aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/gc/abiutils.go
blob: 19de14d48c353e412afea972bea4cf3cdcb54287 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package gc

import (
	"cmd/compile/internal/types"
	"cmd/internal/src"
	"fmt"
	"sync"
)

//......................................................................
//
// Public/exported bits of the ABI utilities.
//

// ABIParamResultInfo stores the results of processing a given
// function type to compute stack layout and register assignments. For
// each input and output parameter we capture whether the param was
// register-assigned (and to which register(s)) or the stack offset
// for the param if is not going to be passed in registers according
// to the rules in the Go internal ABI specification (1.17).
type ABIParamResultInfo struct {
	inparams          []ABIParamAssignment // Includes receiver for method calls.  Does NOT include hidden closure pointer.
	outparams         []ABIParamAssignment
	intSpillSlots     int
	floatSpillSlots   int
	offsetToSpillArea int64
	config            ABIConfig // to enable String() method
}

// RegIndex stores the index into the set of machine registers used by
// the ABI on a specific architecture for parameter passing.  RegIndex
// values 0 through N-1 (where N is the number of integer registers
// used for param passing according to the ABI rules) describe integer
// registers; values N through M (where M is the number of floating
// point registers used).  Thus if the ABI says there are 5 integer
// registers and 7 floating point registers, then RegIndex value of 4
// indicates the 5th integer register, and a RegIndex value of 11
// indicates the 7th floating point register.
type RegIndex uint8

// ABIParamAssignment holds information about how a specific param or
// result will be passed: in registers (in which case 'Registers' is
// populated) or on the stack (in which case 'Offset' is set to a
// non-negative stack offset. The values in 'Registers' are indices (as
// described above), not architected registers.
type ABIParamAssignment struct {
	Type      *types.Type
	Registers []RegIndex
	Offset    int32
}

// RegAmounts holds a specified number of integer/float registers.
type RegAmounts struct {
	intRegs   int
	floatRegs int
}

// ABIConfig captures the number of registers made available
// by the ABI rules for parameter passing and result returning.
type ABIConfig struct {
	// Do we need anything more than this?
	regAmounts RegAmounts
}

// ABIAnalyze takes a function type 't' and an ABI rules description
// 'config' and analyzes the function to determine how its parameters
// and results will be passed (in registers or on the stack), returning
// an ABIParamResultInfo object that holds the results of the analysis.
func ABIAnalyze(t *types.Type, config ABIConfig) ABIParamResultInfo {
	setup()
	s := assignState{
		rTotal: config.regAmounts,
	}
	result := ABIParamResultInfo{config: config}

	// Receiver
	ft := t.FuncType()
	if t.NumRecvs() != 0 {
		rfsl := ft.Receiver.FieldSlice()
		result.inparams = append(result.inparams,
			s.assignParamOrReturn(rfsl[0].Type))
	}

	// Inputs
	ifsl := ft.Params.FieldSlice()
	for _, f := range ifsl {
		result.inparams = append(result.inparams,
			s.assignParamOrReturn(f.Type))
	}
	s.stackOffset = Rnd(s.stackOffset, int64(Widthreg))

	// Record number of spill slots needed.
	result.intSpillSlots = s.rUsed.intRegs
	result.floatSpillSlots = s.rUsed.floatRegs

	// Outputs
	s.rUsed = RegAmounts{}
	ofsl := ft.Results.FieldSlice()
	for _, f := range ofsl {
		result.outparams = append(result.outparams, s.assignParamOrReturn(f.Type))
	}
	result.offsetToSpillArea = s.stackOffset

	return result
}

//......................................................................
//
// Non-public portions.

