aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/escape/escape.go
blob: 96c2e02146dcb4411227e2d7f2b463427961c43b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package escape

import (
	"fmt"
	"math"
	"strings"

	"cmd/compile/internal/base"
	"cmd/compile/internal/ir"
	"cmd/compile/internal/logopt"
	"cmd/compile/internal/typecheck"
	"cmd/compile/internal/types"
	"cmd/internal/src"
)

// Escape analysis.
//
// Here we analyze functions to determine which Go variables
// (including implicit allocations such as calls to "new" or "make",
// composite literals, etc.) can be allocated on the stack. The two
// key invariants we have to ensure are: (1) pointers to stack objects
// cannot be stored in the heap, and (2) pointers to a stack object
// cannot outlive that object (e.g., because the declaring function
// returned and destroyed the object's stack frame, or its space is
// reused across loop iterations for logically distinct variables).
//
// We implement this with a static data-flow analysis of the AST.
// First, we construct a directed weighted graph where vertices
// (termed "locations") represent variables allocated by statements
// and expressions, and edges represent assignments between variables
// (with weights representing addressing/dereference counts).
//
// Next we walk the graph looking for assignment paths that might
// violate the invariants stated above. If a variable v's address is
// stored in the heap or elsewhere that may outlive it, then v is
// marked as requiring heap allocation.
//
// To support interprocedural analysis, we also record data-flow from
// each function's parameters to the heap and to its result
// parameters. This information is summarized as "parameter tags",
// which are used at static call sites to improve escape analysis of
// function arguments.

// Constructing the location graph.
//
// Every allocating statement (e.g., variable declaration) or
// expression (e.g., "new" or "make") is first mapped to a unique
// "location."
//
// We also model every Go assignment as a directed edges between
// locations. The number of dereference operations minus the number of
// addressing operations is recorded as the edge's weight (termed
// "derefs"). For example:
//
//     p = &q    // -1
//     p = q     //  0
//     p = *q    //  1
//     p = **q   //  2
//
//     p = **&**&q  // 2
//
// Note that the & operator can only be applied to addressable
// expressions, and the expression &x itself is not addressable, so
// derefs cannot go below -1.
//
// Every Go language construct is lowered into this representation,
// generally without sensitivity to flow, path, or context; and
// without distinguishing elements within a compound variable. For
// example:
//
//     var x struct { f, g *int }
//     var u []*int
//
//     x.f = u[0]
//
// is modeled simply as
//
//     x = *u
//
// That is, we don't distinguish x.f from x.g, or u[0] from u[1],
// u[2], etc. However, we do record the implicit dereference involved
// in indexing a slice.

// A batch holds escape analysis state that's shared across an entire
// batch of functions being analyzed at once.
type batch struct {
	allLocs  []*location
	closures []closure

	heapLoc  location
	blankLoc location
}

// A closure holds a closure expression and its spill hole (i.e.,
// where the hole representing storing into its closure record).
type closure struct {
	k   hole
	clo *ir.ClosureExpr
}

// An escape holds state specific to a single function being analyzed
// within a batch.
type escape struct {
	*batch

	curfn *ir.Func // function being analyzed

	labels map[*types.Sym]labelState // known labels

	// loopDepth counts the current loop nesting depth within
	// curfn. It increments within each "for" loop and at each
	// label with a corresponding backwards "goto" (i.e.,
	// unstructured loop).
	loopDepth int
}

// An location represents an abstract location that stores a Go
// variable.
type location struct {
	n         ir.Node  // represented variable or expression, if any
	curfn     *ir.Func // enclosing function
	edges     []edge   // incoming edges
	loopDepth int      // loopDepth at declaration

	// resultIndex records the tuple index (starting at 1) for
	// PPARAMOUT variables within their function's result type.
	// For non-PPARAMOUT variables it's 0.
	resultIndex int

	// derefs and walkgen are used during walkOne to track the
	// minimal dereferences from the walk root.
	derefs  int // >= -1
	walkgen uint32

	// dst and dstEdgeindex track the next immediate assignment
	// destination location during walkone, along with the index
	// of the edge pointing back to this location.
	dst        *location
	dstEdgeIdx int

	// queued is used by walkAll to track whether this location is
	// in the walk queue.
	queued bool

	// escapes reports whether the represented variable's address
	// escapes; that is, whether the variable must be heap
	// allocated.
	escapes bool

	// transient reports whether the represented expression's
	// address does not outlive the statement; that is, whether
	// its storage can be immediately reused.
	transient bool

	// paramEsc records the represented parameter's leak set.
	paramEsc leaks

	captured   bool // has a closure captured this variable?
	reassigned bool // has this variable been reassigned?
	addrtaken  bool // has this variable's address been taken?
}

// An edge represents an assignment edge between two Go variables.
type edge struct {
	src    *location
	derefs int // >= -1
	notes  *note
}

// Fmt is called from node printing to print information about escape analysis results.
func Fmt(n ir.Node) string {
	text := ""
	switch n.Esc() {
	case ir.EscUnknown:
		break

	case ir.EscHeap:
		text = "esc(h)"

	case ir.EscNone:
		text = "esc(no)"

	case ir.EscNever:
		text = "esc(N)"

	default:
		text = fmt.Sprintf("esc(%d)", n.Esc())
	}

	if n.Op() == ir.ONAME {
		n := n.(*ir.Name)
		if loc, ok := n.Opt.(*location); ok && loc.loopDepth != 0 {
			if text != "" {
				text += " "
			}
			text += fmt.Sprintf("ld(%d)", loc.loopDepth)
		}
	}

	return text
}

// Batch performs escape analysis on a minimal batch of
// functions.
func Batch(fns []*ir.Func, recursive bool) {
	for _, fn := range fns {
		if fn.Op() != ir.ODCLFUNC {
			base.Fatalf("unexpected node: %v", fn)
		}
	}

	var b batch
	b.heapLoc.escapes = true

	// Construct data-flow graph from syntax trees.
	for _, fn := range fns {
		b.initFunc(fn)
	}
	for _, fn := range fns {
		if !fn.IsHiddenClosure() {
			b.walkFunc(fn)
		}
	}

	// We've walked the function bodies, so we've seen everywhere a
	// variable might be reassigned or have it's address taken. Now we
	// can decide whether closures should capture their free variables
	// by value or reference.
	for _, closure := range b.closures {
		b.flowClosure(closure.k, closure.clo)
	}
	b.closures = nil

	for _, loc := range b.allLocs {
		if why := HeapAllocReason(loc.n); why != "" {
			b.flow(b.heapHole().addr(loc.n, why), loc)
		}
	}

	b.walkAll()
	b.finish(fns)
}

func (b *batch) with(fn *ir.Func) *escape {
	return &escape{
		batch:     b,
		curfn:     fn,
		loopDepth: 1,
	}
}

func (b *batch) initFunc(fn *ir.Func) {
	e := b.with(fn)
	if fn.Esc() != escFuncUnknown {
		base.Fatalf("unexpected node: %v", fn)
	}
	fn.SetEsc(escFuncPlanned)
	if base.Flag.LowerM > 3 {
		ir.Dump("escAnalyze", fn)
	}

	// Allocate locations for local variables.
	for _, n := range fn.Dcl {
		if n.Op() == ir.ONAME {
			e.newLoc(n, false)
		}
	}

	// Initialize resultIndex for result parameters.
	for i, f := range fn.Type().Results().FieldSlice() {
		e.oldLoc(f.Nname.(*ir.Name)).resultIndex = 1 + i
	}
}

func (b *batch) walkFunc(fn *ir.Func) {
	e := b.with(fn)
	fn.SetEsc(escFuncStarted)

	// Identify labels that mark the head of an unstructured loop.
	ir.Visit(fn, func(n ir.Node) {
		switch n.Op() {
		case ir.OLABEL:
			n := n.(*ir.LabelStmt)
			if e.labels == nil {
				e.labels = make(map[*types.Sym]labelState)
			}
			e.labels[n.Label] = nonlooping

		case ir.OGOTO:
			// If we visited the label before the goto,
			// then this is a looping label.
			n := n.(*ir.BranchStmt)
			if e.labels[n.Label] == nonlooping {
				e.labels[n.Label] = looping
			}
		}
	})

	e.block(fn.Body)

	if len(e.labels) != 0 {
		base.FatalfAt(fn.Pos(), "leftover labels after walkFunc")
	}
}

func (b *batch) flowClosure(k hole, clo *ir.ClosureExpr) {
	for _, cv := range clo.Func.ClosureVars {
		n := cv.Canonical()
		loc := b.oldLoc(cv)
		if !loc.captured {
			base.FatalfAt(cv.Pos(), "closure variable never captured: %v", cv)
		}

