aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/gc/inl.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/cmd/compile/internal/gc/inl.go')
-rw-r--r--src/cmd/compile/internal/gc/inl.go949
1 files changed, 471 insertions, 478 deletions
diff --git a/src/cmd/compile/internal/gc/inl.go b/src/cmd/compile/internal/gc/inl.go
index 419056985f..6310762c1f 100644
--- a/src/cmd/compile/internal/gc/inl.go
+++ b/src/cmd/compile/internal/gc/inl.go
@@ -27,11 +27,14 @@
package gc
import (
+ "cmd/compile/internal/base"
+ "cmd/compile/internal/ir"
"cmd/compile/internal/logopt"
"cmd/compile/internal/types"
"cmd/internal/obj"
"cmd/internal/src"
"fmt"
+ "go/constant"
"strings"
)
@@ -50,27 +53,27 @@ const (
// Get the function's package. For ordinary functions it's on the ->sym, but for imported methods
// the ->sym can be re-used in the local package, so peel it off the receiver's type.
-func fnpkg(fn *Node) *types.Pkg {
- if fn.IsMethod() {
+func fnpkg(fn ir.Node) *types.Pkg {
+ if ir.IsMethod(fn) {
// method
- rcvr := fn.Type.Recv().Type
+ rcvr := fn.Type().Recv().Type
if rcvr.IsPtr() {
rcvr = rcvr.Elem()
}
if rcvr.Sym == nil {
- Fatalf("receiver with no sym: [%v] %L (%v)", fn.Sym, fn, rcvr)
+ base.Fatalf("receiver with no sym: [%v] %L (%v)", fn.Sym(), fn, rcvr)
}
return rcvr.Sym.Pkg
}
// non-method
- return fn.Sym.Pkg
+ return fn.Sym().Pkg
}
// Lazy typechecking of imported bodies. For local functions, caninl will set ->typecheck
// because they're a copy of an already checked body.
-func typecheckinl(fn *Node) {
+func typecheckinl(fn ir.Node) {
lno := setlineno(fn)
expandInline(fn)
@@ -81,17 +84,17 @@ func typecheckinl(fn *Node) {
// the ->inl of a local function has been typechecked before caninl copied it.
pkg := fnpkg(fn)
- if pkg == localpkg || pkg == nil {
+ if pkg == ir.LocalPkg || pkg == nil {
return // typecheckinl on local function
}
- if Debug.m > 2 || Debug_export != 0 {
- fmt.Printf("typecheck import [%v] %L { %#v }\n", fn.Sym, fn, asNodes(fn.Func.Inl.Body))
+ if base.Flag.LowerM > 2 || base.Debug.Export != 0 {
+ fmt.Printf("typecheck import [%v] %L { %#v }\n", fn.Sym(), fn, ir.AsNodes(fn.Func().Inl.Body))
}
savefn := Curfn
Curfn = fn
- typecheckslice(fn.Func.Inl.Body, ctxStmt)
+ typecheckslice(fn.Func().Inl.Body, ctxStmt)
Curfn = savefn
// During expandInline (which imports fn.Func.Inl.Body),
@@ -99,65 +102,65 @@ func typecheckinl(fn *Node) {
// to fn.Func.Inl.Dcl for consistency with how local functions
// behave. (Append because typecheckinl may be called multiple
// times.)
- fn.Func.Inl.Dcl = append(fn.Func.Inl.Dcl, fn.Func.Dcl...)
- fn.Func.Dcl = nil
+ fn.Func().Inl.Dcl = append(fn.Func().Inl.Dcl, fn.Func().Dcl...)
+ fn.Func().Dcl = nil
- lineno = lno
+ base.Pos = lno
}
// Caninl determines whether fn is inlineable.
// If so, caninl saves fn->nbody in fn->inl and substitutes it with a copy.
// fn and ->nbody will already have been typechecked.
-func caninl(fn *Node) {
- if fn.Op != ODCLFUNC {
- Fatalf("caninl %v", fn)
+func caninl(fn ir.Node) {
+ if fn.Op() != ir.ODCLFUNC {
+ base.Fatalf("caninl %v", fn)
}
- if fn.Func.Nname == nil {
- Fatalf("caninl no nname %+v", fn)
+ if fn.Func().Nname == nil {
+ base.Fatalf("caninl no nname %+v", fn)
}
var reason string // reason, if any, that the function was not inlined
- if Debug.m > 1 || logopt.Enabled() {
+ if base.Flag.LowerM > 1 || logopt.Enabled() {
defer func() {
if reason != "" {
- if Debug.m > 1 {
- fmt.Printf("%v: cannot inline %v: %s\n", fn.Line(), fn.Func.Nname, reason)
+ if base.Flag.LowerM > 1 {
+ fmt.Printf("%v: cannot inline %v: %s\n", ir.Line(fn), fn.Func().Nname, reason)
}
if logopt.Enabled() {
- logopt.LogOpt(fn.Pos, "cannotInlineFunction", "inline", fn.funcname(), reason)
+ logopt.LogOpt(fn.Pos(), "cannotInlineFunction", "inline", ir.FuncName(fn), reason)
}
}
}()
}
// If marked "go:noinline", don't inline
- if fn.Func.Pragma&Noinline != 0 {
+ if fn.Func().Pragma&ir.Noinline != 0 {
reason = "marked go:noinline"
return
}
// If marked "go:norace" and -race compilation, don't inline.
- if flag_race && fn.Func.Pragma&Norace != 0 {
+ if base.Flag.Race && fn.Func().Pragma&ir.Norace != 0 {
reason = "marked go:norace with -race compilation"
return
}
// If marked "go:nocheckptr" and -d checkptr compilation, don't inline.
- if Debug_checkptr != 0 && fn.Func.Pragma&NoCheckPtr != 0 {
+ if base.Debug.Checkptr != 0 && fn.Func().Pragma&ir.NoCheckPtr != 0 {
reason = "marked go:nocheckptr"
return
}
// If marked "go:cgo_unsafe_args", don't inline, since the
// function makes assumptions about its argument frame layout.
- if fn.Func.Pragma&CgoUnsafeArgs != 0 {
+ if fn.Func().Pragma&ir.CgoUnsafeArgs != 0 {
reason = "marked go:cgo_unsafe_args"
return
}
// If marked as "go:uintptrescapes", don't inline, since the
// escape information is lost during inlining.
