c := len(path) - 1; c >= 0; c-- {
			n.SetLeft(nodSym(ir.ODOT, n.Left(), path[c].field.Sym))
			n.Left().SetImplicit(true)
		}
	case ambig:
		base.Errorf("ambiguous selector %v", n)
		n.SetLeft(nil)
	}

	return n
}

// Code to help generate trampoline functions for methods on embedded
// types. These are approx the same as the corresponding adddot
// routines except that they expect to be called with unique tasks and
// they return the actual methods.

type Symlink struct {
	field *types.Field
}

var slist []Symlink

func expand0(t *types.Type) {
	u := t
	if u.IsPtr() {
		u = u.Elem()
	}

	if u.IsInterface() {
		for _, f := range u.Fields().Slice() {
			if f.Sym.Uniq() {
				continue
			}
			f.Sym.SetUniq(true)
			slist = append(slist, Symlink{field: f})
		}

		return
	}

	u = methtype(t)
	if u != nil {
		for _, f := range u.Methods().Slice() {
			if f.Sym.Uniq() {
				continue
			}
			f.Sym.SetUniq(true)
			slist = append(slist, Symlink{field: f})
		}
	}
}

func expand1(t *types.Type, top bool) {
	if t.Recur() {
		return
	}
	t.SetRecur(true)

	if !top {
		expand0(t)
	}

	u := t
	if u.IsPtr() {
		u = u.Elem()
	}

	if u.IsStruct() || u.IsInterface() {
		for _, f := range u.Fields().Slice() {
			if f.Embedded == 0 {
				continue
			}
			if f.Sym == nil {
				continue
			}
			expand1(f.Type, false)
		}
	}

	t.SetRecur(false)
}

func expandmeth(t *types.Type) {
	if t == nil || t.AllMethods().Len() != 0 {
		return
	}

	// mark top-level method symbols
	// so that expand1 doesn't consider them.
	for _, f := range t.Methods().Slice() {
		f.Sym.SetUniq(true)
	}

	// generate all reachable methods
	slist = slist[:0]
	expand1(t, true)

	// check each method to be uniquely reachable
	var ms []*types.Field
	for i, sl := range slist {
		slist[i].field = nil
		sl.field.Sym.SetUniq(false)

		var f *types.Field
		path, _ := dotpath(sl.field.Sym, t, &f, false)
		if path == nil {
			continue
		}

		// dotpath may have dug out arbitrary fields, we only want methods.
		if !f.IsMethod() {
			continue
		}

		// add it to the base type method list
		f = f.Copy()
		f.Embedded = 1 // needs a trampoline
		for _, d := range path {
			if d.field.Type.IsPtr() {
				f.Embedded = 2
				break
			}
		}
		ms = append(ms, f)
	}

	for _, f := range t.Methods().Slice() {
		f.Sym.SetUniq(false)
	}

	ms = append(ms, t.Methods().Slice()...)
	sort.Sort(methcmp(ms))
	t.AllMethods().Set(ms)
}

// Given funarg struct list, return list of fn args.
func structargs(tl *types.Type, mustname bool) []*ir.Field {
	var args []*ir.Field
	gen := 0
	for _, t := range tl.Fields().Slice() {
		s := t.Sym
		if mustname && (s == nil || s.Name == "_") {
			// invent a name so that we can refer to it in the trampoline
			s = lookupN(".anon", gen)
			gen++
		}
		a := symfield(s, t.Type)
		a.Pos = t.Pos
		a.IsDDD = t.IsDDD()
		args = append(args, a)
	}

	return args
}

// Generate a wrapper function to convert from
// a receiver of type T to a receiver of type U.
// That is,
//
//	func (t T) M() {
//		...
//	}
//
// already exists; this function generates
//
//	func (u U) M() {
//		u.M()
//	}
//
// where the types T and U are such that u.M() is valid
// and calls the T.M method.
// The resulting function is for use in method tables.
//
//	rcvr - U
//	method - M func (t T)(), a TFIELD type struct
//	newnam - the eventual mangled name of this function
func genwrapper(rcvr *types.Type, method *types.Field, newnam *types.Sym) {
	if false && base.Flag.LowerR != 0 {
		fmt.Printf("genwrapper rcvrtype=%v method=%v newnam=%v\n", rcvr, method, newnam)
	}