		// Capture by value for variables <= 128 bytes that are never reassigned.
		n.SetByval(!loc.addrtaken && !loc.reassigned && n.Type().Size() <= 128)
		if !n.Byval() {
			n.SetAddrtaken(true)
		}

		if base.Flag.LowerM > 1 {
			how := "ref"
			if n.Byval() {
				how = "value"
			}
			base.WarnfAt(n.Pos(), "%v capturing by %s: %v (addr=%v assign=%v width=%d)", n.Curfn, how, n, loc.addrtaken, loc.reassigned, n.Type().Size())
		}

		// Flow captured variables to closure.
		k := k
		if !cv.Byval() {
			k = k.addr(cv, "reference")
		}
		b.flow(k.note(cv, "captured by a closure"), loc)
	}
}

// Below we implement the methods for walking the AST and recording
// data flow edges. Note that because a sub-expression might have
// side-effects, it's important to always visit the entire AST.
//
// For example, write either:
//
//     if x {
//         e.discard(n.Left)
//     } else {
//         e.value(k, n.Left)
//     }
//
// or
//
//     if x {
//         k = e.discardHole()
//     }
//     e.value(k, n.Left)
//
// Do NOT write:
//
//    // BAD: possibly loses side-effects within n.Left
//    if !x {
//        e.value(k, n.Left)
//    }

// stmt evaluates a single Go statement.
func (e *escape) stmt(n ir.Node) {
	if n == nil {
		return
	}

	lno := ir.SetPos(n)
	defer func() {
		base.Pos = lno
	}()

	if base.Flag.LowerM > 2 {
		fmt.Printf("%v:[%d] %v stmt: %v\n", base.FmtPos(base.Pos), e.loopDepth, e.curfn, n)
	}

	e.stmts(n.Init())

	switch n.Op() {
	default:
		base.Fatalf("unexpected stmt: %v", n)

	case ir.ODCLCONST, ir.ODCLTYPE, ir.OFALL, ir.OINLMARK:
		// nop

	case ir.OBREAK, ir.OCONTINUE, ir.OGOTO:
		// TODO(mdempsky): Handle dead code?

	case ir.OBLOCK:
		n := n.(*ir.BlockStmt)
		e.stmts(n.List)

	case ir.ODCL:
		// Record loop depth at declaration.
		n := n.(*ir.Decl)
		if !ir.IsBlank(n.X) {
			e.dcl(n.X)
		}

	case ir.OLABEL:
		n := n.(*ir.LabelStmt)
		switch e.labels[n.Label] {
		case nonlooping:
			if base.Flag.LowerM > 2 {
				fmt.Printf("%v:%v non-looping label\n", base.FmtPos(base.Pos), n)
			}
		case looping:
			if base.Flag.LowerM > 2 {
				fmt.Printf("%v: %v looping label\n", base.FmtPos(base.Pos), n)
			}
			e.loopDepth++
		default:
			base.Fatalf("label missing tag")
		}
		delete(e.labels, n.Label)

	case ir.OIF:
		n := n.(*ir.IfStmt)
		e.discard(n.Cond)
		e.block(n.Body)
		e.block(n.Else)

	case ir.OFOR, ir.OFORUNTIL:
		n := n.(*ir.ForStmt)
		e.loopDepth++
		e.discard(n.Cond)
		e.stmt(n.Post)
		e.block(n.Body)
		e.loopDepth--

	case ir.ORANGE:
		// for Key, Value = range X { Body }
		n := n.(*ir.RangeStmt)

		// X is evaluated outside the loop.
		tmp := e.newLoc(nil, false)
		e.expr(tmp.asHole(), n.X)

		e.loopDepth++
		ks := e.addrs([]ir.Node{n.Key, n.Value})
		if n.X.Type().IsArray() {
			e.flow(ks[1].note(n, "range"), tmp)
		} else {
			e.flow(ks[1].deref(n, "range-deref"), tmp)
		}
		e.reassigned(ks, n)

		e.block(n.Body)
		e.loopDepth--

	case ir.OSWITCH:
		n := n.(*ir.SwitchStmt)

		if guard, ok := n.Tag.(*ir.TypeSwitchGuard); ok {
			var ks []hole
			if guard.Tag != nil {
				for _, cas := range n.Cases {
					cv := cas.Var
					k := e.dcl(cv) // type switch variables have no ODCL.
					if cv.Type().HasPointers() {
						ks = append(ks, k.dotType(cv.Type(), cas, "switch case"))
					}
				}
			}
			e.expr(e.teeHole(ks...), n.Tag.(*ir.TypeSwitchGuard).X)
		} else {
			e.discard(n.Tag)
		}

		for _, cas := range n.Cases {
			e.discards(cas.List)
			e.block(cas.Body)
		}

	case ir.OSELECT:
		n := n.(*ir.SelectStmt)
		for _, cas := range n.Cases {
			e.stmt(cas.Comm)
			e.block(cas.Body)
		}
	case ir.ORECV:
		// TODO(mdempsky): Consider e.discard(n.Left).
		n := n.(*ir.UnaryExpr)
		e.exprSkipInit(e.discardHole(), n) // already visited n.Ninit
	case ir.OSEND:
		n := n.(*ir.SendStmt)
		e.discard(n.Chan)
		e.assignHeap(n.Value, "send", n)

	case ir.OAS:
		n := n.(*ir.AssignStmt)
		e.assignList([]ir.Node{n.X}, []ir.Node{n.Y}, "assign", n)
	case ir.OASOP:
		n := n.(*ir.AssignOpStmt)
		// TODO(mdempsky): Worry about OLSH/ORSH?
		e.assignList([]ir.Node{n.X}, []ir.Node{n.Y}, "assign", n)
	case ir.OAS2:
		n := n.(*ir.AssignListStmt)
		e.assignList(n.Lhs, n.Rhs, "assign-pair", n)

	case ir.OAS2DOTTYPE: // v, ok = x.(type)
		n := n.(*ir.AssignListStmt)
		e.assignList(n.Lhs, n.Rhs, "assign-pair-dot-type", n)
	case ir.OAS2MAPR: // v, ok = m[k]
		n := n.(*ir.AssignListStmt)
		e.assignList(n.Lhs, n.Rhs, "assign-pair-mapr", n)
	case ir.OAS2RECV, ir.OSELRECV2: // v, ok = <-ch
		n := n.(*ir.AssignListStmt)
		e.assignList(n.Lhs, n.Rhs, "assign-pair-receive", n)

	case ir.OAS2FUNC:
		n := n.(*ir.AssignListStmt)
		e.stmts(n.Rhs[0].Init())
		ks := e.addrs(n.Lhs)
		e.call(ks, n.Rhs[0], nil)
		e.reassigned(ks, n)
	case ir.ORETURN:
		n := n.(*ir.ReturnStmt)
		results := e.curfn.Type().Results().FieldSlice()
		dsts := make([]ir.Node, len(results))
		for i, res := range results {
			dsts[i] = res.Nname.(*ir.Name)
		}
		e.assignList(dsts, n.Results, "return", n)
	case ir.OCALLFUNC, ir.OCALLMETH, ir.OCALLINTER, ir.OCLOSE, ir.OCOPY, ir.ODELETE, ir.OPANIC, ir.OPRINT, ir.OPRINTN, ir.ORECOVER:
		e.call(nil, n, nil)
	case ir.OGO, ir.ODEFER:
		n := n.(*ir.GoDeferStmt)
		e.stmts(n.Call.Init())
		e.call(nil, n.Call, n)

	case ir.ORETJMP:
		// TODO(mdempsky): What do? esc.go just ignores it.
	}
}

func (e *escape) stmts(l ir.Nodes) {
	for _, n := range l {
		e.stmt(n)
	}
}

// block is like stmts, but preserves loopDepth.
func (e *escape) block(l ir.Nodes) {
	old := e.loopDepth
	e.stmts(l)
	e.loopDepth = old
}

