aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/ir/node.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/cmd/compile/internal/ir/node.go')
-rw-r--r--src/cmd/compile/internal/ir/node.go1667
1 files changed, 1667 insertions, 0 deletions
diff --git a/src/cmd/compile/internal/ir/node.go b/src/cmd/compile/internal/ir/node.go
new file mode 100644
index 0000000000..477d07f502
--- /dev/null
+++ b/src/cmd/compile/internal/ir/node.go
@@ -0,0 +1,1667 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// “Abstract” syntax representation.
+
+package ir
+
+import (
+ "fmt"
+ "go/constant"
+ "sort"
+ "strings"
+
+ "cmd/compile/internal/base"
+ "cmd/compile/internal/types"
+ "cmd/internal/obj"
+ "cmd/internal/objabi"
+ "cmd/internal/src"
+)
+
+// A Node is the abstract interface to an IR node.
+type Node interface {
+ // Formatting
+ Format(s fmt.State, verb rune)
+ String() string
+
+ // Source position.
+ Pos() src.XPos
+ SetPos(x src.XPos)
+
+ // For making copies. Mainly used by Copy and SepCopy.
+ RawCopy() Node
+
+ // Abstract graph structure, for generic traversals.
+ Op() Op
+ SetOp(x Op)
+ Orig() Node
+ SetOrig(x Node)
+ SubOp() Op
+ SetSubOp(x Op)
+ Left() Node
+ SetLeft(x Node)
+ Right() Node
+ SetRight(x Node)
+ Init() Nodes
+ PtrInit() *Nodes
+ SetInit(x Nodes)
+ Body() Nodes
+ PtrBody() *Nodes
+ SetBody(x Nodes)
+ List() Nodes
+ SetList(x Nodes)
+ PtrList() *Nodes
+ Rlist() Nodes
+ SetRlist(x Nodes)
+ PtrRlist() *Nodes
+
+ // Fields specific to certain Ops only.
+ Type() *types.Type
+ SetType(t *types.Type)
+ Func() *Func
+ SetFunc(x *Func)
+ Name() *Name
+ SetName(x *Name)
+ Sym() *types.Sym
+ SetSym(x *types.Sym)
+ Offset() int64
+ SetOffset(x int64)
+ Class() Class
+ SetClass(x Class)
+ Likely() bool
+ SetLikely(x bool)
+ SliceBounds() (low, high, max Node)
+ SetSliceBounds(low, high, max Node)
+ Iota() int64
+ SetIota(x int64)
+ Colas() bool
+ SetColas(x bool)
+ NoInline() bool
+ SetNoInline(x bool)
+ Transient() bool
+ SetTransient(x bool)
+ Implicit() bool
+ SetImplicit(x bool)
+ IsDDD() bool
+ SetIsDDD(x bool)
+ Embedded() bool
+ SetEmbedded(x bool)
+ IndexMapLValue() bool
+ SetIndexMapLValue(x bool)
+ TChanDir() types.ChanDir
+ SetTChanDir(x types.ChanDir)
+ ResetAux()
+ HasBreak() bool
+ SetHasBreak(x bool)
+ MarkReadonly()
+ Val() constant.Value
+ HasVal() bool
+ SetVal(v constant.Value)
+ Int64Val() int64
+ Uint64Val() uint64
+ CanInt64() bool
+ BoolVal() bool
+ StringVal() string
+
+ // Storage for analysis passes.
+ Esc() uint16
+ SetEsc(x uint16)
+ Walkdef() uint8
+ SetWalkdef(x uint8)
+ Opt() interface{}
+ SetOpt(x interface{})
+ HasOpt() bool
+ Diag() bool
+ SetDiag(x bool)
+ Bounded() bool
+ SetBounded(x bool)
+ Typecheck() uint8
+ SetTypecheck(x uint8)
+ Initorder() uint8
+ SetInitorder(x uint8)
+ NonNil() bool
+ MarkNonNil()
+ HasCall() bool
+ SetHasCall(x bool)
+
+ // Only for SSA and should be removed when SSA starts
+ // using a more specific type than Node.
+ CanBeAnSSASym()
+}
+
+var _ Node = (*node)(nil)
+
+// A Node is a single node in the syntax tree.
+// Actually the syntax tree is a syntax DAG, because there is only one
+// node with Op=ONAME for a given instance of a variable x.
+// The same is true for Op=OTYPE and Op=OLITERAL. See Node.mayBeShared.
+type node struct {
+ // Tree structure.
+ // Generic recursive walks should follow these fields.
+ left Node
+ right Node
+ init Nodes
+ body Nodes
+ list Nodes
+ rlist Nodes
+
+ // most nodes
+ typ *types.Type
+ orig Node // original form, for printing, and tracking copies of ONAMEs
+
+ // func
+ fn *Func
+
+ // ONAME, OTYPE, OPACK, OLABEL, some OLITERAL
+ name *Name
+
+ sym *types.Sym // various
+ e interface{} // Opt or Val, see methods below
+
+ // Various. Usually an offset into a struct. For example:
+ // - ONAME nodes that refer to local variables use it to identify their stack frame position.
+ // - ODOT, ODOTPTR, and ORESULT use it to indicate offset relative to their base address.
+ // - OSTRUCTKEY uses it to store the named field's offset.
+ // - Named OLITERALs use it to store their ambient iota value.
+ // - OINLMARK stores an index into the inlTree data structure.
+ // - OCLOSURE uses it to store ambient iota value, if any.
+ // Possibly still more uses. If you find any, document them.
+ offset int64
+
+ pos src.XPos
+
+ flags bitset32
+
+ esc uint16 // EscXXX
+
+ op Op
+ aux uint8
+}
+
+func (n *node) Left() Node { return n.left }
+func (n *node) SetLeft(x Node) { n.left = x }
+func (n *node) Right() Node { return n.right }
+func (n *node) SetRight(x Node) { n.right = x }
+func (n *node) Orig() Node { return n.orig }
+func (n *node) SetOrig(x Node) { n.orig = x }
+func (n *node) Type() *types.Type { return n.typ }
+func (n *node) SetType(x *types.Type) { n.typ = x }
+func (n *node) Func() *Func { return n.fn }
+func (n *node) SetFunc(x *Func) { n.fn = x }
+func (n *node) Name() *Name { return n.name }
+func (n *node) SetName(x *Name) { n.name = x }
+func (n *node) Sym() *types.Sym { return n.sym }
+func (n *node) SetSym(x *types.Sym) { n.sym = x }
+func (n *node) Pos() src.XPos { return n.pos }
+func (n *node) SetPos(x src.XPos) { n.pos = x }
+func (n *node) Offset() int64 { return n.offset }
+func (n *node) SetOffset(x int64) { n.offset = x }
+func (n *node) Esc() uint16 { return n.esc }
+func (n *node) SetEsc(x uint16) { n.esc = x }
+func (n *node) Op() Op { return n.op }
+func (n *node) SetOp(x Op) { n.op = x }
+func (n *node) Init() Nodes { return n.init }
+func (n *node) SetInit(x Nodes) { n.init = x }
+func (n *node) PtrInit() *Nodes { return &n.init }
+func (n *node) Body() Nodes { return n.body }
+func (n *node) SetBody(x Nodes) { n.body = x }
+func (n *node) PtrBody() *Nodes { return &n.body }
+func (n *node) List() Nodes { return n.list }
+func (n *node) SetList(x Nodes) { n.list = x }
+func (n *node) PtrList() *Nodes { return &n.list }
+func (n *node) Rlist() Nodes { return n.rlist }
+func (n *node) SetRlist(x Nodes) { n.rlist = x }
+func (n *node) PtrRlist() *Nodes { return &n.rlist }
+
+func (n *node) ResetAux() {
+ n.aux = 0
+}
+
+func (n *node) SubOp() Op {
+ switch n.Op() {
+ case OASOP, ONAME:
+ default:
+ base.Fatalf("unexpected op: %v", n.Op())
+ }
+ return Op(n.aux)
+}
+
+func (n *node) SetSubOp(op Op) {
+ switch n.Op() {
+ case OASOP, ONAME:
+ default:
+ base.Fatalf("unexpected op: %v", n.Op())
+ }
+ n.aux = uint8(op)
+}
+
+func (n *node) IndexMapLValue() bool {
+ if n.Op() != OINDEXMAP {
+ base.Fatalf("unexpected op: %v", n.Op())
+ }
+ return n.aux != 0
+}
+
+func (n *node) SetIndexMapLValue(b bool) {
+ if n.Op() != OINDEXMAP {
+ base.Fatalf("unexpected op: %v", n.Op())
+ }
+ if b {
+ n.aux = 1
+ } else {
+ n.aux = 0
+ }
+}
+
+func (n *node) TChanDir() types.ChanDir {
+ if n.Op() != OTCHAN {
+ base.Fatalf("unexpected op: %v", n.Op())
+ }
+ return types.ChanDir(n.aux)
+}
+
+func (n *node) SetTChanDir(dir types.ChanDir) {
+ if n.Op() != OTCHAN {
+ base.Fatalf("unexpected op: %v", n.Op())
+ }
+ n.aux = uint8(dir)
+}
+
+func IsSynthetic(n Node) bool {
+ name := n.Sym().Name
+ return name[0] == '.' || name[0] == '~'
+}
+
+// IsAutoTmp indicates if n was created by the compiler as a temporary,
+// based on the setting of the .AutoTemp flag in n's Name.