	// Only generate (*T).M wrappers for T.M in T's own package.
	if rcvr.IsPtr() && rcvr.Elem() == method.Type.Recv().Type &&
		rcvr.Elem().Sym() != nil && rcvr.Elem().Sym().Pkg != types.LocalPkg {
		return
	}

	// Only generate I.M wrappers for I in I's own package
	// but keep doing it for error.Error (was issue #29304).
	if rcvr.IsInterface() && rcvr.Sym() != nil && rcvr.Sym().Pkg != types.LocalPkg && rcvr != types.ErrorType {
		return
	}

	base.Pos = autogeneratedPos
	dclcontext = ir.PEXTERN

	tfn := ir.NewFuncType(base.Pos,
		namedfield(".this", rcvr),
		structargs(method.Type.Params(), true),
		structargs(method.Type.Results(), false))

	fn := dclfunc(newnam, tfn)
	fn.SetDupok(true)

	nthis := ir.AsNode(tfn.Type().Recv().Nname)

	methodrcvr := method.Type.Recv().Type

	// generate nil pointer check for better error
	if rcvr.IsPtr() && rcvr.Elem() == methodrcvr {
		// generating wrapper from *T to T.
		n := ir.Nod(ir.OIF, nil, nil)
		n.SetLeft(ir.Nod(ir.OEQ, nthis, nodnil()))
		call := ir.Nod(ir.OCALL, syslook("panicwrap"), nil)
		n.PtrBody().Set1(call)
		fn.PtrBody().Append(n)
	}

	dot := adddot(nodSym(ir.OXDOT, nthis, method.Sym))

	// generate call
	// It's not possible to use a tail call when dynamic linking on ppc64le. The
	// bad scenario is when a local call is made to the wrapper: the wrapper will
	// call the implementation, which might be in a different module and so set
	// the TOC to the appropriate value for that module. But if it returns
	// directly to the wrapper's caller, nothing will reset it to the correct
	// value for that function.
	if !instrumenting && rcvr.IsPtr() && methodrcvr.IsPtr() && method.Embedded != 0 && !isifacemethod(method.Type) && !(thearch.LinkArch.Name == "ppc64le" && base.Ctxt.Flag_dynlink) {
		// generate tail call: adjust pointer receiver and jump to embedded method.
		dot = dot.Left() // skip final .M
		// TODO(mdempsky): Remove dependency on dotlist.
		if !dotlist[0].field.Type.IsPtr() {
			dot = ir.Nod(ir.OADDR, dot, nil)
		}
		as := ir.Nod(ir.OAS, nthis, convnop(dot, rcvr))
		fn.PtrBody().Append(as)
		fn.PtrBody().Append(nodSym(ir.ORETJMP, nil, methodSym(methodrcvr, method.Sym)))
	} else {
		fn.SetWrapper(true) // ignore frame for panic+recover matching
		call := ir.Nod(ir.OCALL, dot, nil)
		call.PtrList().Set(paramNnames(tfn.Type()))
		call.SetIsDDD(tfn.Type().IsVariadic())
		if method.Type.NumResults() > 0 {
			n := ir.Nod(ir.ORETURN, nil, nil)
			n.PtrList().Set1(call)
			call = n
		}
		fn.PtrBody().Append(call)
	}

	if false && base.Flag.LowerR != 0 {
		ir.DumpList("genwrapper body", fn.Body())
	}

	funcbody()
	if base.Debug.DclStack != 0 {
		testdclstack()
	}

	typecheckFunc(fn)
	Curfn = fn
	typecheckslice(fn.Body().Slice(), ctxStmt)

	// Inline calls within (*T).M wrappers. This is safe because we only
	// generate those wrappers within the same compilation unit as (T).M.
	// TODO(mdempsky): Investigate why we can't enable this more generally.
	if rcvr.IsPtr() && rcvr.Elem() == method.Type.Recv().Type && rcvr.Elem().Sym() != nil {
		inlcalls(fn)
	}
	escapeFuncs([]*ir.Func{fn}, false)