// expr models evaluating an expression n and flowing the result into
// hole k.
func (e *escape) expr(k hole, n ir.Node) {
	if n == nil {
		return
	}
	e.stmts(n.Init())
	e.exprSkipInit(k, n)
}

func (e *escape) exprSkipInit(k hole, n ir.Node) {
	if n == nil {
		return
	}

	lno := ir.SetPos(n)
	defer func() {
		base.Pos = lno
	}()

	uintptrEscapesHack := k.uintptrEscapesHack
	k.uintptrEscapesHack = false

	if uintptrEscapesHack && n.Op() == ir.OCONVNOP && n.(*ir.ConvExpr).X.Type().IsUnsafePtr() {
		// nop
	} else if k.derefs >= 0 && !n.Type().HasPointers() {
		k.dst = &e.blankLoc
	}

	switch n.Op() {
	default:
		base.Fatalf("unexpected expr: %v", n)

	case ir.OLITERAL, ir.ONIL, ir.OGETG, ir.OTYPE, ir.OMETHEXPR:
		// nop

	case ir.ONAME:
		n := n.(*ir.Name)
		if n.Class == ir.PFUNC || n.Class == ir.PEXTERN {
			return
		}
		if n.IsClosureVar() && n.Defn == nil {
			return // ".this" from method value wrapper
		}
		e.flow(k, e.oldLoc(n))

	case ir.ONAMEOFFSET:
		n := n.(*ir.NameOffsetExpr)
		e.expr(k, n.Name_)

	case ir.OPLUS, ir.ONEG, ir.OBITNOT, ir.ONOT:
		n := n.(*ir.UnaryExpr)
		e.discard(n.X)
	case ir.OADD, ir.OSUB, ir.OOR, ir.OXOR, ir.OMUL, ir.ODIV, ir.OMOD, ir.OLSH, ir.ORSH, ir.OAND, ir.OANDNOT, ir.OEQ, ir.ONE, ir.OLT, ir.OLE, ir.OGT, ir.OGE:
		n := n.(*ir.BinaryExpr)
		e.discard(n.X)
		e.discard(n.Y)
	case ir.OANDAND, ir.OOROR:
		n := n.(*ir.LogicalExpr)
		e.discard(n.X)
		e.discard(n.Y)
	case ir.OADDR:
		n := n.(*ir.AddrExpr)
		e.expr(k.addr(n, "address-of"), n.X) // "address-of"
	case ir.ODEREF:
		n := n.(*ir.StarExpr)
		e.expr(k.deref(n, "indirection"), n.X) // "indirection"
	case ir.ODOT, ir.ODOTMETH, ir.ODOTINTER:
		n := n.(*ir.SelectorExpr)
		e.expr(k.note(n, "dot"), n.X)
	case ir.ODOTPTR:
		n := n.(*ir.SelectorExpr)
		e.expr(k.deref(n, "dot of pointer"), n.X) // "dot of pointer"
	case ir.ODOTTYPE, ir.ODOTTYPE2:
		n := n.(*ir.TypeAssertExpr)
		e.expr(k.dotType(n.Type(), n, "dot"), n.X)
	case ir.OINDEX:
		n := n.(*ir.IndexExpr)
		if n.X.Type().IsArray() {
			e.expr(k.note(n, "fixed-array-index-of"), n.X)
		} else {
			// TODO(mdempsky): Fix why reason text.
			e.expr(k.deref(n, "dot of pointer"), n.X)
		}
		e.discard(n.Index)
	case ir.OINDEXMAP:
		n := n.(*ir.IndexExpr)
		e.discard(n.X)
		e.discard(n.Index)
	case ir.OSLICE, ir.OSLICEARR, ir.OSLICE3, ir.OSLICE3ARR, ir.OSLICESTR:
		n := n.(*ir.SliceExpr)
		e.expr(k.note(n, "slice"), n.X)
		e.discard(n.Low)
		e.discard(n.High)
		e.discard(n.Max)

	case ir.OCONV, ir.OCONVNOP:
		n := n.(*ir.ConvExpr)
		if ir.ShouldCheckPtr(e.curfn, 2) && n.Type().IsUnsafePtr() && n.X.Type().IsPtr() {
			// When -d=checkptr=2 is enabled, treat
			// conversions to unsafe.Pointer as an
			// escaping operation. This allows better
			// runtime instrumentation, since we can more
			// easily detect object boundaries on the heap
			// than the stack.
			e.assignHeap(n.X, "conversion to unsafe.Pointer", n)
		} else if n.Type().IsUnsafePtr() && n.X.Type().IsUintptr() {
			e.unsafeValue(k, n.X)
		} else {
			e.expr(k, n.X)
		}
	case ir.OCONVIFACE:
		n := n.(*ir.ConvExpr)
		if !n.X.Type().IsInterface() && !types.IsDirectIface(n.X.Type()) {
			k = e.spill(k, n)
		}
		e.expr(k.note(n, "interface-converted"), n.X)

	case ir.ORECV:
		n := n.(*ir.UnaryExpr)
		e.discard(n.X)

	case ir.OCALLMETH, ir.OCALLFUNC, ir.OCALLINTER, ir.OLEN, ir.OCAP, ir.OCOMPLEX, ir.OREAL, ir.OIMAG, ir.OAPPEND, ir.OCOPY:
		e.call([]hole{k}, n, nil)

	case ir.ONEW:
		n := n.(*ir.UnaryExpr)
		e.spill(k, n)

	case ir.OMAKESLICE:
		n := n.(*ir.MakeExpr)
		e.spill(k, n)
		e.discard(n.Len)
		e.discard(n.Cap)
	case ir.OMAKECHAN:
		n := n.(*ir.MakeExpr)
		e.discard(n.Len)
	case ir.OMAKEMAP:
		n := n.(*ir.MakeExpr)
		e.spill(k, n)
		e.discard(n.Len)

	case ir.ORECOVER:
		// nop

	case ir.OCALLPART:
		// Flow the receiver argument to both the closure and
		// to the receiver parameter.

		n := n.(*ir.SelectorExpr)
		closureK := e.spill(k, n)

		m := n.Selection

		// We don't know how the method value will be called
		// later, so conservatively assume the result
		// parameters all flow to the heap.
		//
		// TODO(mdempsky): Change ks into a callback, so that
		// we don't have to create this slice?
		var ks []hole
		for i := m.Type.NumResults(); i > 0; i-- {
			ks = append(ks, e.heapHole())
		}
		name, _ := m.Nname.(*ir.Name)
		paramK := e.tagHole(ks, name, m.Type.Recv())

		e.expr(e.teeHole(paramK, closureK), n.X)

	case ir.OPTRLIT:
		n := n.(*ir.AddrExpr)
		e.expr(e.spill(k, n), n.X)

	case ir.OARRAYLIT:
		n := n.(*ir.CompLitExpr)
		for _, elt := range n.List {
			if elt.Op() == ir.OKEY {
				elt = elt.(*ir.KeyExpr).Value
			}
			e.expr(k.note(n, "array literal element"), elt)
		}

	case ir.OSLICELIT:
		n := n.(*ir.CompLitExpr)
		k = e.spill(k, n)
		k.uintptrEscapesHack = uintptrEscapesHack // for ...uintptr parameters

		for _, elt := range n.List {
			if elt.Op() == ir.OKEY {
				elt = elt.(*ir.KeyExpr).Value
			}
			e.expr(k.note(n, "slice-literal-element"), elt)
		}

	case ir.OSTRUCTLIT:
		n := n.(*ir.CompLitExpr)
		for _, elt := range n.List {
			e.expr(k.note(n, "struct literal element"), elt.(*ir.StructKeyExpr).Value)
		}

	case ir.OMAPLIT:
		n := n.(*ir.CompLitExpr)
		e.spill(k, n)

		// Map keys and values are always stored in the heap.
		for _, elt := range n.List {
			elt := elt.(*ir.KeyExpr)
			e.assignHeap(elt.Key, "map literal key", n)
			e.assignHeap(elt.Value, "map literal value", n)
		}

	case ir.OCLOSURE:
		n := n.(*ir.ClosureExpr)
		k = e.spill(k, n)
		e.closures = append(e.closures, closure{k, n})

		if fn := n.Func; fn.IsHiddenClosure() {
			for _, cv := range fn.ClosureVars {
				if loc := e.oldLoc(cv); !loc.captured {
					loc.captured = true

					// Ignore reassignments to the variable in straightline code
					// preceding the first capture by a closure.
					if loc.loopDepth == e.loopDepth {
						loc.reassigned = false
					}
				}
			}

			e.walkFunc(fn)
		}

	case ir.ORUNES2STR, ir.OBYTES2STR, ir.OSTR2RUNES, ir.OSTR2BYTES, ir.ORUNESTR:
		n := n.(*ir.ConvExpr)
		e.spill(k, n)
		e.discard(n.X)

	case ir.OADDSTR:
		n := n.(*ir.AddStringExpr)
		e.spill(k, n)

		// Arguments of OADDSTR never escape;
		// runtime.concatstrings makes sure of that.
		e.discards(n.List)
	}
}