+func IsAutoTmp(n Node) bool {
+ if n == nil || n.Op() != ONAME {
+ return false
+ }
+ return n.Name().AutoTemp()
+}
+
+const (
+ nodeClass, _ = iota, 1 << iota // PPARAM, PAUTO, PEXTERN, etc; three bits; first in the list because frequently accessed
+ _, _ // second nodeClass bit
+ _, _ // third nodeClass bit
+ nodeWalkdef, _ // tracks state during typecheckdef; 2 == loop detected; two bits
+ _, _ // second nodeWalkdef bit
+ nodeTypecheck, _ // tracks state during typechecking; 2 == loop detected; two bits
+ _, _ // second nodeTypecheck bit
+ nodeInitorder, _ // tracks state during init1; two bits
+ _, _ // second nodeInitorder bit
+ _, nodeHasBreak
+ _, nodeNoInline // used internally by inliner to indicate that a function call should not be inlined; set for OCALLFUNC and OCALLMETH only
+ _, nodeImplicit // implicit OADDR or ODEREF; ++/-- statement represented as OASOP
+ _, nodeIsDDD // is the argument variadic
+ _, nodeDiag // already printed error about this
+ _, nodeColas // OAS resulting from :=
+ _, nodeNonNil // guaranteed to be non-nil
+ _, nodeTransient // storage can be reused immediately after this statement
+ _, nodeBounded // bounds check unnecessary
+ _, nodeHasCall // expression contains a function call
+ _, nodeLikely // if statement condition likely
+ _, nodeHasVal // node.E contains a Val
+ _, nodeHasOpt // node.E contains an Opt
+ _, nodeEmbedded // ODCLFIELD embedded type
+)
+
+func (n *node) Class() Class { return Class(n.flags.get3(nodeClass)) }
+func (n *node) Walkdef() uint8 { return n.flags.get2(nodeWalkdef) }
+func (n *node) Typecheck() uint8 { return n.flags.get2(nodeTypecheck) }
+func (n *node) Initorder() uint8 { return n.flags.get2(nodeInitorder) }
+
+func (n *node) HasBreak() bool { return n.flags&nodeHasBreak != 0 }
+func (n *node) NoInline() bool { return n.flags&nodeNoInline != 0 }
+func (n *node) Implicit() bool { return n.flags&nodeImplicit != 0 }
+func (n *node) IsDDD() bool { return n.flags&nodeIsDDD != 0 }
+func (n *node) Diag() bool { return n.flags&nodeDiag != 0 }
+func (n *node) Colas() bool { return n.flags&nodeColas != 0 }
+func (n *node) NonNil() bool { return n.flags&nodeNonNil != 0 }
+func (n *node) Transient() bool { return n.flags&nodeTransient != 0 }
+func (n *node) Bounded() bool { return n.flags&nodeBounded != 0 }
+func (n *node) HasCall() bool { return n.flags&nodeHasCall != 0 }
+func (n *node) Likely() bool { return n.flags&nodeLikely != 0 }
+func (n *node) HasVal() bool { return n.flags&nodeHasVal != 0 }
+func (n *node) HasOpt() bool { return n.flags&nodeHasOpt != 0 }
+func (n *node) Embedded() bool { return n.flags&nodeEmbedded != 0 }
+
+func (n *node) SetClass(b Class) { n.flags.set3(nodeClass, uint8(b)) }
+func (n *node) SetWalkdef(b uint8) { n.flags.set2(nodeWalkdef, b) }
+func (n *node) SetTypecheck(b uint8) { n.flags.set2(nodeTypecheck, b) }
+func (n *node) SetInitorder(b uint8) { n.flags.set2(nodeInitorder, b) }
+
+func (n *node) SetHasBreak(b bool) { n.flags.set(nodeHasBreak, b) }
+func (n *node) SetNoInline(b bool) { n.flags.set(nodeNoInline, b) }
+func (n *node) SetImplicit(b bool) { n.flags.set(nodeImplicit, b) }
+func (n *node) SetIsDDD(b bool) { n.flags.set(nodeIsDDD, b) }
+func (n *node) SetDiag(b bool) { n.flags.set(nodeDiag, b) }
+func (n *node) SetColas(b bool) { n.flags.set(nodeColas, b) }
+func (n *node) SetTransient(b bool) { n.flags.set(nodeTransient, b) }
+func (n *node) SetHasCall(b bool) { n.flags.set(nodeHasCall, b) }
+func (n *node) SetLikely(b bool) { n.flags.set(nodeLikely, b) }
+func (n *node) setHasVal(b bool) { n.flags.set(nodeHasVal, b) }
+func (n *node) setHasOpt(b bool) { n.flags.set(nodeHasOpt, b) }
+func (n *node) SetEmbedded(b bool) { n.flags.set(nodeEmbedded, b) }
+
+// MarkNonNil marks a pointer n as being guaranteed non-nil,
+// on all code paths, at all times.
+// During conversion to SSA, non-nil pointers won't have nil checks
+// inserted before dereferencing. See state.exprPtr.
+func (n *node) MarkNonNil() {
+ if !n.Type().IsPtr() && !n.Type().IsUnsafePtr() {
+ base.Fatalf("MarkNonNil(%v), type %v", n, n.Type())
+ }
+ n.flags.set(nodeNonNil, true)
+}
+
+// SetBounded indicates whether operation n does not need safety checks.
+// When n is an index or slice operation, n does not need bounds checks.
+// When n is a dereferencing operation, n does not need nil checks.
+// When n is a makeslice+copy operation, n does not need length and cap checks.
+func (n *node) SetBounded(b bool) {
+ switch n.Op() {
+ case OINDEX, OSLICE, OSLICEARR, OSLICE3, OSLICE3ARR, OSLICESTR:
+ // No bounds checks needed.
+ case ODOTPTR, ODEREF:
+ // No nil check needed.
+ case OMAKESLICECOPY:
+ // No length and cap checks needed
+ // since new slice and copied over slice data have same length.
+ default:
+ base.Fatalf("SetBounded(%v)", n)
+ }
+ n.flags.set(nodeBounded, b)
+}
+
+// MarkReadonly indicates that n is an ONAME with readonly contents.
+func (n *node) MarkReadonly() {
+ if n.Op() != ONAME {
+ base.Fatalf("Node.MarkReadonly %v", n.Op())
+ }
+ n.Name().SetReadonly(true)
+ // Mark the linksym as readonly immediately
+ // so that the SSA backend can use this information.
+ // It will be overridden later during dumpglobls.
+ n.Sym().Linksym().Type = objabi.SRODATA
+}
+
+// Val returns the constant.Value for the node.
+func (n *node) Val() constant.Value {
+ if !n.HasVal() {
+ return constant.MakeUnknown()
+ }
+ return *n.e.(*constant.Value)
+}
+
+// SetVal sets the constant.Value for the node,
+// which must not have been used with SetOpt.