	Curfn = nil
	xtop = append(xtop, fn)
}

func paramNnames(ft *types.Type) []ir.Node {
	args := make([]ir.Node, ft.NumParams())
	for i, f := range ft.Params().FieldSlice() {
		args[i] = ir.AsNode(f.Nname)
	}
	return args
}

func hashmem(t *types.Type) ir.Node {
	sym := Runtimepkg.Lookup("memhash")

	n := NewName(sym)
	setNodeNameFunc(n)
	n.SetType(functype(nil, []*ir.Field{
		anonfield(types.NewPtr(t)),
		anonfield(types.Types[types.TUINTPTR]),
		anonfield(types.Types[types.TUINTPTR]),
	}, []*ir.Field{
		anonfield(types.Types[types.TUINTPTR]),
	}))
	return n
}

func ifacelookdot(s *types.Sym, t *types.Type, ignorecase bool) (m *types.Field, followptr bool) {
	if t == nil {
		return nil, false
	}

	path, ambig := dotpath(s, t, &m, ignorecase)
	if path == nil {
		if ambig {
			base.Errorf("%v.%v is ambiguous", t, s)
		}
		return nil, false
	}

	for _, d := range path {
		if d.field.Type.IsPtr() {
			followptr = true
			break
		}
	}

	if !m.IsMethod() {
		base.Errorf("%v.%v is a field, not a method", t, s)
		return nil, followptr
	}

	return m, followptr
}

func implements(t, iface *types.Type, m, samename **types.Field, ptr *int) bool {
	t0 := t
	if t == nil {
		return false
	}

	if t.IsInterface() {
		i := 0
		tms := t.Fields().Slice()
		for _, im := range iface.Fields().Slice() {
			for i < len(tms) && tms[i].Sym != im.Sym {
				i++
			}
			if i == len(tms) {
				*m = im
				*samename = nil
				*ptr = 0
				return false
			}
			tm := tms[i]
			if !types.Identical(tm.Type, im.Type) {
				*m = im
				*samename = tm
				*ptr = 0
				return false
			}
		}

		return true
	}

	t = methtype(t)
	var tms []*types.Field
	if t != nil {
		expandmeth(t)
		tms = t.AllMethods().Slice()
	}
	i := 0
	for _, im := range iface.Fields().Slice() {
		if im.Broke() {
			continue
		}
		for i < len(tms) && tms[i].Sym != im.Sym {
			i++
		}
		if i == len(tms) {
			*m = im
			*samename, _ = ifacelookdot(im.Sym, t, true)
			*ptr = 0
			return false
		}
		tm := tms[i]
		if tm.Nointerface() || !types.Identical(tm.Type, im.Type) {
			*m = im
			*samename = tm
			*ptr = 0
			return false
		}
		followptr := tm.Embedded == 2

		// if pointer receiver in method,
		// the method does not exist for value types.
		rcvr := tm.Type.Recv().Type
		if rcvr.IsPtr() && !t0.IsPtr() && !followptr && !isifacemethod(tm.Type) {
			if false && base.Flag.LowerR != 0 {
				base.Errorf("interface pointer mismatch")
			}

			*m = im
			*samename = nil
			*ptr = 1
			return false
		}
	}

	// We're going to emit an OCONVIFACE.
	// Call itabname so that (t, iface)
	// gets added to itabs early, which allows
	// us to de-virtualize calls through this
	// type/interface pair later. See peekitabs in reflect.go
	if isdirectiface(t0) && !iface.IsEmptyInterface() {
		itabname(t0, iface)
	}
	return true
}

func liststmt(l []ir.Node) ir.Node {
	n := ir.Nod(ir.OBLOCK, nil, nil)
	n.PtrList().Set(l)
	if len(l) != 0 {
		n.SetPos(l[0].Pos())
	}
	return n
}

func ngotype(n ir.Node) *types.Sym {
	if n.Type() != nil {
		return typenamesym(n.Type())
	}
	return nil
}