// unsafeValue evaluates a uintptr-typed arithmetic expression looking
// for conversions from an unsafe.Pointer.
func (e *escape) unsafeValue(k hole, n ir.Node) {
	if n.Type().Kind() != types.TUINTPTR {
		base.Fatalf("unexpected type %v for %v", n.Type(), n)
	}
	if k.addrtaken {
		base.Fatalf("unexpected addrtaken")
	}

	e.stmts(n.Init())

	switch n.Op() {
	case ir.OCONV, ir.OCONVNOP:
		n := n.(*ir.ConvExpr)
		if n.X.Type().IsUnsafePtr() {
			e.expr(k, n.X)
		} else {
			e.discard(n.X)
		}
	case ir.ODOTPTR:
		n := n.(*ir.SelectorExpr)
		if ir.IsReflectHeaderDataField(n) {
			e.expr(k.deref(n, "reflect.Header.Data"), n.X)
		} else {
			e.discard(n.X)
		}
	case ir.OPLUS, ir.ONEG, ir.OBITNOT:
		n := n.(*ir.UnaryExpr)
		e.unsafeValue(k, n.X)
	case ir.OADD, ir.OSUB, ir.OOR, ir.OXOR, ir.OMUL, ir.ODIV, ir.OMOD, ir.OAND, ir.OANDNOT:
		n := n.(*ir.BinaryExpr)
		e.unsafeValue(k, n.X)
		e.unsafeValue(k, n.Y)
	case ir.OLSH, ir.ORSH:
		n := n.(*ir.BinaryExpr)
		e.unsafeValue(k, n.X)
		// RHS need not be uintptr-typed (#32959) and can't meaningfully
		// flow pointers anyway.
		e.discard(n.Y)
	default:
		e.exprSkipInit(e.discardHole(), n)
	}
}

// discard evaluates an expression n for side-effects, but discards
// its value.
func (e *escape) discard(n ir.Node) {
	e.expr(e.discardHole(), n)
}

func (e *escape) discards(l ir.Nodes) {
	for _, n := range l {
		e.discard(n)
	}
}

// addr evaluates an addressable expression n and returns a hole
// that represents storing into the represented location.
func (e *escape) addr(n ir.Node) hole {
	if n == nil || ir.IsBlank(n) {
		// Can happen in select case, range, maybe others.
		return e.discardHole()
	}

	k := e.heapHole()

	switch n.Op() {
	default:
		base.Fatalf("unexpected addr: %v", n)
	case ir.ONAME:
		n := n.(*ir.Name)
		if n.Class == ir.PEXTERN {
			break
		}
		k = e.oldLoc(n).asHole()
	case ir.ONAMEOFFSET:
		n := n.(*ir.NameOffsetExpr)
		k = e.addr(n.Name_)
	case ir.ODOT:
		n := n.(*ir.SelectorExpr)
		k = e.addr(n.X)
	case ir.OINDEX:
		n := n.(*ir.IndexExpr)
		e.discard(n.Index)
		if n.X.Type().IsArray() {
			k = e.addr(n.X)
		} else {
			e.discard(n.X)
		}
	case ir.ODEREF, ir.ODOTPTR:
		e.discard(n)
	case ir.OINDEXMAP:
		n := n.(*ir.IndexExpr)
		e.discard(n.X)
		e.assignHeap(n.Index, "key of map put", n)
	}

	return k
}

func (e *escape) addrs(l ir.Nodes) []hole {
	var ks []hole
	for _, n := range l {
		ks = append(ks, e.addr(n))
	}
	return ks
}

// reassigned marks the locations associated with the given holes as
// reassigned, unless the location represents a variable declared and
// assigned exactly once by where.
func (e *escape) reassigned(ks []hole, where ir.Node) {
	if as, ok := where.(*ir.AssignStmt); ok && as.Op() == ir.OAS && as.Y == nil {
		if dst, ok := as.X.(*ir.Name); ok && dst.Op() == ir.ONAME && dst.Defn == nil {
			// Zero-value assignment for variable declared without an
			// explicit initial value. Assume this is its initialization
			// statement.
			return
		}
	}

	for _, k := range ks {
		loc := k.dst
		// Variables declared by range statements are assigned on every iteration.
		if n, ok := loc.n.(*ir.Name); ok && n.Defn == where && where.Op() != ir.ORANGE {
			continue
		}
		loc.reassigned = true
	}
}

// assignList evaluates the assignment dsts... = srcs....
func (e *escape) assignList(dsts, srcs []ir.Node, why string, where ir.Node) {
	ks := e.addrs(dsts)
	for i, k := range ks {
		var src ir.Node
		if i < len(srcs) {
			src = srcs[i]
		}

		if dst := dsts[i]; dst != nil {
			// Detect implicit conversion of uintptr to unsafe.Pointer when
			// storing into reflect.{Slice,String}Header.
			if dst.Op() == ir.ODOTPTR && ir.IsReflectHeaderDataField(dst) {
				e.unsafeValue(e.heapHole().note(where, why), src)
				continue
			}

			// Filter out some no-op assignments for escape analysis.
			if src != nil && isSelfAssign(dst, src) {
				if base.Flag.LowerM != 0 {
					base.WarnfAt(where.Pos(), "%v ignoring self-assignment in %v", e.curfn, where)
				}
				k = e.discardHole()
			}
		}

		e.expr(k.note(where, why), src)
	}

	e.reassigned(ks, where)
}

func (e *escape) assignHeap(src ir.Node, why string, where ir.Node) {
	e.expr(e.heapHole().note(where, why), src)
}

// call evaluates a call expressions, including builtin calls. ks
// should contain the holes representing where the function callee's
// results flows; where is the OGO/ODEFER context of the call, if any.
func (e *escape) call(ks []hole, call, where ir.Node) {
	topLevelDefer := where != nil && where.Op() == ir.ODEFER && e.loopDepth == 1
	if topLevelDefer {
		// force stack allocation of defer record, unless
		// open-coded defers are used (see ssa.go)
		where.SetEsc(ir.EscNever)
	}

	argument := func(k hole, arg ir.Node) {
		if topLevelDefer {
			// Top level defers arguments don't escape to
			// heap, but they do need to last until end of
			// function.
			k = e.later(k)
		} else if where != nil {
			k = e.heapHole()
		}

		e.expr(k.note(call, "call parameter"), arg)
	}

	switch call.Op() {
	default:
		ir.Dump("esc", call)
		base.Fatalf("unexpected call op: %v", call.Op())

	case ir.OCALLFUNC, ir.OCALLMETH, ir.OCALLINTER:
		call := call.(*ir.CallExpr)
		typecheck.FixVariadicCall(call)

		// Pick out the function callee, if statically known.
		var fn *ir.Name
		switch call.Op() {
		case ir.OCALLFUNC:
			switch v := ir.StaticValue(call.X); {
			case v.Op() == ir.ONAME && v.(*ir.Name).Class == ir.PFUNC:
				fn = v.(*ir.Name)
			case v.Op() == ir.OCLOSURE:
				fn = v.(*ir.ClosureExpr).Func.Nname
			}
		case ir.OCALLMETH:
			fn = ir.MethodExprName(call.X)
		}

		fntype := call.X.Type()
		if fn != nil {
			fntype = fn.Type()
		}

		if ks != nil && fn != nil && e.inMutualBatch(fn) {
			for i, result := range fn.Type().Results().FieldSlice() {
				e.expr(ks[i], ir.AsNode(result.Nname))
			}
		}

		if r := fntype.Recv(); r != nil {
			argument(e.tagHole(ks, fn, r), call.X.(*ir.SelectorExpr).X)
		} else {
			// Evaluate callee function expression.
			argument(e.discardHole(), call.X)
		}

		args := call.Args
		for i, param := range fntype.Params().FieldSlice() {
			argument(e.tagHole(ks, fn, param), args[i])
		}

	case ir.OAPPEND:
		call := call.(*ir.CallExpr)
		args := call.Args

		// Appendee slice may flow directly to the result, if
		// it has enough capacity. Alternatively, a new heap
		// slice might be allocated, and all slice elements
		// might flow to heap.
		appendeeK := ks[0]
		if args[0].Type().Elem().HasPointers() {
			appendeeK = e.teeHole(appendeeK, e.heapHole().deref(call, "appendee slice"))
		}
		argument(appendeeK, args[0])

		if call.IsDDD {
			appendedK := e.discardHole()
			if args[1].Type().IsSlice() && args[1].Type().Elem().HasPointers() {
				appendedK = e.heapHole().deref(call, "appended slice...")
			}
			argument(appendedK, args[1])
		} else {
			for _, arg := range args[1:] {
				argument(e.heapHole(), arg)
			}
		}

	case ir.OCOPY:
		call := call.(*ir.BinaryExpr)
		argument(e.discardHole(), call.X)

		copiedK := e.discardHole()
		if call.Y.Type().IsSlice() && call.Y.Type().Elem().HasPointers() {
			copiedK = e.heapHole().deref(call, "copied slice")
		}
		argument(copiedK, call.Y)

	case ir.OPANIC:
		call := call.(*ir.UnaryExpr)
		argument(e.heapHole(), call.X)

	case ir.OCOMPLEX:
		call := call.(*ir.BinaryExpr)
		argument(e.discardHole(), call.X)
		argument(e.discardHole(), call.Y)
	case ir.ODELETE, ir.OPRINT, ir.OPRINTN, ir.ORECOVER:
		call := call.(*ir.CallExpr)
		for _, arg := range call.Args {
			argument(e.discardHole(), arg)
		}
	case ir.OLEN, ir.OCAP, ir.OREAL, ir.OIMAG, ir.OCLOSE:
		call := call.(*ir.UnaryExpr)
		argument(e.discardHole(), call.X)
	}
}