+func (n *node) SetVal(v constant.Value) {
+ if n.HasOpt() {
+ base.Flag.LowerH = 1
+ Dump("have Opt", n)
+ base.Fatalf("have Opt")
+ }
+ if n.Op() == OLITERAL {
+ AssertValidTypeForConst(n.Type(), v)
+ }
+ n.setHasVal(true)
+ n.e = &v
+}
+
+// Opt returns the optimizer data for the node.
+func (n *node) Opt() interface{} {
+ if !n.HasOpt() {
+ return nil
+ }
+ return n.e
+}
+
+// SetOpt sets the optimizer data for the node, which must not have been used with SetVal.
+// SetOpt(nil) is ignored for Vals to simplify call sites that are clearing Opts.
+func (n *node) SetOpt(x interface{}) {
+ if x == nil {
+ if n.HasOpt() {
+ n.setHasOpt(false)
+ n.e = nil
+ }
+ return
+ }
+ if n.HasVal() {
+ base.Flag.LowerH = 1
+ Dump("have Val", n)
+ base.Fatalf("have Val")
+ }
+ n.setHasOpt(true)
+ n.e = x
+}
+
+func (n *node) Iota() int64 {
+ return n.Offset()
+}
+
+func (n *node) SetIota(x int64) {
+ n.SetOffset(x)
+}
+
+// mayBeShared reports whether n may occur in multiple places in the AST.
+// Extra care must be taken when mutating such a node.
+func MayBeShared(n Node) bool {
+ switch n.Op() {
+ case ONAME, OLITERAL, ONIL, OTYPE:
+ return true
+ }
+ return false
+}
+
+// funcname returns the name (without the package) of the function n.
+func FuncName(n Node) string {
+ if n == nil || n.Func() == nil || n.Func().Nname == nil {
+ return "<nil>"
+ }
+ return n.Func().Nname.Sym().Name
+}
+
+// pkgFuncName returns the name of the function referenced by n, with package prepended.
+// This differs from the compiler's internal convention where local functions lack a package
+// because the ultimate consumer of this is a human looking at an IDE; package is only empty
+// if the compilation package is actually the empty string.
+func PkgFuncName(n Node) string {
+ var s *types.Sym
+ if n == nil {
+ return "<nil>"
+ }
+ if n.Op() == ONAME {
+ s = n.Sym()
+ } else {
+ if n.Func() == nil || n.Func().Nname == nil {
+ return "<nil>"
+ }
+ s = n.Func().Nname.Sym()
+ }
+ pkg := s.Pkg
+
+ p := base.Ctxt.Pkgpath
+ if pkg != nil && pkg.Path != "" {
+ p = pkg.Path
+ }
+ if p == "" {
+ return s.Name
+ }
+ return p + "." + s.Name
+}
+
+// The compiler needs *Node to be assignable to cmd/compile/internal/ssa.Sym.
+func (n *node) CanBeAnSSASym() {
+}
+
+// Name holds Node fields used only by named nodes (ONAME, OTYPE, OPACK, OLABEL, some OLITERAL).
+type Name struct {
+ Pack Node // real package for import . names
+ Pkg *types.Pkg // pkg for OPACK nodes
+ // For a local variable (not param) or extern, the initializing assignment (OAS or OAS2).
+ // For a closure var, the ONAME node of the outer captured variable
+ Defn Node
+ // The ODCLFUNC node (for a static function/method or a closure) in which
+ // local variable or param is declared.
+ Curfn Node
+ Param *Param // additional fields for ONAME, OTYPE
+ Decldepth int32 // declaration loop depth, increased for every loop or label
+ // Unique number for ONAME nodes within a function. Function outputs
+ // (results) are numbered starting at one, followed by function inputs
+ // (parameters), and then local variables. Vargen is used to distinguish
+ // local variables/params with the same name.
+ Vargen int32
+ flags bitset16
+}
+
+const (
+ nameCaptured = 1 << iota // is the variable captured by a closure
+ nameReadonly
+ nameByval // is the variable captured by value or by reference
+ nameNeedzero // if it contains pointers, needs to be zeroed on function entry
+ nameAutoTemp // is the variable a temporary (implies no dwarf info. reset if escapes to heap)
+ nameUsed // for variable declared and not used error
+ nameIsClosureVar // PAUTOHEAP closure pseudo-variable; original at n.Name.Defn
+ nameIsOutputParamHeapAddr // pointer to a result parameter's heap copy
+ nameAssigned // is the variable ever assigned to
+ nameAddrtaken // address taken, even if not moved to heap
+ nameInlFormal // PAUTO created by inliner, derived from callee formal
+ nameInlLocal // PAUTO created by inliner, derived from callee local
+ nameOpenDeferSlot // if temporary var storing info for open-coded defers
+ nameLibfuzzerExtraCounter // if PEXTERN should be assigned to __libfuzzer_extra_counters section
+)
+
+func (n *Name) Captured() bool { return n.flags&nameCaptured != 0 }
+func (n *Name) Readonly() bool { return n.flags&nameReadonly != 0 }
+func (n *Name) Byval() bool { return n.flags&nameByval != 0 }
+func (n *Name) Needzero() bool { return n.flags&nameNeedzero != 0 }
+func (n *Name) AutoTemp() bool { return n.flags&nameAutoTemp != 0 }
+func (n *Name) Used() bool { return n.flags&nameUsed != 0 }
+func (n *Name) IsClosureVar() bool { return n.flags&nameIsClosureVar != 0 }
+func (n *Name) IsOutputParamHeapAddr() bool { return n.flags&nameIsOutputParamHeapAddr != 0 }
+func (n *Name) Assigned() bool { return n.flags&nameAssigned != 0 }
+func (n *Name) Addrtaken() bool { return n.flags&nameAddrtaken != 0 }
+func (n *Name) InlFormal() bool { return n.flags&nameInlFormal != 0 }
+func (n *Name) InlLocal() bool { return n.flags&nameInlLocal != 0 }
+func (n *Name) OpenDeferSlot() bool { return n.flags&nameOpenDeferSlot != 0 }
+func (n *Name) LibfuzzerExtraCounter() bool { return n.flags&nameLibfuzzerExtraCounter != 0 }
+
+func (n *Name) SetCaptured(b bool) { n.flags.set(nameCaptured, b) }
+func (n *Name) SetReadonly(b bool) { n.flags.set(nameReadonly, b) }
+func (n *Name) SetByval(b bool) { n.flags.set(nameByval, b) }
+func (n *Name) SetNeedzero(b bool) { n.flags.set(nameNeedzero, b) }
+func (n *Name) SetAutoTemp(b bool) { n.flags.set(nameAutoTemp, b) }
+func (n *Name) SetUsed(b bool) { n.flags.set(nameUsed, b) }
+func (n *Name) SetIsClosureVar(b bool) { n.flags.set(nameIsClosureVar, b) }
+func (n *Name) SetIsOutputParamHeapAddr(b bool) { n.flags.set(nameIsOutputParamHeapAddr, b) }
+func (n *Name) SetAssigned(b bool) { n.flags.set(nameAssigned, b) }
+func (n *Name) SetAddrtaken(b bool) { n.flags.set(nameAddrtaken, b) }
+func (n *Name) SetInlFormal(b bool) { n.flags.set(nameInlFormal, b) }
+func (n *Name) SetInlLocal(b bool) { n.flags.set(nameInlLocal, b) }
+func (n *Name) SetOpenDeferSlot(b bool) { n.flags.set(nameOpenDeferSlot, b) }
+func (n *Name) SetLibfuzzerExtraCounter(b bool) { n.flags.set(nameLibfuzzerExtraCounter, b) }
+
+type Param struct {
+ Ntype Node
+ Heapaddr Node // temp holding heap address of param
+
+ // ONAME PAUTOHEAP
+ Stackcopy Node // the PPARAM/PPARAMOUT on-stack slot (moved func params only)
+
+ // ONAME closure linkage
+ // Consider:
+ //
+ // func f() {
+ // x := 1 // x1
+ // func() {
+ // use(x) // x2
+ // func() {
+ // use(x) // x3
+ // --- parser is here ---
+ // }()
+ // }()
+ // }
+ //
+ // There is an original declaration of x and then a chain of mentions of x
+ // leading into the current function. Each time x is mentioned in a new closure,
+ // we create a variable representing x for use in that specific closure,
+ // since the way you get to x is different in each closure.