- if fn.Func.Pragma&UintptrEscapes != 0 {
+ if fn.Func().Pragma&ir.UintptrEscapes != 0 {
reason = "marked as having an escaping uintptr argument"
return
}
@@ -166,29 +169,29 @@ func caninl(fn *Node) {
// granularity, so inlining yeswritebarrierrec functions can
// confuse it (#22342). As a workaround, disallow inlining
// them for now.
- if fn.Func.Pragma&Yeswritebarrierrec != 0 {
+ if fn.Func().Pragma&ir.Yeswritebarrierrec != 0 {
reason = "marked go:yeswritebarrierrec"
return
}
// If fn has no body (is defined outside of Go), cannot inline it.
- if fn.Nbody.Len() == 0 {
+ if fn.Body().Len() == 0 {
reason = "no function body"
return
}
if fn.Typecheck() == 0 {
- Fatalf("caninl on non-typechecked function %v", fn)
+ base.Fatalf("caninl on non-typechecked function %v", fn)
}
- n := fn.Func.Nname
- if n.Func.InlinabilityChecked() {
+ n := fn.Func().Nname
+ if n.Func().InlinabilityChecked() {
return
}
- defer n.Func.SetInlinabilityChecked(true)
+ defer n.Func().SetInlinabilityChecked(true)
cc := int32(inlineExtraCallCost)
- if Debug.l == 4 {
+ if base.Flag.LowerL == 4 {
cc = 1 // this appears to yield better performance than 0.
}
@@ -204,9 +207,9 @@ func caninl(fn *Node) {
visitor := hairyVisitor{
budget: inlineMaxBudget,
extraCallCost: cc,
- usedLocals: make(map[*Node]bool),
+ usedLocals: make(map[ir.Node]bool),
}
- if visitor.visitList(fn.Nbody) {
+ if visitor.visitList(fn.Body()) {
reason = visitor.reason
return
}
@@ -215,82 +218,77 @@ func caninl(fn *Node) {
return
}
- n.Func.Inl = &Inline{
+ n.Func().Inl = &ir.Inline{
Cost: inlineMaxBudget - visitor.budget,
- Dcl: inlcopylist(pruneUnusedAutos(n.Name.Defn.Func.Dcl, &visitor)),
- Body: inlcopylist(fn.Nbody.Slice()),
+ Dcl: inlcopylist(pruneUnusedAutos(n.Name().Defn.Func().Dcl, &visitor)),
+ Body: inlcopylist(fn.Body().Slice()),
}
- // hack, TODO, check for better way to link method nodes back to the thing with the ->inl
- // this is so export can find the body of a method
- fn.Type.FuncType().Nname = asTypesNode(n)
-
- if Debug.m > 1 {
- fmt.Printf("%v: can inline %#v with cost %d as: %#v { %#v }\n", fn.Line(), n, inlineMaxBudget-visitor.budget, fn.Type, asNodes(n.Func.Inl.Body))
- } else if Debug.m != 0 {
- fmt.Printf("%v: can inline %v\n", fn.Line(), n)
+ if base.Flag.LowerM > 1 {
+ fmt.Printf("%v: can inline %#v with cost %d as: %#v { %#v }\n", ir.Line(fn), n, inlineMaxBudget-visitor.budget, fn.Type(), ir.AsNodes(n.Func().Inl.Body))
+ } else if base.Flag.LowerM != 0 {
+ fmt.Printf("%v: can inline %v\n", ir.Line(fn), n)
}
if logopt.Enabled() {
- logopt.LogOpt(fn.Pos, "canInlineFunction", "inline", fn.funcname(), fmt.Sprintf("cost: %d", inlineMaxBudget-visitor.budget))
+ logopt.LogOpt(fn.Pos(), "canInlineFunction", "inline", ir.FuncName(fn), fmt.Sprintf("cost: %d", inlineMaxBudget-visitor.budget))
}
}
// inlFlood marks n's inline body for export and recursively ensures
// all called functions are marked too.
-func inlFlood(n *Node) {
+func inlFlood(n ir.Node) {
if n == nil {
return
}
- if n.Op != ONAME || n.Class() != PFUNC {
- Fatalf("inlFlood: unexpected %v, %v, %v", n, n.Op, n.Class())
+ if n.Op() != ir.ONAME || n.Class() != ir.PFUNC {
+ base.Fatalf("inlFlood: unexpected %v, %v, %v", n, n.Op(), n.Class())
}
- if n.Func == nil {
- Fatalf("inlFlood: missing Func on %v", n)
+ if n.Func() == nil {
+ base.Fatalf("inlFlood: missing Func on %v", n)
}
- if n.Func.Inl == nil {
+ if n.Func().Inl == nil {
return
}
- if n.Func.ExportInline() {
+ if n.Func().ExportInline() {
return
}
- n.Func.SetExportInline(true)
+ n.Func().SetExportInline(true)
typecheckinl(n)
// Recursively identify all referenced functions for
// reexport. We want to include even non-called functions,
// because after inlining they might be callable.
- inspectList(asNodes(n.Func.Inl.Body), func(n *Node) bool {
- switch n.Op {
- case ONAME:
+ ir.InspectList(ir.AsNodes(n.Func().Inl.Body), func(n ir.Node) bool {
+ switch n.Op() {
+ case ir.OMETHEXPR:
+ inlFlood(methodExprName(n))
+
+ case ir.ONAME:
switch n.Class() {
- case PFUNC:
- if n.isMethodExpression() {
- inlFlood(asNode(n.Type.Nname()))
- } else {
- inlFlood(n)
- exportsym(n)
- }
- case PEXTERN:
+ case ir.PFUNC:
+ inlFlood(n)
+ exportsym(n)
+ case ir.PEXTERN:
exportsym(n)
}
- case ODOTMETH:
- fn := asNode(n.Type.Nname())
+ case ir.ODOTMETH:
+ fn := methodExprName(n)
inlFlood(fn)
- case OCALLPART:
+ case ir.OCALLPART:
// Okay, because we don't yet inline indirect
// calls to method values.
- case OCLOSURE:
+ case ir.OCLOSURE:
// If the closure is inlinable, we'll need to
// flood it too. But today we don't support
// inlining functions that contain closures.