// regString produces a human-readable version of a RegIndex.
func (c *RegAmounts) regString(r RegIndex) string {
	if int(r) < c.intRegs {
		return fmt.Sprintf("I%d", int(r))
	} else if int(r) < c.intRegs+c.floatRegs {
		return fmt.Sprintf("F%d", int(r)-c.intRegs)
	}
	return fmt.Sprintf("<?>%d", r)
}

// toString method renders an ABIParamAssignment in human-readable
// form, suitable for debugging or unit testing.
func (ri *ABIParamAssignment) toString(config ABIConfig) string {
	regs := "R{"
	for _, r := range ri.Registers {
		regs += " " + config.regAmounts.regString(r)
	}
	return fmt.Sprintf("%s } offset: %d typ: %v", regs, ri.Offset, ri.Type)
}

// toString method renders an ABIParamResultInfo in human-readable
// form, suitable for debugging or unit testing.
func (ri *ABIParamResultInfo) String() string {
	res := ""
	for k, p := range ri.inparams {
		res += fmt.Sprintf("IN %d: %s\n", k, p.toString(ri.config))
	}
	for k, r := range ri.outparams {
		res += fmt.Sprintf("OUT %d: %s\n", k, r.toString(ri.config))
	}
	res += fmt.Sprintf("intspill: %d floatspill: %d offsetToSpillArea: %d",
		ri.intSpillSlots, ri.floatSpillSlots, ri.offsetToSpillArea)
	return res
}

// assignState holds intermediate state during the register assigning process
// for a given function signature.
type assignState struct {
	rTotal      RegAmounts // total reg amounts from ABI rules
	rUsed       RegAmounts // regs used by params completely assigned so far
	pUsed       RegAmounts // regs used by the current param (or pieces therein)
	stackOffset int64      // current stack offset
}

// stackSlot returns a stack offset for a param or result of the
// specified type.
func (state *assignState) stackSlot(t *types.Type) int64 {
	if t.Align > 0 {
		state.stackOffset = Rnd(state.stackOffset, int64(t.Align))
	}
	rv := state.stackOffset
	state.stackOffset += t.Width
	return rv
}

// allocateRegs returns a set of register indices for a parameter or result
// that we've just determined to be register-assignable. The number of registers
// needed is assumed to be stored in state.pUsed.
func (state *assignState) allocateRegs() []RegIndex {
	regs := []RegIndex{}

	// integer
	for r := state.rUsed.intRegs; r < state.rUsed.intRegs+state.pUsed.intRegs; r++ {
		regs = append(regs, RegIndex(r))
	}
	state.rUsed.intRegs += state.pUsed.intRegs

	// floating
	for r := state.rUsed.floatRegs; r < state.rUsed.floatRegs+state.pUsed.floatRegs; r++ {
		regs = append(regs, RegIndex(r+state.rTotal.intRegs))
	}
	state.rUsed.floatRegs += state.pUsed.floatRegs

	return regs
}

// regAllocate creates a register ABIParamAssignment object for a param
// or result with the specified type, as a final step (this assumes
// that all of the safety/suitability analysis is complete).
func (state *assignState) regAllocate(t *types.Type) ABIParamAssignment {
	return ABIParamAssignment{
		Type:      t,
		Registers: state.allocateRegs(),
		Offset:    -1,
	}
}

// stackAllocate creates a stack memory ABIParamAssignment object for
// a param or result with the specified type, as a final step (this
// assumes that all of the safety/suitability analysis is complete).
func (state *assignState) stackAllocate(t *types.Type) ABIParamAssignment {
	return ABIParamAssignment{
		Type:   t,
		Offset: int32(state.stackSlot(t)),
	}
}

// intUsed returns the number of integer registers consumed
// at a given point within an assignment stage.
func (state *assignState) intUsed() int {
	return state.rUsed.intRegs + state.pUsed.intRegs
}

// floatUsed returns the number of floating point registers consumed at
// a given point within an assignment stage.
func (state *assignState) floatUsed() int {
	return state.rUsed.floatRegs + state.pUsed.floatRegs
}

// regassignIntegral examines a param/result of integral type 't' to
// determines whether it can be register-assigned. Returns TRUE if we
// can register allocate, FALSE otherwise (and updates state
// accordingly).
func (state *assignState) regassignIntegral(t *types.Type) bool {
	regsNeeded := int(Rnd(t.Width, int64(Widthptr)) / int64(Widthptr))