+ //
+ // Let's number the specific variables as shown in the code:
+ // x1 is the original x, x2 is when mentioned in the closure,
+ // and x3 is when mentioned in the closure in the closure.
+ //
+ // We keep these linked (assume N > 1):
+ //
+ // - x1.Defn = original declaration statement for x (like most variables)
+ // - x1.Innermost = current innermost closure x (in this case x3), or nil for none
+ // - x1.IsClosureVar() = false
+ //
+ // - xN.Defn = x1, N > 1
+ // - xN.IsClosureVar() = true, N > 1
+ // - x2.Outer = nil
+ // - xN.Outer = x(N-1), N > 2
+ //
+ //
+ // When we look up x in the symbol table, we always get x1.
+ // Then we can use x1.Innermost (if not nil) to get the x
+ // for the innermost known closure function,
+ // but the first reference in a closure will find either no x1.Innermost
+ // or an x1.Innermost with .Funcdepth < Funcdepth.
+ // In that case, a new xN must be created, linked in with:
+ //
+ // xN.Defn = x1
+ // xN.Outer = x1.Innermost
+ // x1.Innermost = xN
+ //
+ // When we finish the function, we'll process its closure variables
+ // and find xN and pop it off the list using:
+ //
+ // x1 := xN.Defn
+ // x1.Innermost = xN.Outer
+ //
+ // We leave x1.Innermost set so that we can still get to the original
+ // variable quickly. Not shown here, but once we're
+ // done parsing a function and no longer need xN.Outer for the
+ // lexical x reference links as described above, funcLit
+ // recomputes xN.Outer as the semantic x reference link tree,
+ // even filling in x in intermediate closures that might not
+ // have mentioned it along the way to inner closures that did.
+ // See funcLit for details.
+ //
+ // During the eventual compilation, then, for closure variables we have:
+ //
+ // xN.Defn = original variable
+ // xN.Outer = variable captured in next outward scope
+ // to make closure where xN appears
+ //
+ // Because of the sharding of pieces of the node, x.Defn means x.Name.Defn
+ // and x.Innermost/Outer means x.Name.Param.Innermost/Outer.
+ Innermost Node
+ Outer Node
+
+ // OTYPE & ONAME //go:embed info,
+ // sharing storage to reduce gc.Param size.
+ // Extra is nil, or else *Extra is a *paramType or an *embedFileList.
+ Extra *interface{}
+}
+
+type paramType struct {
+ flag PragmaFlag
+ alias bool
+}
+
+type embedFileList []string
+
+// Pragma returns the PragmaFlag for p, which must be for an OTYPE.
+func (p *Param) Pragma() PragmaFlag {
+ if p.Extra == nil {
+ return 0
+ }
+ return (*p.Extra).(*paramType).flag
+}
+
+// SetPragma sets the PragmaFlag for p, which must be for an OTYPE.
+func (p *Param) SetPragma(flag PragmaFlag) {
+ if p.Extra == nil {
+ if flag == 0 {
+ return
+ }
+ p.Extra = new(interface{})
+ *p.Extra = &paramType{flag: flag}
+ return
+ }
+ (*p.Extra).(*paramType).flag = flag
+}
+
+// Alias reports whether p, which must be for an OTYPE, is a type alias.
+func (p *Param) Alias() bool {
+ if p.Extra == nil {
+ return false
+ }
+ t, ok := (*p.Extra).(*paramType)
+ if !ok {
+ return false
+ }
+ return t.alias
+}
+
+// SetAlias sets whether p, which must be for an OTYPE, is a type alias.
+func (p *Param) SetAlias(alias bool) {
+ if p.Extra == nil {
+ if !alias {
+ return
+ }
+ p.Extra = new(interface{})
+ *p.Extra = &paramType{alias: alias}
+ return
+ }
+ (*p.Extra).(*paramType).alias = alias
+}
+
+// EmbedFiles returns the list of embedded files for p,
+// which must be for an ONAME var.
+func (p *Param) EmbedFiles() []string {
+ if p.Extra == nil {
+ return nil
+ }
+ return *(*p.Extra).(*embedFileList)
+}
+
+// SetEmbedFiles sets the list of embedded files for p,
+// which must be for an ONAME var.
+func (p *Param) SetEmbedFiles(list []string) {
+ if p.Extra == nil {
+ if len(list) == 0 {
+ return
+ }
+ f := embedFileList(list)
+ p.Extra = new(interface{})
+ *p.Extra = &f
+ return
+ }
+ *(*p.Extra).(*embedFileList) = list
+}
+
+// A Func corresponds to a single function in a Go program
+// (and vice versa: each function is denoted by exactly one *Func).
+//
+// There are multiple nodes that represent a Func in the IR.
+//
+// The ONAME node (Func.Name) is used for plain references to it.
+// The ODCLFUNC node (Func.Decl) is used for its declaration code.
+// The OCLOSURE node (Func.Closure) is used for a reference to a
+// function literal.
+//
+// A Func for an imported function will have only an ONAME node.
+// A declared function or method has an ONAME and an ODCLFUNC.
+// A function literal is represented directly by an OCLOSURE, but it also
+// has an ODCLFUNC (and a matching ONAME) representing the compiled
+// underlying form of the closure, which accesses the captured variables
+// using a special data structure passed in a register.
+//
+// A method declaration is represented like functions, except f.Sym
+// will be the qualified method name (e.g., "T.m") and
+// f.Func.Shortname is the bare method name (e.g., "m").
+//
+// A method expression (T.M) is represented as an OMETHEXPR node,
+// in which n.Left and n.Right point to the type and method, respectively.
+// Each distinct mention of a method expression in the source code
+// constructs a fresh node.
+//
+// A method value (t.M) is represented by ODOTMETH/ODOTINTER
+// when it is called directly and by OCALLPART otherwise.
+// These are like method expressions, except that for ODOTMETH/ODOTINTER,
+// the method name is stored in Sym instead of Right.
+// Each OCALLPART ends up being implemented as a new
+// function, a bit like a closure, with its own ODCLFUNC.
+// The OCALLPART has uses n.Func to record the linkage to
+// the generated ODCLFUNC (as n.Func.Decl), but there is no
+// pointer from the Func back to the OCALLPART.
+type Func struct {
+ Nname Node // ONAME node
+ Decl Node // ODCLFUNC node
+ OClosure Node // OCLOSURE node
+
+ Shortname *types.Sym
+
+ // Extra entry code for the function. For example, allocate and initialize
+ // memory for escaping parameters.
+ Enter Nodes
+ Exit Nodes
+ // ONAME nodes for all params/locals for this func/closure, does NOT
+ // include closurevars until transformclosure runs.
+ Dcl []Node
+
+ ClosureEnter Nodes // list of ONAME nodes of captured variables
+ ClosureType Node // closure representation type
+ ClosureCalled bool // closure is only immediately called
+ ClosureVars Nodes // closure params; each has closurevar set
+
+ // Parents records the parent scope of each scope within a
+ // function. The root scope (0) has no parent, so the i'th
+ // scope's parent is stored at Parents[i-1].
+ Parents []ScopeID
+
+ // Marks records scope boundary changes.
+ Marks []Mark
+
+ // Closgen tracks how many closures have been generated within
+ // this function. Used by closurename for creating unique
+ // function names.
+ Closgen int
+
+ FieldTrack map[*types.Sym]struct{}
+ DebugInfo interface{}
+ LSym *obj.LSym
+
+ Inl *Inline
+
+ Label int32 // largest auto-generated label in this function
+
+ Endlineno src.XPos
+ WBPos src.XPos // position of first write barrier; see SetWBPos
+
+ Pragma PragmaFlag // go:xxx function annotations
+
+ flags bitset16
+ NumDefers int // number of defer calls in the function
+ NumReturns int // number of explicit returns in the function
+
+ // nwbrCalls records the LSyms of functions called by this
+ // function for go:nowritebarrierrec analysis. Only filled in
+ // if nowritebarrierrecCheck != nil.