//
// When we do, we'll probably want:
// inlFlood(n.Func.Closure.Func.Nname)
- Fatalf("unexpected closure in inlinable function")
+ base.Fatalf("unexpected closure in inlinable function")
}
return true
})
@@ -302,11 +300,11 @@ type hairyVisitor struct {
budget int32
reason string
extraCallCost int32
- usedLocals map[*Node]bool
+ usedLocals map[ir.Node]bool
}
// Look for anything we want to punt on.
-func (v *hairyVisitor) visitList(ll Nodes) bool {
+func (v *hairyVisitor) visitList(ll ir.Nodes) bool {
for _, n := range ll.Slice() {
if v.visit(n) {
return true
@@ -315,20 +313,20 @@ func (v *hairyVisitor) visitList(ll Nodes) bool {
return false
}
-func (v *hairyVisitor) visit(n *Node) bool {
+func (v *hairyVisitor) visit(n ir.Node) bool {
if n == nil {
return false
}
- switch n.Op {
+ switch n.Op() {
// Call is okay if inlinable and we have the budget for the body.
- case OCALLFUNC:
+ case ir.OCALLFUNC:
// Functions that call runtime.getcaller{pc,sp} can not be inlined
// because getcaller{pc,sp} expect a pointer to the caller's first argument.
//
// runtime.throw is a "cheap call" like panic in normal code.
- if n.Left.Op == ONAME && n.Left.Class() == PFUNC && isRuntimePkg(n.Left.Sym.Pkg) {
- fn := n.Left.Sym.Name
+ if n.Left().Op() == ir.ONAME && n.Left().Class() == ir.PFUNC && isRuntimePkg(n.Left().Sym().Pkg) {
+ fn := n.Left().Sym().Name
if fn == "getcallerpc" || fn == "getcallersp" {
v.reason = "call to " + fn
return true
@@ -344,8 +342,8 @@ func (v *hairyVisitor) visit(n *Node) bool {
break
}
- if fn := inlCallee(n.Left); fn != nil && fn.Func.Inl != nil {
- v.budget -= fn.Func.Inl.Cost
+ if fn := inlCallee(n.Left()); fn != nil && fn.Func().Inl != nil {
+ v.budget -= fn.Func().Inl.Cost
break
}
@@ -353,16 +351,13 @@ func (v *hairyVisitor) visit(n *Node) bool {
v.budget -= v.extraCallCost
// Call is okay if inlinable and we have the budget for the body.
- case OCALLMETH:
- t := n.Left.Type
+ case ir.OCALLMETH:
+ t := n.Left().Type()
if t == nil {
- Fatalf("no function type for [%p] %+v\n", n.Left, n.Left)
- }
- if t.Nname() == nil {
- Fatalf("no function definition for [%p] %+v\n", t, t)
+ base.Fatalf("no function type for [%p] %+v\n", n.Left(), n.Left())
}
- if isRuntimePkg(n.Left.Sym.Pkg) {
- fn := n.Left.Sym.Name
+ if isRuntimePkg(n.Left().Sym().Pkg) {
+ fn := n.Left().Sym().Name
if fn == "heapBits.nextArena" {
// Special case: explicitly allow
// mid-stack inlining of
@@ -372,7 +367,7 @@ func (v *hairyVisitor) visit(n *Node) bool {
break
}
}
- if inlfn := asNode(t.FuncType().Nname).Func; inlfn.Inl != nil {
+ if inlfn := methodExprName(n.Left()).Func(); inlfn.Inl != nil {
v.budget -= inlfn.Inl.Cost
break
}
@@ -380,58 +375,58 @@ func (v *hairyVisitor) visit(n *Node) bool {
v.budget -= v.extraCallCost
// Things that are too hairy, irrespective of the budget
- case OCALL, OCALLINTER:
+ case ir.OCALL, ir.OCALLINTER:
// Call cost for non-leaf inlining.
v.budget -= v.extraCallCost
- case OPANIC:
+ case ir.OPANIC:
v.budget -= inlineExtraPanicCost
- case ORECOVER:
+ case ir.ORECOVER:
// recover matches the argument frame pointer to find
// the right panic value, so it needs an argument frame.
v.reason = "call to recover"
return true
- case OCLOSURE,
- ORANGE,
- OSELECT,
- OGO,
- ODEFER,
- ODCLTYPE, // can't print yet
- ORETJMP:
- v.reason = "unhandled op " + n.Op.String()
+ case ir.OCLOSURE,
+ ir.ORANGE,
+ ir.OSELECT,
+ ir.OGO,
+ ir.ODEFER,
+ ir.ODCLTYPE, // can't print yet
+ ir.ORETJMP:
+ v.reason = "unhandled op " + n.Op().String()
return true
- case OAPPEND:
+ case ir.OAPPEND:
v.budget -= inlineExtraAppendCost
- case ODCLCONST, OEMPTY, OFALL:
+ case ir.ODCLCONST, ir.OEMPTY, ir.OFALL:
// These nodes don't produce code; omit from inlining budget.
return false
- case OLABEL:
+ case ir.OLABEL:
// TODO(mdempsky): Add support for inlining labeled control statements.
- if n.labeledControl() != nil {
+ if labeledControl(n) != nil {
v.reason = "labeled control"
return true
}
- case OBREAK, OCONTINUE:
- if n.Sym != nil {
+ case ir.OBREAK, ir.OCONTINUE:
+ if n.Sym() != nil {
// Should have short-circuited due to labeledControl above.
- Fatalf("unexpected labeled break/continue: %v", n)
+ base.Fatalf("unexpected labeled break/continue: %v", n)
}
- case OIF:
- if Isconst(n.Left, CTBOOL) {
+ case ir.OIF:
+ if ir.IsConst(n.Left(), constant.Bool) {
// This if and the condition cost nothing.