// tagHole returns a hole for evaluating an argument passed to param.
// ks should contain the holes representing where the function
// callee's results flows. fn is the statically-known callee function,
// if any.
func (e *escape) tagHole(ks []hole, fn *ir.Name, param *types.Field) hole {
	// If this is a dynamic call, we can't rely on param.Note.
	if fn == nil {
		return e.heapHole()
	}

	if e.inMutualBatch(fn) {
		return e.addr(ir.AsNode(param.Nname))
	}

	// Call to previously tagged function.

	if param.Note == UintptrEscapesNote {
		k := e.heapHole()
		k.uintptrEscapesHack = true
		return k
	}

	var tagKs []hole

	esc := parseLeaks(param.Note)
	if x := esc.Heap(); x >= 0 {
		tagKs = append(tagKs, e.heapHole().shift(x))
	}

	if ks != nil {
		for i := 0; i < numEscResults; i++ {
			if x := esc.Result(i); x >= 0 {
				tagKs = append(tagKs, ks[i].shift(x))
			}
		}
	}

	return e.teeHole(tagKs...)
}

// inMutualBatch reports whether function fn is in the batch of
// mutually recursive functions being analyzed. When this is true,
// fn has not yet been analyzed, so its parameters and results
// should be incorporated directly into the flow graph instead of
// relying on its escape analysis tagging.
func (e *escape) inMutualBatch(fn *ir.Name) bool {
	if fn.Defn != nil && fn.Defn.Esc() < escFuncTagged {
		if fn.Defn.Esc() == escFuncUnknown {
			base.Fatalf("graph inconsistency: %v", fn)
		}
		return true
	}
	return false
}

// An hole represents a context for evaluation a Go
// expression. E.g., when evaluating p in "x = **p", we'd have a hole
// with dst==x and derefs==2.
type hole struct {
	dst    *location
	derefs int // >= -1
	notes  *note

	// addrtaken indicates whether this context is taking the address of
	// the expression, independent of whether the address will actually
	// be stored into a variable.
	addrtaken bool

	// uintptrEscapesHack indicates this context is evaluating an
	// argument for a //go:uintptrescapes function.
	uintptrEscapesHack bool
}

type note struct {
	next  *note
	where ir.Node
	why   string
}

func (k hole) note(where ir.Node, why string) hole {
	if where == nil || why == "" {
		base.Fatalf("note: missing where/why")
	}
	if base.Flag.LowerM >= 2 || logopt.Enabled() {
		k.notes = &note{
			next:  k.notes,
			where: where,
			why:   why,
		}
	}
	return k
}

func (k hole) shift(delta int) hole {
	k.derefs += delta
	if k.derefs < -1 {
		base.Fatalf("derefs underflow: %v", k.derefs)
	}
	k.addrtaken = delta < 0
	return k
}

func (k hole) deref(where ir.Node, why string) hole { return k.shift(1).note(where, why) }
func (k hole) addr(where ir.Node, why string) hole  { return k.shift(-1).note(where, why) }

func (k hole) dotType(t *types.Type, where ir.Node, why string) hole {
	if !t.IsInterface() && !types.IsDirectIface(t) {
		k = k.shift(1)
	}
	return k.note(where, why)
}

// teeHole returns a new hole that flows into each hole of ks,
// similar to the Unix tee(1) command.
func (e *escape) teeHole(ks ...hole) hole {
	if len(ks) == 0 {
		return e.discardHole()
	}
	if len(ks) == 1 {
		return ks[0]
	}
	// TODO(mdempsky): Optimize if there's only one non-discard hole?

	// Given holes "l1 = _", "l2 = **_", "l3 = *_", ..., create a
	// new temporary location ltmp, wire it into place, and return
	// a hole for "ltmp = _".
	loc := e.newLoc(nil, true)
	for _, k := range ks {
		// N.B., "p = &q" and "p = &tmp; tmp = q" are not
		// semantically equivalent. To combine holes like "l1
		// = _" and "l2 = &_", we'd need to wire them as "l1 =
		// *ltmp" and "l2 = ltmp" and return "ltmp = &_"
		// instead.
		if k.derefs < 0 {
			base.Fatalf("teeHole: negative derefs")
		}

		e.flow(k, loc)
	}
	return loc.asHole()
}

func (e *escape) dcl(n *ir.Name) hole {
	if n.Curfn != e.curfn || n.IsClosureVar() {
		base.Fatalf("bad declaration of %v", n)
	}
	loc := e.oldLoc(n)
	loc.loopDepth = e.loopDepth
	return loc.asHole()
}

// spill allocates a new location associated with expression n, flows
// its address to k, and returns a hole that flows values to it. It's
// intended for use with most expressions that allocate storage.
func (e *escape) spill(k hole, n ir.Node) hole {
	loc := e.newLoc(n, true)
	e.flow(k.addr(n, "spill"), loc)
	return loc.asHole()
}

// later returns a new hole that flows into k, but some time later.
// Its main effect is to prevent immediate reuse of temporary
// variables introduced during Order.
func (e *escape) later(k hole) hole {
	loc := e.newLoc(nil, false)
	e.flow(k, loc)
	return loc.asHole()
}

func (e *escape) newLoc(n ir.Node, transient bool) *location {
	if e.curfn == nil {
		base.Fatalf("e.curfn isn't set")
	}
	if n != nil && n.Type() != nil && n.Type().NotInHeap() {
		base.ErrorfAt(n.Pos(), "%v is incomplete (or unallocatable); stack allocation disallowed", n.Type())
	}

	if n != nil && n.Op() == ir.ONAME {
		n = n.(*ir.Name).Canonical()
	}
	loc := &location{
		n:         n,
		curfn:     e.curfn,
		loopDepth: e.loopDepth,
		transient: transient,
	}
	e.allLocs = append(e.allLocs, loc)
	if n != nil {
		if n.Op() == ir.ONAME {
			n := n.(*ir.Name)
			if n.Curfn != e.curfn {
				base.Fatalf("curfn mismatch: %v != %v", n.Curfn, e.curfn)
			}

			if n.Opt != nil {
				base.Fatalf("%v already has a location", n)
			}
			n.Opt = loc
		}
	}
	return loc
}

func (b *batch) oldLoc(n *ir.Name) *location {
	return n.Canonical().Opt.(*location)
}

func (l *location) asHole() hole {
	return hole{dst: l}
}

func (b *batch) flow(k hole, src *location) {
	if k.addrtaken {
		src.addrtaken = true
	}

	dst := k.dst
	if dst == &b.blankLoc {
		return
	}
	if dst == src && k.derefs >= 0 { // dst = dst, dst = *dst, ...
		return
	}
	if dst.escapes && k.derefs < 0 { // dst = &src
		if base.Flag.LowerM >= 2 || logopt.Enabled() {
			pos := base.FmtPos(src.n.Pos())
			if base.Flag.LowerM >= 2 {
				fmt.Printf("%s: %v escapes to heap:\n", pos, src.n)
			}
			explanation := b.explainFlow(pos, dst, src, k.derefs, k.notes, []*logopt.LoggedOpt{})
			if logopt.Enabled() {
				var e_curfn *ir.Func // TODO(mdempsky): Fix.
				logopt.LogOpt(src.n.Pos(), "escapes", "escape", ir.FuncName(e_curfn), fmt.Sprintf("%v escapes to heap", src.n), explanation)
			}

		}
		src.escapes = true
		return
	}

	// TODO(mdempsky): Deduplicate edges?
	dst.edges = append(dst.edges, edge{src: src, derefs: k.derefs, notes: k.notes})
}

func (b *batch) heapHole() hole    { return b.heapLoc.asHole() }
func (b *batch) discardHole() hole { return b.blankLoc.asHole() }

// walkAll computes the minimal dereferences between all pairs of
// locations.
func (b *batch) walkAll() {
	// We use a work queue to keep track of locations that we need
	// to visit, and repeatedly walk until we reach a fixed point.
	//
	// We walk once from each location (including the heap), and
	// then re-enqueue each location on its transition from
	// transient->!transient and !escapes->escapes, which can each
	// happen at most once. So we take Θ(len(e.allLocs)) walks.