+ NWBRCalls *[]SymAndPos
+}
+
+// An Inline holds fields used for function bodies that can be inlined.
+type Inline struct {
+ Cost int32 // heuristic cost of inlining this function
+
+ // Copies of Func.Dcl and Nbody for use during inlining.
+ Dcl []Node
+ Body []Node
+}
+
+// A Mark represents a scope boundary.
+type Mark struct {
+ // Pos is the position of the token that marks the scope
+ // change.
+ Pos src.XPos
+
+ // Scope identifies the innermost scope to the right of Pos.
+ Scope ScopeID
+}
+
+// A ScopeID represents a lexical scope within a function.
+type ScopeID int32
+
+const (
+ funcDupok = 1 << iota // duplicate definitions ok
+ funcWrapper // is method wrapper
+ funcNeedctxt // function uses context register (has closure variables)
+ funcReflectMethod // function calls reflect.Type.Method or MethodByName
+ // true if closure inside a function; false if a simple function or a
+ // closure in a global variable initialization
+ funcIsHiddenClosure
+ funcHasDefer // contains a defer statement
+ funcNilCheckDisabled // disable nil checks when compiling this function
+ funcInlinabilityChecked // inliner has already determined whether the function is inlinable
+ funcExportInline // include inline body in export data
+ funcInstrumentBody // add race/msan instrumentation during SSA construction
+ funcOpenCodedDeferDisallowed // can't do open-coded defers
+)
+
+func (f *Func) Dupok() bool { return f.flags&funcDupok != 0 }
+func (f *Func) Wrapper() bool { return f.flags&funcWrapper != 0 }
+func (f *Func) Needctxt() bool { return f.flags&funcNeedctxt != 0 }
+func (f *Func) ReflectMethod() bool { return f.flags&funcReflectMethod != 0 }
+func (f *Func) IsHiddenClosure() bool { return f.flags&funcIsHiddenClosure != 0 }
+func (f *Func) HasDefer() bool { return f.flags&funcHasDefer != 0 }
+func (f *Func) NilCheckDisabled() bool { return f.flags&funcNilCheckDisabled != 0 }
+func (f *Func) InlinabilityChecked() bool { return f.flags&funcInlinabilityChecked != 0 }
+func (f *Func) ExportInline() bool { return f.flags&funcExportInline != 0 }
+func (f *Func) InstrumentBody() bool { return f.flags&funcInstrumentBody != 0 }
+func (f *Func) OpenCodedDeferDisallowed() bool { return f.flags&funcOpenCodedDeferDisallowed != 0 }
+
+func (f *Func) SetDupok(b bool) { f.flags.set(funcDupok, b) }
+func (f *Func) SetWrapper(b bool) { f.flags.set(funcWrapper, b) }
+func (f *Func) SetNeedctxt(b bool) { f.flags.set(funcNeedctxt, b) }
+func (f *Func) SetReflectMethod(b bool) { f.flags.set(funcReflectMethod, b) }
+func (f *Func) SetIsHiddenClosure(b bool) { f.flags.set(funcIsHiddenClosure, b) }
+func (f *Func) SetHasDefer(b bool) { f.flags.set(funcHasDefer, b) }
+func (f *Func) SetNilCheckDisabled(b bool) { f.flags.set(funcNilCheckDisabled, b) }
+func (f *Func) SetInlinabilityChecked(b bool) { f.flags.set(funcInlinabilityChecked, b) }
+func (f *Func) SetExportInline(b bool) { f.flags.set(funcExportInline, b) }
+func (f *Func) SetInstrumentBody(b bool) { f.flags.set(funcInstrumentBody, b) }
+func (f *Func) SetOpenCodedDeferDisallowed(b bool) { f.flags.set(funcOpenCodedDeferDisallowed, b) }
+
+func (f *Func) SetWBPos(pos src.XPos) {
+ if base.Debug.WB != 0 {
+ base.WarnfAt(pos, "write barrier")
+ }
+ if !f.WBPos.IsKnown() {
+ f.WBPos = pos
+ }
+}
+
+//go:generate stringer -type=Op -trimprefix=O
+
+type Op uint8
+
+// Node ops.
+const (
+ OXXX Op = iota
+
+ // names
+ ONAME // var or func name
+ // Unnamed arg or return value: f(int, string) (int, error) { etc }
+ // Also used for a qualified package identifier that hasn't been resolved yet.
+ ONONAME
+ OTYPE // type name
+ OPACK // import
+ OLITERAL // literal
+ ONIL // nil
+
+ // expressions
+ OADD // Left + Right
+ OSUB // Left - Right
+ OOR // Left | Right
+ OXOR // Left ^ Right
+ OADDSTR // +{List} (string addition, list elements are strings)
+ OADDR // &Left
+ OANDAND // Left && Right
+ OAPPEND // append(List); after walk, Left may contain elem type descriptor
+ OBYTES2STR // Type(Left) (Type is string, Left is a []byte)
+ OBYTES2STRTMP // Type(Left) (Type is string, Left is a []byte, ephemeral)
+ ORUNES2STR // Type(Left) (Type is string, Left is a []rune)
+ OSTR2BYTES // Type(Left) (Type is []byte, Left is a string)
+ OSTR2BYTESTMP // Type(Left) (Type is []byte, Left is a string, ephemeral)
+ OSTR2RUNES // Type(Left) (Type is []rune, Left is a string)
+ // Left = Right or (if Colas=true) Left := Right
+ // If Colas, then Ninit includes a DCL node for Left.
+ OAS
+ // List = Rlist (x, y, z = a, b, c) or (if Colas=true) List := Rlist
+ // If Colas, then Ninit includes DCL nodes for List
+ OAS2
+ OAS2DOTTYPE // List = Right (x, ok = I.(int))
+ OAS2FUNC // List = Right (x, y = f())
+ OAS2MAPR // List = Right (x, ok = m["foo"])
+ OAS2RECV // List = Right (x, ok = <-c)
+ OASOP // Left Etype= Right (x += y)
+ OCALL // Left(List) (function call, method call or type conversion)
+
+ // OCALLFUNC, OCALLMETH, and OCALLINTER have the same structure.
+ // Prior to walk, they are: Left(List), where List is all regular arguments.
+ // After walk, List is a series of assignments to temporaries,
+ // and Rlist is an updated set of arguments.
+ // Nbody is all OVARLIVE nodes that are attached to OCALLxxx.
+ // TODO(josharian/khr): Use Ninit instead of List for the assignments to temporaries. See CL 114797.
+ OCALLFUNC // Left(List/Rlist) (function call f(args))
+ OCALLMETH // Left(List/Rlist) (direct method call x.Method(args))
+ OCALLINTER // Left(List/Rlist) (interface method call x.Method(args))
+ OCALLPART // Left.Right (method expression x.Method, not called)
+ OCAP // cap(Left)
+ OCLOSE // close(Left)
+ OCLOSURE // func Type { Func.Closure.Nbody } (func literal)
+ OCOMPLIT // Right{List} (composite literal, not yet lowered to specific form)
+ OMAPLIT // Type{List} (composite literal, Type is map)
+ OSTRUCTLIT // Type{List} (composite literal, Type is struct)
+ OARRAYLIT // Type{List} (composite literal, Type is array)
+ OSLICELIT // Type{List} (composite literal, Type is slice) Right.Int64() = slice length.
+ OPTRLIT // &Left (left is composite literal)
+ OCONV // Type(Left) (type conversion)
+ OCONVIFACE // Type(Left) (type conversion, to interface)
+ OCONVNOP // Type(Left) (type conversion, no effect)
+ OCOPY // copy(Left, Right)
+ ODCL // var Left (declares Left of type Left.Type)
+
+ // Used during parsing but don't last.
+ ODCLFUNC // func f() or func (r) f()
+ ODCLFIELD // struct field, interface field, or func/method argument/return value.