- return v.visitList(n.Ninit) || v.visitList(n.Nbody) ||
- v.visitList(n.Rlist)
+ return v.visitList(n.Init()) || v.visitList(n.Body()) ||
+ v.visitList(n.Rlist())
}
- case ONAME:
- if n.Class() == PAUTO {
+ case ir.ONAME:
+ if n.Class() == ir.PAUTO {
v.usedLocals[n] = true
}
@@ -440,67 +435,67 @@ func (v *hairyVisitor) visit(n *Node) bool {
v.budget--
// When debugging, don't stop early, to get full cost of inlining this function
- if v.budget < 0 && Debug.m < 2 && !logopt.Enabled() {
+ if v.budget < 0 && base.Flag.LowerM < 2 && !logopt.Enabled() {
return true
}
- return v.visit(n.Left) || v.visit(n.Right) ||
- v.visitList(n.List) || v.visitList(n.Rlist) ||
- v.visitList(n.Ninit) || v.visitList(n.Nbody)
+ return v.visit(n.Left()) || v.visit(n.Right()) ||
+ v.visitList(n.List()) || v.visitList(n.Rlist()) ||
+ v.visitList(n.Init()) || v.visitList(n.Body())
}
// inlcopylist (together with inlcopy) recursively copies a list of nodes, except
// that it keeps the same ONAME, OTYPE, and OLITERAL nodes. It is used for copying
// the body and dcls of an inlineable function.
-func inlcopylist(ll []*Node) []*Node {
- s := make([]*Node, 0, len(ll))
+func inlcopylist(ll []ir.Node) []ir.Node {
+ s := make([]ir.Node, 0, len(ll))
for _, n := range ll {
s = append(s, inlcopy(n))
}
return s
}
-func inlcopy(n *Node) *Node {
+func inlcopy(n ir.Node) ir.Node {
if n == nil {
return nil
}
- switch n.Op {
- case ONAME, OTYPE, OLITERAL:
+ switch n.Op() {
+ case ir.ONAME, ir.OTYPE, ir.OLITERAL, ir.ONIL:
return n
}
- m := n.copy()
- if n.Op != OCALLPART && m.Func != nil {
- Fatalf("unexpected Func: %v", m)
+ m := ir.Copy(n)
+ if n.Op() != ir.OCALLPART && m.Func() != nil {
+ base.Fatalf("unexpected Func: %v", m)
}
- m.Left = inlcopy(n.Left)
- m.Right = inlcopy(n.Right)
- m.List.Set(inlcopylist(n.List.Slice()))
- m.Rlist.Set(inlcopylist(n.Rlist.Slice()))
- m.Ninit.Set(inlcopylist(n.Ninit.Slice()))
- m.Nbody.Set(inlcopylist(n.Nbody.Slice()))
+ m.SetLeft(inlcopy(n.Left()))
+ m.SetRight(inlcopy(n.Right()))
+ m.PtrList().Set(inlcopylist(n.List().Slice()))
+ m.PtrRlist().Set(inlcopylist(n.Rlist().Slice()))
+ m.PtrInit().Set(inlcopylist(n.Init().Slice()))
+ m.PtrBody().Set(inlcopylist(n.Body().Slice()))
return m
}
-func countNodes(n *Node) int {
+func countNodes(n ir.Node) int {
if n == nil {
return 0
}
cnt := 1
- cnt += countNodes(n.Left)
- cnt += countNodes(n.Right)
- for _, n1 := range n.Ninit.Slice() {
+ cnt += countNodes(n.Left())
+ cnt += countNodes(n.Right())
+ for _, n1 := range n.Init().Slice() {
cnt += countNodes(n1)
}
- for _, n1 := range n.Nbody.Slice() {
+ for _, n1 := range n.Body().Slice() {
cnt += countNodes(n1)
}
- for _, n1 := range n.List.Slice() {
+ for _, n1 := range n.List().Slice() {
cnt += countNodes(n1)
}
- for _, n1 := range n.Rlist.Slice() {
+ for _, n1 := range n.Rlist().Slice() {
cnt += countNodes(n1)
}
return cnt
@@ -508,7 +503,7 @@ func countNodes(n *Node) int {
// Inlcalls/nodelist/node walks fn's statements and expressions and substitutes any
// calls made to inlineable functions. This is the external entry point.
-func inlcalls(fn *Node) {
+func inlcalls(fn ir.Node) {
savefn := Curfn
Curfn = fn
maxCost := int32(inlineMaxBudget)
@@ -521,31 +516,31 @@ func inlcalls(fn *Node) {
// but allow inlining if there is a recursion cycle of many functions.
// Most likely, the inlining will stop before we even hit the beginning of
// the cycle again, but the map catches the unusual case.
- inlMap := make(map[*Node]bool)
+ inlMap := make(map[ir.Node]bool)
fn = inlnode(fn, maxCost, inlMap)
if fn != Curfn {
- Fatalf("inlnode replaced curfn")
+ base.Fatalf("inlnode replaced curfn")
}
Curfn = savefn
}
// Turn an OINLCALL into a statement.
-func inlconv2stmt(n *Node) {
- n.Op = OBLOCK
+func inlconv2stmt(n ir.Node) {
+ n.SetOp(ir.OBLOCK)
// n->ninit stays
- n.List.Set(n.Nbody.Slice())
+ n.PtrList().Set(n.Body().Slice())
- n.Nbody.Set(nil)
- n.Rlist.Set(nil)
+ n.PtrBody().Set(nil)
+ n.PtrRlist().Set(nil)
}
// Turn an OINLCALL into a single valued expression.
// The result of inlconv2expr MUST be assigned back to n, e.g.
// n.Left = inlconv2expr(n.Left)
-func inlconv2expr(n *Node) *Node {
- r := n.Rlist.First()
- return addinit(r, append(n.Ninit.Slice(), n.Nbody.Slice()...))
+func inlconv2expr(n ir.Node) ir.Node {
+ r := n.Rlist().First()
+ return addinit(r, append(n.Init().Slice(), n.Body().Slice()...))
}
// Turn the rlist (with the return values) of the OINLCALL in
@@ -553,17 +548,17 @@ func inlconv2expr(n *Node) *Node {
// containing the inlined statements on the first list element so
// order will be preserved Used in return, oas2func and call
// statements.
-func inlconv2list(n *Node) []*Node {
- if n.Op != OINLCALL || n.Rlist.Len() == 0 {
- Fatalf("inlconv2list %+v\n", n)
+func inlconv2list(n ir.Node) []ir.Node {
+ if n.Op() != ir.OINLCALL || n.Rlist().Len() == 0 {
+ base.Fatalf("inlconv2list %+v\n", n)
}
- s := n.Rlist.Slice()
- s[0] = addinit(s[0], append(n.Ninit.Slice(), n.Nbody.Slice()...))