	// LIFO queue, has enough room for e.allLocs and e.heapLoc.
	todo := make([]*location, 0, len(b.allLocs)+1)
	enqueue := func(loc *location) {
		if !loc.queued {
			todo = append(todo, loc)
			loc.queued = true
		}
	}

	for _, loc := range b.allLocs {
		enqueue(loc)
	}
	enqueue(&b.heapLoc)

	var walkgen uint32
	for len(todo) > 0 {
		root := todo[len(todo)-1]
		todo = todo[:len(todo)-1]
		root.queued = false

		walkgen++
		b.walkOne(root, walkgen, enqueue)
	}
}

// walkOne computes the minimal number of dereferences from root to
// all other locations.
func (b *batch) walkOne(root *location, walkgen uint32, enqueue func(*location)) {
	// The data flow graph has negative edges (from addressing
	// operations), so we use the Bellman-Ford algorithm. However,
	// we don't have to worry about infinite negative cycles since
	// we bound intermediate dereference counts to 0.

	root.walkgen = walkgen
	root.derefs = 0
	root.dst = nil

	todo := []*location{root} // LIFO queue
	for len(todo) > 0 {
		l := todo[len(todo)-1]
		todo = todo[:len(todo)-1]

		derefs := l.derefs

		// If l.derefs < 0, then l's address flows to root.
		addressOf := derefs < 0
		if addressOf {
			// For a flow path like "root = &l; l = x",
			// l's address flows to root, but x's does
			// not. We recognize this by lower bounding
			// derefs at 0.
			derefs = 0

			// If l's address flows to a non-transient
			// location, then l can't be transiently
			// allocated.
			if !root.transient && l.transient {
				l.transient = false
				enqueue(l)
			}
		}

		if b.outlives(root, l) {
			// l's value flows to root. If l is a function
			// parameter and root is the heap or a
			// corresponding result parameter, then record
			// that value flow for tagging the function
			// later.
			if l.isName(ir.PPARAM) {
				if (logopt.Enabled() || base.Flag.LowerM >= 2) && !l.escapes {
					if base.Flag.LowerM >= 2 {
						fmt.Printf("%s: parameter %v leaks to %s with derefs=%d:\n", base.FmtPos(l.n.Pos()), l.n, b.explainLoc(root), derefs)
					}
					explanation := b.explainPath(root, l)
					if logopt.Enabled() {
						var e_curfn *ir.Func // TODO(mdempsky): Fix.
						logopt.LogOpt(l.n.Pos(), "leak", "escape", ir.FuncName(e_curfn),
							fmt.Sprintf("parameter %v leaks to %s with derefs=%d", l.n, b.explainLoc(root), derefs), explanation)
					}
				}
				l.leakTo(root, derefs)
			}

			// If l's address flows somewhere that
			// outlives it, then l needs to be heap
			// allocated.
			if addressOf && !l.escapes {
				if logopt.Enabled() || base.Flag.LowerM >= 2 {
					if base.Flag.LowerM >= 2 {
						fmt.Printf("%s: %v escapes to heap:\n", base.FmtPos(l.n.Pos()), l.n)
					}
					explanation := b.explainPath(root, l)
					if logopt.Enabled() {
						var e_curfn *ir.Func // TODO(mdempsky): Fix.
						logopt.LogOpt(l.n.Pos(), "escape", "escape", ir.FuncName(e_curfn), fmt.Sprintf("%v escapes to heap", l.n), explanation)
					}
				}
				l.escapes = true
				enqueue(l)
				continue
			}
		}

		for i, edge := range l.edges {
			if edge.src.escapes {
				continue
			}
			d := derefs + edge.derefs
			if edge.src.walkgen != walkgen || edge.src.derefs > d {
				edge.src.walkgen = walkgen
				edge.src.derefs = d
				edge.src.dst = l
				edge.src.dstEdgeIdx = i
				todo = append(todo, edge.src)
			}
		}
	}
}

// explainPath prints an explanation of how src flows to the walk root.
func (b *batch) explainPath(root, src *location) []*logopt.LoggedOpt {
	visited := make(map[*location]bool)
	pos := base.FmtPos(src.n.Pos())
	var explanation []*logopt.LoggedOpt
	for {
		// Prevent infinite loop.
		if visited[src] {
			if base.Flag.LowerM >= 2 {
				fmt.Printf("%s:   warning: truncated explanation due to assignment cycle; see golang.org/issue/35518\n", pos)
			}
			break
		}
		visited[src] = true
		dst := src.dst
		edge := &dst.edges[src.dstEdgeIdx]
		if edge.src != src {
			base.Fatalf("path inconsistency: %v != %v", edge.src, src)
		}

		explanation = b.explainFlow(pos, dst, src, edge.derefs, edge.notes, explanation)

		if dst == root {
			break
		}
		src = dst
	}

	return explanation
}

func (b *batch) explainFlow(pos string, dst, srcloc *location, derefs int, notes *note, explanation []*logopt.LoggedOpt) []*logopt.LoggedOpt {
	ops := "&"
	if derefs >= 0 {
		ops = strings.Repeat("*", derefs)
	}
	print := base.Flag.LowerM >= 2

	flow := fmt.Sprintf("   flow: %s = %s%v:", b.explainLoc(dst), ops, b.explainLoc(srcloc))
	if print {
		fmt.Printf("%s:%s\n", pos, flow)
	}
	if logopt.Enabled() {
		var epos src.XPos
		if notes != nil {
			epos = notes.where.Pos()
		} else if srcloc != nil && srcloc.n != nil {
			epos = srcloc.n.Pos()
		}
		var e_curfn *ir.Func // TODO(mdempsky): Fix.
		explanation = append(explanation, logopt.NewLoggedOpt(epos, "escflow", "escape", ir.FuncName(e_curfn), flow))
	}

	for note := notes; note != nil; note = note.next {
		if print {
			fmt.Printf("%s:     from %v (%v) at %s\n", pos, note.where, note.why, base.FmtPos(note.where.Pos()))
		}
		if logopt.Enabled() {
			var e_curfn *ir.Func // TODO(mdempsky): Fix.
			explanation = append(explanation, logopt.NewLoggedOpt(note.where.Pos(), "escflow", "escape", ir.FuncName(e_curfn),
				fmt.Sprintf("     from %v (%v)", note.where, note.why)))
		}
	}
	return explanation
}

func (b *batch) explainLoc(l *location) string {
	if l == &b.heapLoc {
		return "{heap}"
	}
	if l.n == nil {
		// TODO(mdempsky): Omit entirely.
		return "{temp}"
	}
	if l.n.Op() == ir.ONAME {
		return fmt.Sprintf("%v", l.n)
	}
	return fmt.Sprintf("{storage for %v}", l.n)
}

// outlives reports whether values stored in l may survive beyond
// other's lifetime if stack allocated.
func (b *batch) outlives(l, other *location) bool {
	// The heap outlives everything.
	if l.escapes {
		return true
	}

	// We don't know what callers do with returned values, so
	// pessimistically we need to assume they flow to the heap and
	// outlive everything too.
	if l.isName(ir.PPARAMOUT) {
		// Exception: Directly called closures can return
		// locations allocated outside of them without forcing
		// them to the heap. For example:
		//
		//    var u int  // okay to stack allocate
		//    *(func() *int { return &u }()) = 42
		if containsClosure(other.curfn, l.curfn) && l.curfn.ClosureCalled() {
			return false
		}

		return true
	}

	// If l and other are within the same function, then l
	// outlives other if it was declared outside other's loop
	// scope. For example:
	//
	//    var l *int
	//    for {
	//        l = new(int)
	//    }
	if l.curfn == other.curfn && l.loopDepth < other.loopDepth {
		return true
	}