+ ODCLCONST // const pi = 3.14
+ ODCLTYPE // type Int int or type Int = int
+
+ ODELETE // delete(List)
+ ODOT // Left.Sym (Left is of struct type)
+ ODOTPTR // Left.Sym (Left is of pointer to struct type)
+ ODOTMETH // Left.Sym (Left is non-interface, Right is method name)
+ ODOTINTER // Left.Sym (Left is interface, Right is method name)
+ OXDOT // Left.Sym (before rewrite to one of the preceding)
+ ODOTTYPE // Left.Right or Left.Type (.Right during parsing, .Type once resolved); after walk, .Right contains address of interface type descriptor and .Right.Right contains address of concrete type descriptor
+ ODOTTYPE2 // Left.Right or Left.Type (.Right during parsing, .Type once resolved; on rhs of OAS2DOTTYPE); after walk, .Right contains address of interface type descriptor
+ OEQ // Left == Right
+ ONE // Left != Right
+ OLT // Left < Right
+ OLE // Left <= Right
+ OGE // Left >= Right
+ OGT // Left > Right
+ ODEREF // *Left
+ OINDEX // Left[Right] (index of array or slice)
+ OINDEXMAP // Left[Right] (index of map)
+ OKEY // Left:Right (key:value in struct/array/map literal)
+ OSTRUCTKEY // Sym:Left (key:value in struct literal, after type checking)
+ OLEN // len(Left)
+ OMAKE // make(List) (before type checking converts to one of the following)
+ OMAKECHAN // make(Type, Left) (type is chan)
+ OMAKEMAP // make(Type, Left) (type is map)
+ OMAKESLICE // make(Type, Left, Right) (type is slice)
+ OMAKESLICECOPY // makeslicecopy(Type, Left, Right) (type is slice; Left is length and Right is the copied from slice)
+ // OMAKESLICECOPY is created by the order pass and corresponds to:
+ // s = make(Type, Left); copy(s, Right)
+ //
+ // Bounded can be set on the node when Left == len(Right) is known at compile time.
+ //
+ // This node is created so the walk pass can optimize this pattern which would
+ // otherwise be hard to detect after the order pass.
+ OMUL // Left * Right
+ ODIV // Left / Right
+ OMOD // Left % Right
+ OLSH // Left << Right
+ ORSH // Left >> Right
+ OAND // Left & Right
+ OANDNOT // Left &^ Right
+ ONEW // new(Left); corresponds to calls to new in source code
+ ONEWOBJ // runtime.newobject(n.Type); introduced by walk; Left is type descriptor
+ ONOT // !Left
+ OBITNOT // ^Left
+ OPLUS // +Left
+ ONEG // -Left
+ OOROR // Left || Right
+ OPANIC // panic(Left)
+ OPRINT // print(List)
+ OPRINTN // println(List)
+ OPAREN // (Left)
+ OSEND // Left <- Right
+ OSLICE // Left[List[0] : List[1]] (Left is untypechecked or slice)
+ OSLICEARR // Left[List[0] : List[1]] (Left is array)
+ OSLICESTR // Left[List[0] : List[1]] (Left is string)
+ OSLICE3 // Left[List[0] : List[1] : List[2]] (Left is untypedchecked or slice)
+ OSLICE3ARR // Left[List[0] : List[1] : List[2]] (Left is array)
+ OSLICEHEADER // sliceheader{Left, List[0], List[1]} (Left is unsafe.Pointer, List[0] is length, List[1] is capacity)
+ ORECOVER // recover()
+ ORECV // <-Left
+ ORUNESTR // Type(Left) (Type is string, Left is rune)
+ OSELRECV // Left = <-Right.Left: (appears as .Left of OCASE; Right.Op == ORECV)
+ OSELRECV2 // List = <-Right.Left: (appears as .Left of OCASE; count(List) == 2, Right.Op == ORECV)
+ OIOTA // iota
+ OREAL // real(Left)
+ OIMAG // imag(Left)
+ OCOMPLEX // complex(Left, Right) or complex(List[0]) where List[0] is a 2-result function call
+ OALIGNOF // unsafe.Alignof(Left)
+ OOFFSETOF // unsafe.Offsetof(Left)
+ OSIZEOF // unsafe.Sizeof(Left)
+ OMETHEXPR // method expression
+
+ // statements
+ OBLOCK // { List } (block of code)
+ OBREAK // break [Sym]
+ // OCASE: case List: Nbody (List==nil means default)
+ // For OTYPESW, List is a OTYPE node for the specified type (or OLITERAL
+ // for nil), and, if a type-switch variable is specified, Rlist is an
+ // ONAME for the version of the type-switch variable with the specified
+ // type.
+ OCASE
+ OCONTINUE // continue [Sym]
+ ODEFER // defer Left (Left must be call)
+ OEMPTY // no-op (empty statement)
+ OFALL // fallthrough
+ OFOR // for Ninit; Left; Right { Nbody }
+ // OFORUNTIL is like OFOR, but the test (Left) is applied after the body:
+ // Ninit
+ // top: { Nbody } // Execute the body at least once
+ // cont: Right
+ // if Left { // And then test the loop condition
+ // List // Before looping to top, execute List
+ // goto top
+ // }
+ // OFORUNTIL is created by walk. There's no way to write this in Go code.
+ OFORUNTIL
+ OGOTO // goto Sym
+ OIF // if Ninit; Left { Nbody } else { Rlist }
+ OLABEL // Sym:
+ OGO // go Left (Left must be call)
+ ORANGE // for List = range Right { Nbody }
+ ORETURN // return List
+ OSELECT // select { List } (List is list of OCASE)
+ OSWITCH // switch Ninit; Left { List } (List is a list of OCASE)
+ // OTYPESW: Left := Right.(type) (appears as .Left of OSWITCH)
+ // Left is nil if there is no type-switch variable
+ OTYPESW
+
+ // types
+ OTCHAN // chan int
+ OTMAP // map[string]int
+ OTSTRUCT // struct{}
+ OTINTER // interface{}
+ // OTFUNC: func() - Left is receiver field, List is list of param fields, Rlist is
+ // list of result fields.
+ OTFUNC
+ OTARRAY // []int, [8]int, [N]int or [...]int
+
+ // misc
+ ODDD // func f(args ...int) or f(l...) or var a = [...]int{0, 1, 2}.
+ OINLCALL // intermediary representation of an inlined call.
+ OEFACE // itable and data words of an empty-interface value.
+ OITAB // itable word of an interface value.
+ OIDATA // data word of an interface value in Left
+ OSPTR // base pointer of a slice or string.
+ OCLOSUREVAR // variable reference at beginning of closure function
+ OCFUNC // reference to c function pointer (not go func value)
+ OCHECKNIL // emit code to ensure pointer/interface not nil
+ OVARDEF // variable is about to be fully initialized
+ OVARKILL // variable is dead
+ OVARLIVE // variable is alive
+ ORESULT // result of a function call; Xoffset is stack offset
+ OINLMARK // start of an inlined body, with file/line of caller. Xoffset is an index into the inline tree.
+
+ // arch-specific opcodes
+ ORETJMP // return to other function
+ OGETG // runtime.getg() (read g pointer)
+
+ OEND
+)
+
+// Nodes is a pointer to a slice of *Node.
+// For fields that are not used in most nodes, this is used instead of
+// a slice to save space.
+type Nodes struct{ slice *[]Node }
+
+// asNodes returns a slice of *Node as a Nodes value.
+func AsNodes(s []Node) Nodes {
+ return Nodes{&s}
+}
+
+// Slice returns the entries in Nodes as a slice.
+// Changes to the slice entries (as in s[i] = n) will be reflected in
+// the Nodes.
+func (n Nodes) Slice() []Node {
+ if n.slice == nil {
+ return nil
+ }
+ return *n.slice
+}
+
+// Len returns the number of entries in Nodes.
+func (n Nodes) Len() int {
+ if n.slice == nil {
+ return 0
+ }
+ return len(*n.slice)
+}
+
+// Index returns the i'th element of Nodes.
+// It panics if n does not have at least i+1 elements.