// The result of initExpr MUST be assigned back to n, e.g.
// 	n.Left = initExpr(init, n.Left)
func initExpr(init []ir.Node, n ir.Node) ir.Node {
	if len(init) == 0 {
		return n
	}
	if ir.MayBeShared(n) {
		// Introduce OCONVNOP to hold init list.
		n = ir.Nod(ir.OCONVNOP, n, nil)
		n.SetType(n.Left().Type())
		n.SetTypecheck(1)
	}

	n.PtrInit().Prepend(init...)
	n.SetHasCall(true)
	return n
}

// The linker uses the magic symbol prefixes "go." and "type."
// Avoid potential confusion between import paths and symbols
// by rejecting these reserved imports for now. Also, people
// "can do weird things in GOPATH and we'd prefer they didn't
// do _that_ weird thing" (per rsc). See also #4257.
var reservedimports = []string{
	"go",
	"type",
}

func isbadimport(path string, allowSpace bool) bool {
	if strings.Contains(path, "\x00") {
		base.Errorf("import path contains NUL")
		return true
	}

	for _, ri := range reservedimports {
		if path == ri {
			base.Errorf("import path %q is reserved and cannot be used", path)
			return true
		}
	}

	for _, r := range path {
		if r == utf8.RuneError {
			base.Errorf("import path contains invalid UTF-8 sequence: %q", path)
			return true
		}

		if r < 0x20 || r == 0x7f {
			base.Errorf("import path contains control character: %q", path)
			return true
		}

		if r == '\\' {
			base.Errorf("import path contains backslash; use slash: %q", path)
			return true
		}

		if !allowSpace && unicode.IsSpace(r) {
			base.Errorf("import path contains space character: %q", path)
			return true
		}

		if strings.ContainsRune("!\"#$%&'()*,:;<=>?[]^`{|}", r) {
			base.Errorf("import path contains invalid character '%c': %q", r, path)
			return true
		}
	}

	return false
}

// Can this type be stored directly in an interface word?
// Yes, if the representation is a single pointer.
func isdirectiface(t *types.Type) bool {
	if t.Broke() {
		return false
	}

	switch t.Kind() {
	case types.TPTR:
		// Pointers to notinheap types must be stored indirectly. See issue 42076.
		return !t.Elem().NotInHeap()
	case types.TCHAN,
		types.TMAP,
		types.TFUNC,
		types.TUNSAFEPTR:
		return true

	case types.TARRAY:
		// Array of 1 direct iface type can be direct.
		return t.NumElem() == 1 && isdirectiface(t.Elem())

	case types.TSTRUCT:
		// Struct with 1 field of direct iface type can be direct.
		return t.NumFields() == 1 && isdirectiface(t.Field(0).Type)
	}

	return false
}

// itabType loads the _type field from a runtime.itab struct.
func itabType(itab ir.Node) ir.Node {
	typ := nodSym(ir.ODOTPTR, itab, nil)
	typ.SetType(types.NewPtr(types.Types[types.TUINT8]))
	typ.SetTypecheck(1)
	typ.SetOffset(int64(Widthptr)) // offset of _type in runtime.itab
	typ.SetBounded(true)           // guaranteed not to fault
	return typ
}

// ifaceData loads the data field from an interface.
// The concrete type must be known to have type t.
// It follows the pointer if !isdirectiface(t).
func ifaceData(pos src.XPos, n ir.Node, t *types.Type) ir.Node {
	if t.IsInterface() {
		base.Fatalf("ifaceData interface: %v", t)
	}
	ptr := ir.NodAt(pos, ir.OIDATA, n, nil)
	if isdirectiface(t) {
		ptr.SetType(t)
		ptr.SetTypecheck(1)
		return ptr
	}
	ptr.SetType(types.NewPtr(t))
	ptr.SetTypecheck(1)
	ind := ir.NodAt(pos, ir.ODEREF, ptr, nil)
	ind.SetType(t)
	ind.SetTypecheck(1)
	ind.SetBounded(true)
	return ind
}

// typePos returns the position associated with t.
// This is where t was declared or where it appeared as a type expression.
func typePos(t *types.Type) src.XPos {
	if pos := t.Pos(); pos.IsKnown() {
		return pos
	}
	base.Fatalf("bad type: %v", t)
	panic("unreachable")
}