+ s := n.Rlist().Slice()
+ s[0] = addinit(s[0], append(n.Init().Slice(), n.Body().Slice()...))
return s
}
-func inlnodelist(l Nodes, maxCost int32, inlMap map[*Node]bool) {
+func inlnodelist(l ir.Nodes, maxCost int32, inlMap map[ir.Node]bool) {
s := l.Slice()
for i := range s {
s[i] = inlnode(s[i], maxCost, inlMap)
@@ -583,80 +578,80 @@ func inlnodelist(l Nodes, maxCost int32, inlMap map[*Node]bool) {
// shorter and less complicated.
// The result of inlnode MUST be assigned back to n, e.g.
// n.Left = inlnode(n.Left)
-func inlnode(n *Node, maxCost int32, inlMap map[*Node]bool) *Node {
+func inlnode(n ir.Node, maxCost int32, inlMap map[ir.Node]bool) ir.Node {
if n == nil {
return n
}
- switch n.Op {
- case ODEFER, OGO:
- switch n.Left.Op {
- case OCALLFUNC, OCALLMETH:
- n.Left.SetNoInline(true)
+ switch n.Op() {
+ case ir.ODEFER, ir.OGO:
+ switch n.Left().Op() {
+ case ir.OCALLFUNC, ir.OCALLMETH:
+ n.Left().SetNoInline(true)
}
// TODO do them here (or earlier),
// so escape analysis can avoid more heapmoves.
- case OCLOSURE:
+ case ir.OCLOSURE:
return n
- case OCALLMETH:
+ case ir.OCALLMETH:
// Prevent inlining some reflect.Value methods when using checkptr,
// even when package reflect was compiled without it (#35073).
- if s := n.Left.Sym; Debug_checkptr != 0 && isReflectPkg(s.Pkg) && (s.Name == "Value.UnsafeAddr" || s.Name == "Value.Pointer") {
+ if s := n.Left().Sym(); base.Debug.Checkptr != 0 && isReflectPkg(s.Pkg) && (s.Name == "Value.UnsafeAddr" || s.Name == "Value.Pointer") {
return n
}
}
lno := setlineno(n)
- inlnodelist(n.Ninit, maxCost, inlMap)
- for _, n1 := range n.Ninit.Slice() {
- if n1.Op == OINLCALL {
+ inlnodelist(n.Init(), maxCost, inlMap)
+ for _, n1 := range n.Init().Slice() {
+ if n1.Op() == ir.OINLCALL {
inlconv2stmt(n1)
}
}
- n.Left = inlnode(n.Left, maxCost, inlMap)
- if n.Left != nil && n.Left.Op == OINLCALL {
- n.Left = inlconv2expr(n.Left)
+ n.SetLeft(inlnode(n.Left(), maxCost, inlMap))
+ if n.Left() != nil && n.Left().Op() == ir.OINLCALL {
+ n.SetLeft(inlconv2expr(n.Left()))
}
- n.Right = inlnode(n.Right, maxCost, inlMap)
- if n.Right != nil && n.Right.Op == OINLCALL {
- if n.Op == OFOR || n.Op == OFORUNTIL {
- inlconv2stmt(n.Right)
- } else if n.Op == OAS2FUNC {
- n.Rlist.Set(inlconv2list(n.Right))
- n.Right = nil
- n.Op = OAS2
+ n.SetRight(inlnode(n.Right(), maxCost, inlMap))
+ if n.Right() != nil && n.Right().Op() == ir.OINLCALL {
+ if n.Op() == ir.OFOR || n.Op() == ir.OFORUNTIL {
+ inlconv2stmt(n.Right())
+ } else if n.Op() == ir.OAS2FUNC {
+ n.PtrRlist().Set(inlconv2list(n.Right()))
+ n.SetRight(nil)
+ n.SetOp(ir.OAS2)
n.SetTypecheck(0)
n = typecheck(n, ctxStmt)
} else {
- n.Right = inlconv2expr(n.Right)
+ n.SetRight(inlconv2expr(n.Right()))
}
}
- inlnodelist(n.List, maxCost, inlMap)
- if n.Op == OBLOCK {
- for _, n2 := range n.List.Slice() {
- if n2.Op == OINLCALL {
+ inlnodelist(n.List(), maxCost, inlMap)
+ if n.Op() == ir.OBLOCK {
+ for _, n2 := range n.List().Slice() {
+ if n2.Op() == ir.OINLCALL {
inlconv2stmt(n2)
}
}
} else {
- s := n.List.Slice()
+ s := n.List().Slice()
for i1, n1 := range s {
- if n1 != nil && n1.Op == OINLCALL {
+ if n1 != nil && n1.Op() == ir.OINLCALL {
s[i1] = inlconv2expr(s[i1])
}
}
}
- inlnodelist(n.Rlist, maxCost, inlMap)
- s := n.Rlist.Slice()
+ inlnodelist(n.Rlist(), maxCost, inlMap)
+ s := n.Rlist().Slice()
for i1, n1 := range s {
- if n1.Op == OINLCALL {
- if n.Op == OIF {
+ if n1.Op() == ir.OINLCALL {
+ if n.Op() == ir.OIF {
inlconv2stmt(n1)
} else {
s[i1] = inlconv2expr(s[i1])
@@ -664,9 +659,9 @@ func inlnode(n *Node, maxCost int32, inlMap map[*Node]bool) *Node {
}
}
- inlnodelist(n.Nbody, maxCost, inlMap)
- for _, n := range n.Nbody.Slice() {
- if n.Op == OINLCALL {
+ inlnodelist(n.Body(), maxCost, inlMap)
+ for _, n := range n.Body().Slice() {
+ if n.Op() == ir.OINLCALL {
inlconv2stmt(n)
}
}
@@ -674,75 +669,70 @@ func inlnode(n *Node, maxCost int32, inlMap map[*Node]bool) *Node {
// with all the branches out of the way, it is now time to
// transmogrify this node itself unless inhibited by the
// switch at the top of this function.