	// If other is declared within a child closure of where l is
	// declared, then l outlives it. For example:
	//
	//    var l *int
	//    func() {
	//        l = new(int)
	//    }
	if containsClosure(l.curfn, other.curfn) {
		return true
	}

	return false
}

// containsClosure reports whether c is a closure contained within f.
func containsClosure(f, c *ir.Func) bool {
	// Common case.
	if f == c {
		return false
	}

	// Closures within function Foo are named like "Foo.funcN..."
	// TODO(mdempsky): Better way to recognize this.
	fn := f.Sym().Name
	cn := c.Sym().Name
	return len(cn) > len(fn) && cn[:len(fn)] == fn && cn[len(fn)] == '.'
}

// leak records that parameter l leaks to sink.
func (l *location) leakTo(sink *location, derefs int) {
	// If sink is a result parameter and we can fit return bits
	// into the escape analysis tag, then record a return leak.
	if sink.isName(ir.PPARAMOUT) && sink.curfn == l.curfn {
		ri := sink.resultIndex - 1
		if ri < numEscResults {
			// Leak to result parameter.
			l.paramEsc.AddResult(ri, derefs)
			return
		}
	}

	// Otherwise, record as heap leak.
	l.paramEsc.AddHeap(derefs)
}

func (b *batch) finish(fns []*ir.Func) {
	// Record parameter tags for package export data.
	for _, fn := range fns {
		fn.SetEsc(escFuncTagged)

		narg := 0
		for _, fs := range &types.RecvsParams {
			for _, f := range fs(fn.Type()).Fields().Slice() {
				narg++
				f.Note = b.paramTag(fn, narg, f)
			}
		}
	}

	for _, loc := range b.allLocs {
		n := loc.n
		if n == nil {
			continue
		}
		if n.Op() == ir.ONAME {
			n := n.(*ir.Name)
			n.Opt = nil
		}

		// Update n.Esc based on escape analysis results.

		if loc.escapes {
			if n.Op() == ir.ONAME {
				if base.Flag.CompilingRuntime {
					base.ErrorfAt(n.Pos(), "%v escapes to heap, not allowed in runtime", n)
				}
				if base.Flag.LowerM != 0 {
					base.WarnfAt(n.Pos(), "moved to heap: %v", n)
				}
			} else {
				if base.Flag.LowerM != 0 {
					base.WarnfAt(n.Pos(), "%v escapes to heap", n)
				}
				if logopt.Enabled() {
					var e_curfn *ir.Func // TODO(mdempsky): Fix.
					logopt.LogOpt(n.Pos(), "escape", "escape", ir.FuncName(e_curfn))
				}
			}
			n.SetEsc(ir.EscHeap)
		} else {
			if base.Flag.LowerM != 0 && n.Op() != ir.ONAME {
				base.WarnfAt(n.Pos(), "%v does not escape", n)
			}
			n.SetEsc(ir.EscNone)
			if loc.transient {
				switch n.Op() {
				case ir.OCLOSURE:
					n := n.(*ir.ClosureExpr)
					n.SetTransient(true)
				case ir.OCALLPART:
					n := n.(*ir.SelectorExpr)
					n.SetTransient(true)
				case ir.OSLICELIT:
					n := n.(*ir.CompLitExpr)
					n.SetTransient(true)
				}
			}
		}
	}
}

func (l *location) isName(c ir.Class) bool {
	return l.n != nil && l.n.Op() == ir.ONAME && l.n.(*ir.Name).Class == c
}

const numEscResults = 7

// An leaks represents a set of assignment flows from a parameter
// to the heap or to any of its function's (first numEscResults)
// result parameters.
type leaks [1 + numEscResults]uint8

// Empty reports whether l is an empty set (i.e., no assignment flows).
func (l leaks) Empty() bool { return l == leaks{} }

// Heap returns the minimum deref count of any assignment flow from l
// to the heap. If no such flows exist, Heap returns -1.
func (l leaks) Heap() int { return l.get(0) }

// Result returns the minimum deref count of any assignment flow from
// l to its function's i'th result parameter. If no such flows exist,
// Result returns -1.
func (l leaks) Result(i int) int { return l.get(1 + i) }

// AddHeap adds an assignment flow from l to the heap.
func (l *leaks) AddHeap(derefs int) { l.add(0, derefs) }

// AddResult adds an assignment flow from l to its function's i'th
// result parameter.
func (l *leaks) AddResult(i, derefs int) { l.add(1+i, derefs) }

func (l *leaks) setResult(i, derefs int) { l.set(1+i, derefs) }

func (l leaks) get(i int) int { return int(l[i]) - 1 }

func (l *leaks) add(i, derefs int) {
	if old := l.get(i); old < 0 || derefs < old {
		l.set(i, derefs)
	}
}

func (l *leaks) set(i, derefs int) {
	v := derefs + 1
	if v < 0 {
		base.Fatalf("invalid derefs count: %v", derefs)
	}
	if v > math.MaxUint8 {
		v = math.MaxUint8
	}

	l[i] = uint8(v)
}

// Optimize removes result flow paths that are equal in length or
// longer than the shortest heap flow path.
func (l *leaks) Optimize() {
	// If we have a path to the heap, then there's no use in
	// keeping equal or longer paths elsewhere.
	if x := l.Heap(); x >= 0 {
		for i := 0; i < numEscResults; i++ {
			if l.Result(i) >= x {
				l.setResult(i, -1)
			}
		}
	}
}

var leakTagCache = map[leaks]string{}

// Encode converts l into a binary string for export data.
func (l leaks) Encode() string {
	if l.Heap() == 0 {
		// Space optimization: empty string encodes more
		// efficiently in export data.
		return ""
	}
	if s, ok := leakTagCache[l]; ok {
		return s
	}

	n := len(l)
	for n > 0 && l[n-1] == 0 {
		n--
	}
	s := "esc:" + string(l[:n])
	leakTagCache[l] = s
	return s
}

// parseLeaks parses a binary string representing a leaks
func parseLeaks(s string) leaks {
	var l leaks
	if !strings.HasPrefix(s, "esc:") {
		l.AddHeap(0)
		return l
	}
	copy(l[:], s[4:])
	return l
}

func Funcs(all []ir.Node) {
	ir.VisitFuncsBottomUp(all, Batch)
}

const (
	escFuncUnknown = 0 + iota
	escFuncPlanned
	escFuncStarted
	escFuncTagged
)

// Mark labels that have no backjumps to them as not increasing e.loopdepth.
type labelState int

const (
	looping labelState = 1 + iota
	nonlooping
)

func isSliceSelfAssign(dst, src ir.Node) bool {
	// Detect the following special case.
	//
	//	func (b *Buffer) Foo() {
	//		n, m := ...
	//		b.buf = b.buf[n:m]
	//	}
	//
	// This assignment is a no-op for escape analysis,
	// it does not store any new pointers into b that were not already there.
	// However, without this special case b will escape, because we assign to OIND/ODOTPTR.
	// Here we assume that the statement will not contain calls,
	// that is, that order will move any calls to init.
	// Otherwise base ONAME value could change between the moments
	// when we evaluate it for dst and for src.

	// dst is ONAME dereference.
	var dstX ir.Node
	switch dst.Op() {
	default:
		return false
	case ir.ODEREF:
		dst := dst.(*ir.StarExpr)
		dstX = dst.X
	case ir.ODOTPTR:
		dst := dst.(*ir.SelectorExpr)
		dstX = dst.X
	}
	if dstX.Op() != ir.ONAME {
		return false
	}
	// src is a slice operation.
	switch src.Op() {
	case ir.OSLICE, ir.OSLICE3, ir.OSLICESTR:
		// OK.
	case ir.OSLICEARR, ir.OSLICE3ARR:
		// Since arrays are embedded into containing object,
		// slice of non-pointer array will introduce a new pointer into b that was not already there
		// (pointer to b itself). After such assignment, if b contents escape,
		// b escapes as well. If we ignore such OSLICEARR, we will conclude
		// that b does not escape when b contents do.
		//
		// Pointer to an array is OK since it's not stored inside b directly.
		// For slicing an array (not pointer to array), there is an implicit OADDR.
		// We check that to determine non-pointer array slicing.
		src := src.(*ir.SliceExpr)
		if src.X.Op() == ir.OADDR {
			return false
		}
	default:
		return false
	}
	// slice is applied to ONAME dereference.
	var baseX ir.Node
	switch base := src.(*ir.SliceExpr).X; base.Op() {
	default:
		return false
	case ir.ODEREF:
		base := base.(*ir.StarExpr)
		baseX = base.X
	case ir.ODOTPTR:
		base := base.(*ir.SelectorExpr)
		baseX = base.X
	}
	if baseX.Op() != ir.ONAME {
		return false
	}
	// dst and src reference the same base ONAME.
	return dstX.(*ir.Name) == baseX.(*ir.Name)
}