+func (n Nodes) Index(i int) Node {
+ return (*n.slice)[i]
+}
+
+// First returns the first element of Nodes (same as n.Index(0)).
+// It panics if n has no elements.
+func (n Nodes) First() Node {
+ return (*n.slice)[0]
+}
+
+// Second returns the second element of Nodes (same as n.Index(1)).
+// It panics if n has fewer than two elements.
+func (n Nodes) Second() Node {
+ return (*n.slice)[1]
+}
+
+// Set sets n to a slice.
+// This takes ownership of the slice.
+func (n *Nodes) Set(s []Node) {
+ if len(s) == 0 {
+ n.slice = nil
+ } else {
+ // Copy s and take address of t rather than s to avoid
+ // allocation in the case where len(s) == 0 (which is
+ // over 3x more common, dynamically, for make.bash).
+ t := s
+ n.slice = &t
+ }
+}
+
+// Set1 sets n to a slice containing a single node.
+func (n *Nodes) Set1(n1 Node) {
+ n.slice = &[]Node{n1}
+}
+
+// Set2 sets n to a slice containing two nodes.
+func (n *Nodes) Set2(n1, n2 Node) {
+ n.slice = &[]Node{n1, n2}
+}
+
+// Set3 sets n to a slice containing three nodes.
+func (n *Nodes) Set3(n1, n2, n3 Node) {
+ n.slice = &[]Node{n1, n2, n3}
+}
+
+// MoveNodes sets n to the contents of n2, then clears n2.
+func (n *Nodes) MoveNodes(n2 *Nodes) {
+ n.slice = n2.slice
+ n2.slice = nil
+}
+
+// SetIndex sets the i'th element of Nodes to node.
+// It panics if n does not have at least i+1 elements.
+func (n Nodes) SetIndex(i int, node Node) {
+ (*n.slice)[i] = node
+}
+
+// SetFirst sets the first element of Nodes to node.
+// It panics if n does not have at least one elements.
+func (n Nodes) SetFirst(node Node) {
+ (*n.slice)[0] = node
+}
+
+// SetSecond sets the second element of Nodes to node.
+// It panics if n does not have at least two elements.
+func (n Nodes) SetSecond(node Node) {
+ (*n.slice)[1] = node
+}
+
+// Addr returns the address of the i'th element of Nodes.
+// It panics if n does not have at least i+1 elements.
+func (n Nodes) Addr(i int) *Node {
+ return &(*n.slice)[i]
+}
+
+// Append appends entries to Nodes.
+func (n *Nodes) Append(a ...Node) {
+ if len(a) == 0 {
+ return
+ }
+ if n.slice == nil {
+ s := make([]Node, len(a))
+ copy(s, a)
+ n.slice = &s
+ return
+ }
+ *n.slice = append(*n.slice, a...)
+}
+
+// Prepend prepends entries to Nodes.
+// If a slice is passed in, this will take ownership of it.
+func (n *Nodes) Prepend(a ...Node) {
+ if len(a) == 0 {
+ return
+ }
+ if n.slice == nil {
+ n.slice = &a
+ } else {
+ *n.slice = append(a, *n.slice...)
+ }
+}
+
+// AppendNodes appends the contents of *n2 to n, then clears n2.
+func (n *Nodes) AppendNodes(n2 *Nodes) {
+ switch {
+ case n2.slice == nil:
+ case n.slice == nil:
+ n.slice = n2.slice
+ default:
+ *n.slice = append(*n.slice, *n2.slice...)
+ }
+ n2.slice = nil
+}
+
+// inspect invokes f on each node in an AST in depth-first order.
+// If f(n) returns false, inspect skips visiting n's children.
+func Inspect(n Node, f func(Node) bool) {
+ if n == nil || !f(n) {
+ return
+ }
+ InspectList(n.Init(), f)
+ Inspect(n.Left(), f)
+ Inspect(n.Right(), f)
+ InspectList(n.List(), f)
+ InspectList(n.Body(), f)
+ InspectList(n.Rlist(), f)
+}
+
+func InspectList(l Nodes, f func(Node) bool) {
+ for _, n := range l.Slice() {
+ Inspect(n, f)
+ }
+}
+
+// nodeQueue is a FIFO queue of *Node. The zero value of nodeQueue is
+// a ready-to-use empty queue.
+type NodeQueue struct {
+ ring []Node
+ head, tail int
+}
+
+// empty reports whether q contains no Nodes.
+func (q *NodeQueue) Empty() bool {
+ return q.head == q.tail
+}
+
+// pushRight appends n to the right of the queue.
+func (q *NodeQueue) PushRight(n Node) {
+ if len(q.ring) == 0 {
+ q.ring = make([]Node, 16)
+ } else if q.head+len(q.ring) == q.tail {
+ // Grow the ring.
+ nring := make([]Node, len(q.ring)*2)
+ // Copy the old elements.
+ part := q.ring[q.head%len(q.ring):]
+ if q.tail-q.head <= len(part) {
+ part = part[:q.tail-q.head]
+ copy(nring, part)
+ } else {
+ pos := copy(nring, part)
+ copy(nring[pos:], q.ring[:q.tail%len(q.ring)])
+ }
+ q.ring, q.head, q.tail = nring, 0, q.tail-q.head
+ }
+
+ q.ring[q.tail%len(q.ring)] = n
+ q.tail++
+}
+
+// popLeft pops a node from the left of the queue. It panics if q is
+// empty.
+func (q *NodeQueue) PopLeft() Node {
+ if q.Empty() {
+ panic("dequeue empty")
+ }
+ n := q.ring[q.head%len(q.ring)]
+ q.head++
+ return n
+}
+
+// NodeSet is a set of Nodes.
+type NodeSet map[Node]struct{}
+
+// Has reports whether s contains n.
+func (s NodeSet) Has(n Node) bool {
+ _, isPresent := s[n]
+ return isPresent
+}
+
+// Add adds n to s.
+func (s *NodeSet) Add(n Node) {
+ if *s == nil {
+ *s = make(map[Node]struct{})
+ }
+ (*s)[n] = struct{}{}
+}
+
+// Sorted returns s sorted according to less.
+func (s NodeSet) Sorted(less func(Node, Node) bool) []Node {
+ var res []Node
+ for n := range s {
+ res = append(res, n)
+ }
+ sort.Slice(res, func(i, j int) bool { return less(res[i], res[j]) })
+ return res
+}
+
+func Nod(op Op, nleft, nright Node) Node {
+ return NodAt(base.Pos, op, nleft, nright)
+}
+
+func NodAt(pos src.XPos, op Op, nleft, nright Node) Node {
+ var n Node
+ switch op {
+ case ODCLFUNC:
+ var x struct {
+ n node
+ f Func
+ }
+ n = &x.n
+ n.SetFunc(&x.f)
+ n.Func().Decl = n
+ case ONAME:
+ base.Fatalf("use newname instead")
+ case OLABEL, OPACK:
+ var x struct {
+ n node
+ m Name
+ }
+ n = &x.n
+ n.SetName(&x.m)
+ default:
+ n = new(node)
+ }
+ n.SetOp(op)
+ n.SetLeft(nleft)
+ n.SetRight(nright)
+ n.SetPos(pos)
+ n.SetOffset(types.BADWIDTH)
+ n.SetOrig(n)
+ return n
+}
+
+// newnamel returns a new ONAME Node associated with symbol s at position pos.
+// The caller is responsible for setting n.Name.Curfn.
+func NewNameAt(pos src.XPos, s *types.Sym) Node {
+ if s == nil {
+ base.Fatalf("newnamel nil")
+ }
+
+ var x struct {
+ n node
+ m Name
+ p Param
+ }
+ n := &x.n
+ n.SetName(&x.m)
+ n.Name().Param = &x.p
+
+ n.SetOp(ONAME)
+ n.SetPos(pos)
+ n.SetOrig(n)
+
+ n.SetSym(s)
+ return n
+}
+
+// The Class of a variable/function describes the "storage class"
+// of a variable or function. During parsing, storage classes are
+// called declaration contexts.