- switch n.Op {
- case OCALLFUNC, OCALLMETH:
+ switch n.Op() {
+ case ir.OCALLFUNC, ir.OCALLMETH:
if n.NoInline() {
return n
}
}
- switch n.Op {
- case OCALLFUNC:
- if Debug.m > 3 {
- fmt.Printf("%v:call to func %+v\n", n.Line(), n.Left)
+ switch n.Op() {
+ case ir.OCALLFUNC:
+ if base.Flag.LowerM > 3 {
+ fmt.Printf("%v:call to func %+v\n", ir.Line(n), n.Left())
}
if isIntrinsicCall(n) {
break
}
- if fn := inlCallee(n.Left); fn != nil && fn.Func.Inl != nil {
+ if fn := inlCallee(n.Left()); fn != nil && fn.Func().Inl != nil {
n = mkinlcall(n, fn, maxCost, inlMap)
}
- case OCALLMETH:
- if Debug.m > 3 {
- fmt.Printf("%v:call to meth %L\n", n.Line(), n.Left.Right)
+ case ir.OCALLMETH:
+ if base.Flag.LowerM > 3 {
+ fmt.Printf("%v:call to meth %L\n", ir.Line(n), n.Left().Right())
}
// typecheck should have resolved ODOTMETH->type, whose nname points to the actual function.
- if n.Left.Type == nil {
- Fatalf("no function type for [%p] %+v\n", n.Left, n.Left)
+ if n.Left().Type() == nil {
+ base.Fatalf("no function type for [%p] %+v\n", n.Left(), n.Left())
}
- if n.Left.Type.Nname() == nil {
- Fatalf("no function definition for [%p] %+v\n", n.Left.Type, n.Left.Type)
- }
-
- n = mkinlcall(n, asNode(n.Left.Type.FuncType().Nname), maxCost, inlMap)
+ n = mkinlcall(n, methodExprName(n.Left()), maxCost, inlMap)
}
- lineno = lno
+ base.Pos = lno
return n
}
// inlCallee takes a function-typed expression and returns the underlying function ONAME
// that it refers to if statically known. Otherwise, it returns nil.
-func inlCallee(fn *Node) *Node {
+func inlCallee(fn ir.Node) ir.Node {
fn = staticValue(fn)
switch {
- case fn.Op == ONAME && fn.Class() == PFUNC:
- if fn.isMethodExpression() {
- n := asNode(fn.Type.Nname())
- // Check that receiver type matches fn.Left.
- // TODO(mdempsky): Handle implicit dereference
- // of pointer receiver argument?
- if n == nil || !types.Identical(n.Type.Recv().Type, fn.Left.Type) {
- return nil
- }
- return n
+ case fn.Op() == ir.OMETHEXPR:
+ n := methodExprName(fn)
+ // Check that receiver type matches fn.Left.
+ // TODO(mdempsky): Handle implicit dereference
+ // of pointer receiver argument?
+ if n == nil || !types.Identical(n.Type().Recv().Type, fn.Left().Type()) {
+ return nil
}
+ return n
+ case fn.Op() == ir.ONAME && fn.Class() == ir.PFUNC:
return fn
- case fn.Op == OCLOSURE:
- c := fn.Func.Closure
+ case fn.Op() == ir.OCLOSURE:
+ c := fn.Func().Decl
caninl(c)
- return c.Func.Nname
+ return c.Func().Nname
}
return nil
}
-func staticValue(n *Node) *Node {
+func staticValue(n ir.Node) ir.Node {
for {
- if n.Op == OCONVNOP {
- n = n.Left
+ if n.Op() == ir.OCONVNOP {
+ n = n.Left()
continue
}
@@ -757,34 +747,34 @@ func staticValue(n *Node) *Node {
// staticValue1 implements a simple SSA-like optimization. If n is a local variable
// that is initialized and never reassigned, staticValue1 returns the initializer
// expression. Otherwise, it returns nil.
-func staticValue1(n *Node) *Node {
- if n.Op != ONAME || n.Class() != PAUTO || n.Name.Addrtaken() {
+func staticValue1(n ir.Node) ir.Node {
+ if n.Op() != ir.ONAME || n.Class() != ir.PAUTO || n.Name().Addrtaken() {
return nil
}
- defn := n.Name.Defn
+ defn := n.Name().Defn
if defn == nil {
return nil
}
- var rhs *Node
+ var rhs ir.Node
FindRHS:
- switch defn.Op {
- case OAS:
- rhs = defn.Right
- case OAS2:
- for i, lhs := range defn.List.Slice() {
+ switch defn.Op() {
+ case ir.OAS:
+ rhs = defn.Right()
+ case ir.OAS2:
+ for i, lhs := range defn.List().Slice() {
if lhs == n {
- rhs = defn.Rlist.Index(i)
+ rhs = defn.Rlist().Index(i)
break FindRHS
}
}
- Fatalf("%v missing from LHS of %v", n, defn)
+ base.Fatalf("%v missing from LHS of %v", n, defn)
default:
return nil
}
if rhs == nil {
- Fatalf("RHS is nil: %v", defn)
+ base.Fatalf("RHS is nil: %v", defn)
}
unsafe, _ := reassigned(n)
@@ -801,70 +791,70 @@ FindRHS:
// useful for -m output documenting the reason for inhibited optimizations.
// NB: global variables are always considered to be re-assigned.
// TODO: handle initial declaration not including an assignment and followed by a single assignment?
-func reassigned(n *Node) (bool, *Node) {
- if n.Op != ONAME {
- Fatalf("reassigned %v", n)
+func reassigned(n ir.Node) (bool, ir.Node) {
+ if n.Op() != ir.ONAME {
+ base.Fatalf("reassigned %v", n)
}
// no way to reliably check for no-reassignment of globals, assume it can be
- if n.Name.Curfn == nil {
+ if n.Name().Curfn == nil {
return true, nil
}
- f := n.Name.Curfn
+ f := n.Name().Curfn
// There just might be a good reason for this although this can be pretty surprising:
// local variables inside a closure have Curfn pointing to the OCLOSURE node instead
// of the corresponding ODCLFUNC.
// We need to walk the function body to check for reassignments so we follow the
// linkage to the ODCLFUNC node as that is where body is held.