// isSelfAssign reports whether assignment from src to dst can
// be ignored by the escape analysis as it's effectively a self-assignment.
func isSelfAssign(dst, src ir.Node) bool {
	if isSliceSelfAssign(dst, src) {
		return true
	}

	// Detect trivial assignments that assign back to the same object.
	//
	// It covers these cases:
	//	val.x = val.y
	//	val.x[i] = val.y[j]
	//	val.x1.x2 = val.x1.y2
	//	... etc
	//
	// These assignments do not change assigned object lifetime.

	if dst == nil || src == nil || dst.Op() != src.Op() {
		return false
	}

	// The expression prefix must be both "safe" and identical.
	switch dst.Op() {
	case ir.ODOT, ir.ODOTPTR:
		// Safe trailing accessors that are permitted to differ.
		dst := dst.(*ir.SelectorExpr)
		src := src.(*ir.SelectorExpr)
		return ir.SameSafeExpr(dst.X, src.X)
	case ir.OINDEX:
		dst := dst.(*ir.IndexExpr)
		src := src.(*ir.IndexExpr)
		if mayAffectMemory(dst.Index) || mayAffectMemory(src.Index) {
			return false
		}
		return ir.SameSafeExpr(dst.X, src.X)
	default:
		return false
	}
}

// mayAffectMemory reports whether evaluation of n may affect the program's
// memory state. If the expression can't affect memory state, then it can be
// safely ignored by the escape analysis.
func mayAffectMemory(n ir.Node) bool {
	// We may want to use a list of "memory safe" ops instead of generally
	// "side-effect free", which would include all calls and other ops that can
	// allocate or change global state. For now, it's safer to start with the latter.
	//
	// We're ignoring things like division by zero, index out of range,
	// and nil pointer dereference here.

	// TODO(rsc): It seems like it should be possible to replace this with
	// an ir.Any looking for any op that's not the ones in the case statement.
	// But that produces changes in the compiled output detected by buildall.
	switch n.Op() {
	case ir.ONAME, ir.OLITERAL, ir.ONIL:
		return false

	case ir.OADD, ir.OSUB, ir.OOR, ir.OXOR, ir.OMUL, ir.OLSH, ir.ORSH, ir.OAND, ir.OANDNOT, ir.ODIV, ir.OMOD:
		n := n.(*ir.BinaryExpr)
		return mayAffectMemory(n.X) || mayAffectMemory(n.Y)

	case ir.OINDEX:
		n := n.(*ir.IndexExpr)
		return mayAffectMemory(n.X) || mayAffectMemory(n.Index)

	case ir.OCONVNOP, ir.OCONV:
		n := n.(*ir.ConvExpr)
		return mayAffectMemory(n.X)

	case ir.OLEN, ir.OCAP, ir.ONOT, ir.OBITNOT, ir.OPLUS, ir.ONEG, ir.OALIGNOF, ir.OOFFSETOF, ir.OSIZEOF:
		n := n.(*ir.UnaryExpr)
		return mayAffectMemory(n.X)

	case ir.ODOT, ir.ODOTPTR:
		n := n.(*ir.SelectorExpr)
		return mayAffectMemory(n.X)

	case ir.ODEREF:
		n := n.(*ir.StarExpr)
		return mayAffectMemory(n.X)

	default:
		return true
	}
}

// HeapAllocReason returns the reason the given Node must be heap
// allocated, or the empty string if it doesn't.
func HeapAllocReason(n ir.Node) string {
	if n == nil || n.Type() == nil {
		return ""
	}

	// Parameters are always passed via the stack.
	if n.Op() == ir.ONAME {
		n := n.(*ir.Name)
		if n.Class == ir.PPARAM || n.Class == ir.PPARAMOUT {
			return ""
		}
	}

	if n.Type().Width > ir.MaxStackVarSize {
		return "too large for stack"
	}

	if (n.Op() == ir.ONEW || n.Op() == ir.OPTRLIT) && n.Type().Elem().Width >= ir.MaxImplicitStackVarSize {
		return "too large for stack"
	}

	if n.Op() == ir.OCLOSURE && typecheck.ClosureType(n.(*ir.ClosureExpr)).Size() >= ir.MaxImplicitStackVarSize {
		return "too large for stack"
	}
	if n.Op() == ir.OCALLPART && typecheck.PartialCallType(n.(*ir.SelectorExpr)).Size() >= ir.MaxImplicitStackVarSize {
		return "too large for stack"
	}

	if n.Op() == ir.OMAKESLICE {
		n := n.(*ir.MakeExpr)
		r := n.Cap
		if r == nil {
			r = n.Len
		}
		if !ir.IsSmallIntConst(r) {
			return "non-constant size"
		}
		if t := n.Type(); t.Elem().Width != 0 && ir.Int64Val(r) >= ir.MaxImplicitStackVarSize/t.Elem().Width {
			return "too large for stack"
		}
	}

	return ""
}

// This special tag is applied to uintptr variables
// that we believe may hold unsafe.Pointers for
// calls into assembly functions.
const UnsafeUintptrNote = "unsafe-uintptr"

// This special tag is applied to uintptr parameters of functions
// marked go:uintptrescapes.
const UintptrEscapesNote = "uintptr-escapes"

func (b *batch) paramTag(fn *ir.Func, narg int, f *types.Field) string {
	name := func() string {
		if f.Sym != nil {
			return f.Sym.Name
		}
		return fmt.Sprintf("arg#%d", narg)
	}

	if len(fn.Body) == 0 {
		// Assume that uintptr arguments must be held live across the call.
		// This is most important for syscall.Syscall.
		// See golang.org/issue/13372.
		// This really doesn't have much to do with escape analysis per se,
		// but we are reusing the ability to annotate an individual function
		// argument and pass those annotations along to importing code.
		if f.Type.IsUintptr() {
			if base.Flag.LowerM != 0 {
				base.WarnfAt(f.Pos, "assuming %v is unsafe uintptr", name())
			}
			return UnsafeUintptrNote
		}

		if !f.Type.HasPointers() { // don't bother tagging for scalars
			return ""
		}

		var esc leaks

		// External functions are assumed unsafe, unless
		// //go:noescape is given before the declaration.
		if fn.Pragma&ir.Noescape != 0 {
			if base.Flag.LowerM != 0 && f.Sym != nil {
				base.WarnfAt(f.Pos, "%v does not escape", name())
			}
		} else {
			if base.Flag.LowerM != 0 && f.Sym != nil {
				base.WarnfAt(f.Pos, "leaking param: %v", name())
			}
			esc.AddHeap(0)
		}

		return esc.Encode()
	}

	if fn.Pragma&ir.UintptrEscapes != 0 {
		if f.Type.IsUintptr() {
			if base.Flag.LowerM != 0 {
				base.WarnfAt(f.Pos, "marking %v as escaping uintptr", name())
			}
			return UintptrEscapesNote
		}
		if f.IsDDD() && f.Type.Elem().IsUintptr() {
			// final argument is ...uintptr.
			if base.Flag.LowerM != 0 {
				base.WarnfAt(f.Pos, "marking %v as escaping ...uintptr", name())
			}
			return UintptrEscapesNote
		}
	}

	if !f.Type.HasPointers() { // don't bother tagging for scalars
		return ""
	}

	// Unnamed parameters are unused and therefore do not escape.
	if f.Sym == nil || f.Sym.IsBlank() {
		var esc leaks
		return esc.Encode()
	}

	n := f.Nname.(*ir.Name)
	loc := b.oldLoc(n)
	esc := loc.paramEsc
	esc.Optimize()

	if base.Flag.LowerM != 0 && !loc.escapes {
		if esc.Empty() {
			base.WarnfAt(f.Pos, "%v does not escape", name())
		}
		if x := esc.Heap(); x >= 0 {
			if x == 0 {
				base.WarnfAt(f.Pos, "leaking param: %v", name())
			} else {
				// TODO(mdempsky): Mention level=x like below?
				base.WarnfAt(f.Pos, "leaking param content: %v", name())
			}
		}
		for i := 0; i < numEscResults; i++ {
			if x := esc.Result(i); x >= 0 {
				res := fn.Type().Results().Field(i).Sym
				base.WarnfAt(f.Pos, "leaking param: %v to result %v level=%d", name(), res, x)
			}
		}
	}

	return esc.Encode()
}