	// Floating point and complex.
	if t.IsFloat() || t.IsComplex() {
		if regsNeeded+state.floatUsed() > state.rTotal.floatRegs {
			// not enough regs
			return false
		}
		state.pUsed.floatRegs += regsNeeded
		return true
	}

	// Non-floating point
	if regsNeeded+state.intUsed() > state.rTotal.intRegs {
		// not enough regs
		return false
	}
	state.pUsed.intRegs += regsNeeded
	return true
}

// regassignArray processes an array type (or array component within some
// other enclosing type) to determine if it can be register assigned.
// Returns TRUE if we can register allocate, FALSE otherwise.
func (state *assignState) regassignArray(t *types.Type) bool {

	nel := t.NumElem()
	if nel == 0 {
		return true
	}
	if nel > 1 {
		// Not an array of length 1: stack assign
		return false
	}
	// Visit element
	return state.regassign(t.Elem())
}

// regassignStruct processes a struct type (or struct component within
// some other enclosing type) to determine if it can be register
// assigned. Returns TRUE if we can register allocate, FALSE otherwise.
func (state *assignState) regassignStruct(t *types.Type) bool {
	for _, field := range t.FieldSlice() {
		if !state.regassign(field.Type) {
			return false
		}
	}
	return true
}

// synthOnce ensures that we only create the synth* fake types once.
var synthOnce sync.Once

// synthSlice, synthString, and syncIface are synthesized struct types
// meant to capture the underlying implementations of string/slice/interface.
var synthSlice *types.Type
var synthString *types.Type
var synthIface *types.Type

// setup performs setup for the register assignment utilities, manufacturing
// a small set of synthesized types that we'll need along the way.
func setup() {
	synthOnce.Do(func() {
		fname := types.BuiltinPkg.Lookup
		nxp := src.NoXPos
		unsp := types.Types[types.TUNSAFEPTR]
		ui := types.Types[types.TUINTPTR]
		synthSlice = types.NewStruct(types.NoPkg, []*types.Field{
			types.NewField(nxp, fname("ptr"), unsp),
			types.NewField(nxp, fname("len"), ui),
			types.NewField(nxp, fname("cap"), ui),
		})
		synthString = types.NewStruct(types.NoPkg, []*types.Field{
			types.NewField(nxp, fname("data"), unsp),
			types.NewField(nxp, fname("len"), ui),
		})
		synthIface = types.NewStruct(types.NoPkg, []*types.Field{
			types.NewField(nxp, fname("f1"), unsp),
			types.NewField(nxp, fname("f2"), unsp),
		})
	})
}

// regassign examines a given param type (or component within some
// composite) to determine if it can be register assigned.  Returns
// TRUE if we can register allocate, FALSE otherwise.
func (state *assignState) regassign(pt *types.Type) bool {
	typ := pt.Kind()
	if pt.IsScalar() || pt.IsPtrShaped() {
		return state.regassignIntegral(pt)
	}
	switch typ {
	case types.TARRAY:
		return state.regassignArray(pt)
	case types.TSTRUCT:
		return state.regassignStruct(pt)
	case types.TSLICE:
		return state.regassignStruct(synthSlice)
	case types.TSTRING:
		return state.regassignStruct(synthString)
	case types.TINTER:
		return state.regassignStruct(synthIface)
	default:
		panic("not expected")
	}
}

// assignParamOrReturn processes a given receiver, param, or result
// of type 'pt' to determine whether it can be register assigned.
// The result of the analysis is recorded in the result
// ABIParamResultInfo held in 'state'.
func (state *assignState) assignParamOrReturn(pt *types.Type) ABIParamAssignment {
	state.pUsed = RegAmounts{}
	if pt.Width == types.BADWIDTH {
		panic("should never happen")
	} else if pt.Width == 0 {
		return state.stackAllocate(pt)
	} else if state.regassign(pt) {
		return state.regAllocate(pt)
	} else {
		return state.stackAllocate(pt)
	}
}