- if f.Op == OCLOSURE {
- f = f.Func.Closure
+ if f.Op() == ir.OCLOSURE {
+ f = f.Func().Decl
}
v := reassignVisitor{name: n}
- a := v.visitList(f.Nbody)
+ a := v.visitList(f.Body())
return a != nil, a
}
type reassignVisitor struct {
- name *Node
+ name ir.Node
}
-func (v *reassignVisitor) visit(n *Node) *Node {
+func (v *reassignVisitor) visit(n ir.Node) ir.Node {
if n == nil {
return nil
}
- switch n.Op {
- case OAS:
- if n.Left == v.name && n != v.name.Name.Defn {
+ switch n.Op() {
+ case ir.OAS:
+ if n.Left() == v.name && n != v.name.Name().Defn {
return n
}
- case OAS2, OAS2FUNC, OAS2MAPR, OAS2DOTTYPE:
- for _, p := range n.List.Slice() {
- if p == v.name && n != v.name.Name.Defn {
+ case ir.OAS2, ir.OAS2FUNC, ir.OAS2MAPR, ir.OAS2DOTTYPE:
+ for _, p := range n.List().Slice() {
+ if p == v.name && n != v.name.Name().Defn {
return n
}
}
}
- if a := v.visit(n.Left); a != nil {
+ if a := v.visit(n.Left()); a != nil {
return a
}
- if a := v.visit(n.Right); a != nil {
+ if a := v.visit(n.Right()); a != nil {
return a
}
- if a := v.visitList(n.List); a != nil {
+ if a := v.visitList(n.List()); a != nil {
return a
}
- if a := v.visitList(n.Rlist); a != nil {
+ if a := v.visitList(n.Rlist()); a != nil {
return a
}
- if a := v.visitList(n.Ninit); a != nil {
+ if a := v.visitList(n.Init()); a != nil {
return a
}
- if a := v.visitList(n.Nbody); a != nil {
+ if a := v.visitList(n.Body()); a != nil {
return a
}
return nil
}
-func (v *reassignVisitor) visitList(l Nodes) *Node {
+func (v *reassignVisitor) visitList(l ir.Nodes) ir.Node {
for _, n := range l.Slice() {
if a := v.visit(n); a != nil {
return a
@@ -873,18 +863,18 @@ func (v *reassignVisitor) visitList(l Nodes) *Node {
return nil
}
-func inlParam(t *types.Field, as *Node, inlvars map[*Node]*Node) *Node {
- n := asNode(t.Nname)
- if n == nil || n.isBlank() {
- return nblank
+func inlParam(t *types.Field, as ir.Node, inlvars map[ir.Node]ir.Node) ir.Node {
+ n := ir.AsNode(t.Nname)
+ if n == nil || ir.IsBlank(n) {
+ return ir.BlankNode
}
inlvar := inlvars[n]
if inlvar == nil {
- Fatalf("missing inlvar for %v", n)
+ base.Fatalf("missing inlvar for %v", n)
}
- as.Ninit.Append(nod(ODCL, inlvar, nil))
- inlvar.Name.Defn = as
+ as.PtrInit().Append(ir.Nod(ir.ODCL, inlvar, nil))
+ inlvar.Name().Defn = as
return inlvar
}
@@ -897,33 +887,33 @@ var inlgen int
// parameters.
// The result of mkinlcall MUST be assigned back to n, e.g.
// n.Left = mkinlcall(n.Left, fn, isddd)
-func mkinlcall(n, fn *Node, maxCost int32, inlMap map[*Node]bool) *Node {
- if fn.Func.Inl == nil {
+func mkinlcall(n, fn ir.Node, maxCost int32, inlMap map[ir.Node]bool) ir.Node {
+ if fn.Func().Inl == nil {
if logopt.Enabled() {
- logopt.LogOpt(n.Pos, "cannotInlineCall", "inline", Curfn.funcname(),
- fmt.Sprintf("%s cannot be inlined", fn.pkgFuncName()))
+ logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(Curfn),
+ fmt.Sprintf("%s cannot be inlined", ir.PkgFuncName(fn)))
}
return n
}
- if fn.Func.Inl.Cost > maxCost {
+ if fn.Func().Inl.Cost > maxCost {
// The inlined function body is too big. Typically we use this check to restrict
// inlining into very big functions. See issue 26546 and 17566.
if logopt.Enabled() {
- logopt.LogOpt(n.Pos, "cannotInlineCall", "inline", Curfn.funcname(),
- fmt.Sprintf("cost %d of %s exceeds max large caller cost %d", fn.Func.Inl.Cost, fn.pkgFuncName(), maxCost))
+ logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(Curfn),
+ fmt.Sprintf("cost %d of %s exceeds max large caller cost %d", fn.Func().Inl.Cost, ir.PkgFuncName(fn), maxCost))
}
return n
}
- if fn == Curfn || fn.Name.Defn == Curfn {
+ if fn == Curfn || fn.Name().Defn == Curfn {
// Can't recursively inline a function into itself.
if logopt.Enabled() {
- logopt.LogOpt(n.Pos, "cannotInlineCall", "inline", fmt.Sprintf("recursive call to %s", Curfn.funcname()))
+ logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", fmt.Sprintf("recursive call to %s", ir.FuncName(Curfn)))
}
return n
}
- if instrumenting && isRuntimePkg(fn.Sym.Pkg) {
+ if instrumenting && isRuntimePkg(fn.Sym().Pkg) {
// Runtime package must not be instrumented.
// Instrument skips runtime package. However, some runtime code can be
// inlined into other packages and instrumented there. To avoid this,
@@ -934,8 +924,8 @@ func mkinlcall(n, fn *Node, maxCost int32, inlMap map[*Node]bool) *Node {
}
if inlMap[fn] {
- if Debug.m > 1 {
- fmt.Printf("%v: cannot inline %v into %v: repeated recursive cycle\n", n.Line(), fn, Curfn.funcname())
+ if base.Flag.LowerM > 1 {
+ fmt.Printf("%v: cannot inline %v into %v: repeated recursive cycle\n", ir.Line(n), fn, ir.FuncName(Curfn))
}
return n
}
@@ -943,115 +933,115 @@ func mkinlcall(n, fn *Node, maxCost int32, inlMap map[*Node]bool) *Node {
defer func() {
inlMap[fn] = false
}()
- if Debug_typecheckinl == 0 {
+ if base.Debug.TypecheckInl == 0 {
typecheckinl(fn)
}
// We have a function node, and it has an inlineable body.