+type Class uint8
+
+//go:generate stringer -type=Class
+const (
+ Pxxx Class = iota // no class; used during ssa conversion to indicate pseudo-variables
+ PEXTERN // global variables
+ PAUTO // local variables
+ PAUTOHEAP // local variables or parameters moved to heap
+ PPARAM // input arguments
+ PPARAMOUT // output results
+ PFUNC // global functions
+
+ // Careful: Class is stored in three bits in Node.flags.
+ _ = uint((1 << 3) - iota) // static assert for iota <= (1 << 3)
+)
+
+type PragmaFlag int16
+
+const (
+ // Func pragmas.
+ Nointerface PragmaFlag = 1 << iota
+ Noescape // func parameters don't escape
+ Norace // func must not have race detector annotations
+ Nosplit // func should not execute on separate stack
+ Noinline // func should not be inlined
+ NoCheckPtr // func should not be instrumented by checkptr
+ CgoUnsafeArgs // treat a pointer to one arg as a pointer to them all
+ UintptrEscapes // pointers converted to uintptr escape
+
+ // Runtime-only func pragmas.
+ // See ../../../../runtime/README.md for detailed descriptions.
+ Systemstack // func must run on system stack
+ Nowritebarrier // emit compiler error instead of write barrier
+ Nowritebarrierrec // error on write barrier in this or recursive callees
+ Yeswritebarrierrec // cancels Nowritebarrierrec in this function and callees
+
+ // Runtime and cgo type pragmas
+ NotInHeap // values of this type must not be heap allocated
+
+ // Go command pragmas
+ GoBuildPragma
+)
+
+type SymAndPos struct {
+ Sym *obj.LSym // LSym of callee
+ Pos src.XPos // line of call
+}
+
+func AsNode(n types.IRNode) Node {
+ if n == nil {
+ return nil
+ }
+ return n.(Node)
+}
+
+var BlankNode Node
+
+// origSym returns the original symbol written by the user.
+func OrigSym(s *types.Sym) *types.Sym {
+ if s == nil {
+ return nil
+ }
+
+ if len(s.Name) > 1 && s.Name[0] == '~' {
+ switch s.Name[1] {
+ case 'r': // originally an unnamed result
+ return nil
+ case 'b': // originally the blank identifier _
+ // TODO(mdempsky): Does s.Pkg matter here?
+ return BlankNode.Sym()
+ }
+ return s
+ }
+
+ if strings.HasPrefix(s.Name, ".anon") {
+ // originally an unnamed or _ name (see subr.go: structargs)
+ return nil
+ }
+
+ return s
+}
+
+// SliceBounds returns n's slice bounds: low, high, and max in expr[low:high:max].
+// n must be a slice expression. max is nil if n is a simple slice expression.
+func (n *node) SliceBounds() (low, high, max Node) {
+ if n.List().Len() == 0 {
+ return nil, nil, nil
+ }
+
+ switch n.Op() {
+ case OSLICE, OSLICEARR, OSLICESTR:
+ s := n.List().Slice()
+ return s[0], s[1], nil
+ case OSLICE3, OSLICE3ARR:
+ s := n.List().Slice()
+ return s[0], s[1], s[2]
+ }
+ base.Fatalf("SliceBounds op %v: %v", n.Op(), n)
+ return nil, nil, nil
+}
+
+// SetSliceBounds sets n's slice bounds, where n is a slice expression.
+// n must be a slice expression. If max is non-nil, n must be a full slice expression.
+func (n *node) SetSliceBounds(low, high, max Node) {
+ switch n.Op() {
+ case OSLICE, OSLICEARR, OSLICESTR:
+ if max != nil {
+ base.Fatalf("SetSliceBounds %v given three bounds", n.Op())
+ }
+ s := n.List().Slice()
+ if s == nil {
+ if low == nil && high == nil {
+ return
+ }
+ n.PtrList().Set2(low, high)
+ return
+ }
+ s[0] = low
+ s[1] = high
+ return
+ case OSLICE3, OSLICE3ARR:
+ s := n.List().Slice()
+ if s == nil {
+ if low == nil && high == nil && max == nil {
+ return
+ }
+ n.PtrList().Set3(low, high, max)
+ return
+ }
+ s[0] = low
+ s[1] = high
+ s[2] = max
+ return
+ }
+ base.Fatalf("SetSliceBounds op %v: %v", n.Op(), n)
+}
+
+// IsSlice3 reports whether o is a slice3 op (OSLICE3, OSLICE3ARR).
+// o must be a slicing op.
+func (o Op) IsSlice3() bool {
+ switch o {
+ case OSLICE, OSLICEARR, OSLICESTR:
+ return false
+ case OSLICE3, OSLICE3ARR:
+ return true
+ }
+ base.Fatalf("IsSlice3 op %v", o)
+ return false
+}
+
+func IsConst(n Node, ct constant.Kind) bool {
+ return ConstType(n) == ct
+}
+
+// Int64Val returns n as an int64.
+// n must be an integer or rune constant.
+func (n *node) Int64Val() int64 {
+ if !IsConst(n, constant.Int) {
+ base.Fatalf("Int64Val(%v)", n)
+ }
+ x, ok := constant.Int64Val(n.Val())
+ if !ok {
+ base.Fatalf("Int64Val(%v)", n)
+ }
+ return x
+}
+
+// CanInt64 reports whether it is safe to call Int64Val() on n.
+func (n *node) CanInt64() bool {
+ if !IsConst(n, constant.Int) {
+ return false
+ }
+
+ // if the value inside n cannot be represented as an int64, the
+ // return value of Int64 is undefined
+ _, ok := constant.Int64Val(n.Val())
+ return ok
+}
+
+// Uint64Val returns n as an uint64.
+// n must be an integer or rune constant.
+func (n *node) Uint64Val() uint64 {
+ if !IsConst(n, constant.Int) {
+ base.Fatalf("Uint64Val(%v)", n)
+ }
+ x, ok := constant.Uint64Val(n.Val())
+ if !ok {
+ base.Fatalf("Uint64Val(%v)", n)
+ }
+ return x
+}
+
+// BoolVal returns n as a bool.
+// n must be a boolean constant.
+func (n *node) BoolVal() bool {
+ if !IsConst(n, constant.Bool) {
+ base.Fatalf("BoolVal(%v)", n)
+ }
+ return constant.BoolVal(n.Val())
+}
+
+// StringVal returns the value of a literal string Node as a string.
+// n must be a string constant.
+func (n *node) StringVal() string {
+ if !IsConst(n, constant.String) {
+ base.Fatalf("StringVal(%v)", n)
+ }
+ return constant.StringVal(n.Val())
+}
+
+// rawcopy returns a shallow copy of n.
+// Note: copy or sepcopy (rather than rawcopy) is usually the
+// correct choice (see comment with Node.copy, below).
+func (n *node) RawCopy() Node {
+ copy := *n
+ return &copy
+}
+
+// sepcopy returns a separate shallow copy of n, with the copy's
+// Orig pointing to itself.
+func SepCopy(n Node) Node {
+ n = n.RawCopy()
+ n.SetOrig(n)
+ return n
+}
+
+// copy returns shallow copy of n and adjusts the copy's Orig if
+// necessary: In general, if n.Orig points to itself, the copy's
+// Orig should point to itself as well. Otherwise, if n is modified,
+// the copy's Orig node appears modified, too, and then doesn't
+// represent the original node anymore.
+// (This caused the wrong complit Op to be used when printing error
+// messages; see issues #26855, #27765).
+func Copy(n Node) Node {
+ copy := n.RawCopy()
+ if n.Orig() == n {
+ copy.SetOrig(copy)
+ }
+ return copy
+}
+
+// isNil reports whether n represents the universal untyped zero value "nil".
+func IsNil(n Node) bool {
+ // Check n.Orig because constant propagation may produce typed nil constants,
+ // which don't exist in the Go spec.
+ return n.Orig().Op() == ONIL
+}
+
+func IsBlank(n Node) bool {
+ if n == nil {
+ return false
+ }
+ return n.Sym().IsBlank()
+}
+
+// IsMethod reports whether n is a method.
+// n must be a function or a method.
+func IsMethod(n Node) bool {
+ return n.Type().Recv() != nil
+}