- if Debug.m > 1 {
- fmt.Printf("%v: inlining call to %v %#v { %#v }\n", n.Line(), fn.Sym, fn.Type, asNodes(fn.Func.Inl.Body))
- } else if Debug.m != 0 {
- fmt.Printf("%v: inlining call to %v\n", n.Line(), fn)
+ if base.Flag.LowerM > 1 {
+ fmt.Printf("%v: inlining call to %v %#v { %#v }\n", ir.Line(n), fn.Sym(), fn.Type(), ir.AsNodes(fn.Func().Inl.Body))
+ } else if base.Flag.LowerM != 0 {
+ fmt.Printf("%v: inlining call to %v\n", ir.Line(n), fn)
}
- if Debug.m > 2 {
- fmt.Printf("%v: Before inlining: %+v\n", n.Line(), n)
+ if base.Flag.LowerM > 2 {
+ fmt.Printf("%v: Before inlining: %+v\n", ir.Line(n), n)
}
- if ssaDump != "" && ssaDump == Curfn.funcname() {
+ if ssaDump != "" && ssaDump == ir.FuncName(Curfn) {
ssaDumpInlined = append(ssaDumpInlined, fn)
}
- ninit := n.Ninit
+ ninit := n.Init()
// For normal function calls, the function callee expression
// may contain side effects (e.g., added by addinit during
// inlconv2expr or inlconv2list). Make sure to preserve these,
// if necessary (#42703).
- if n.Op == OCALLFUNC {
- callee := n.Left
- for callee.Op == OCONVNOP {
- ninit.AppendNodes(&callee.Ninit)
- callee = callee.Left
+ if n.Op() == ir.OCALLFUNC {
+ callee := n.Left()
+ for callee.Op() == ir.OCONVNOP {
+ ninit.AppendNodes(callee.PtrInit())
+ callee = callee.Left()
}
- if callee.Op != ONAME && callee.Op != OCLOSURE {
- Fatalf("unexpected callee expression: %v", callee)
+ if callee.Op() != ir.ONAME && callee.Op() != ir.OCLOSURE && callee.Op() != ir.OMETHEXPR {
+ base.Fatalf("unexpected callee expression: %v", callee)
}
}
// Make temp names to use instead of the originals.
- inlvars := make(map[*Node]*Node)
+ inlvars := make(map[ir.Node]ir.Node)
// record formals/locals for later post-processing
- var inlfvars []*Node
+ var inlfvars []ir.Node
// Handle captured variables when inlining closures.
- if fn.Name.Defn != nil {
- if c := fn.Name.Defn.Func.Closure; c != nil {
- for _, v := range c.Func.Closure.Func.Cvars.Slice() {
- if v.Op == OXXX {
+ if fn.Name().Defn != nil {
+ if c := fn.Name().Defn.Func().OClosure; c != nil {
+ for _, v := range c.Func().ClosureVars.Slice() {
+ if v.Op() == ir.OXXX {
continue
}
- o := v.Name.Param.Outer
+ o := v.Name().Param.Outer
// make sure the outer param matches the inlining location
// NB: if we enabled inlining of functions containing OCLOSURE or refined
// the reassigned check via some sort of copy propagation this would most
// likely need to be changed to a loop to walk up to the correct Param
- if o == nil || (o.Name.Curfn != Curfn && o.Name.Curfn.Func.Closure != Curfn) {
- Fatalf("%v: unresolvable capture %v %v\n", n.Line(), fn, v)
+ if o == nil || (o.Name().Curfn != Curfn && o.Name().Curfn.Func().OClosure != Curfn) {
+ base.Fatalf("%v: unresolvable capture %v %v\n", ir.Line(n), fn, v)
}
- if v.Name.Byval() {
+ if v.Name().Byval() {
iv := typecheck(inlvar(v), ctxExpr)
- ninit.Append(nod(ODCL, iv, nil))
- ninit.Append(typecheck(nod(OAS, iv, o), ctxStmt))
+ ninit.Append(ir.Nod(ir.ODCL, iv, nil))
+ ninit.Append(typecheck(ir.Nod(ir.OAS, iv, o), ctxStmt))
inlvars[v] = iv
} else {
- addr := newname(lookup("&" + v.Sym.Name))
- addr.Type = types.NewPtr(v.Type)
+ addr := NewName(lookup("&" + v.Sym().Name))
+ addr.SetType(types.NewPtr(v.Type()))
ia := typecheck(inlvar(addr), ctxExpr)
- ninit.Append(nod(ODCL, ia, nil))
- ninit.Append(typecheck(nod(OAS, ia, nod(OADDR, o, nil)), ctxStmt))
+ ninit.Append(ir.Nod(ir.ODCL, ia, nil))
+ ninit.Append(typecheck(ir.Nod(ir.OAS, ia, ir.Nod(ir.OADDR, o, nil)), ctxStmt))
inlvars[addr] = ia
// When capturing by reference, all occurrence of the captured var
// must be substituted with dereference of the temporary address
- inlvars[v] = typecheck(nod(ODEREF, ia, nil), ctxExpr)
+ inlvars[v] = typecheck(ir.Nod(ir.ODEREF, ia, nil), ctxExpr)
}
}
}
}
- for _, ln := range fn.Func.Inl.Dcl {
- if ln.Op != ONAME {
+ for _, ln := range fn.Func().Inl.Dcl {
+ if ln.Op() != ir.ONAME {
continue
}
- if ln.Class() == PPARAMOUT { // return values handled below.
+ if ln.Class() == ir.PPARAMOUT { // return values handled below.
continue
}
- if ln.isParamStackCopy() { // ignore the on-stack copy of a parameter that moved to the heap
+ if isParamStackCopy(ln) { // ignore the on-stack copy of a parameter that moved to the heap
// TODO(mdempsky): Remove once I'm confident
// this never actually happens. We currently
// perform inlining before escape analysis, so
// nothing should have moved to the heap yet.
- Fatalf("impossible: %v", ln)
+ base.Fatalf("impossible: %v", ln)
}
inlf := typecheck(inlvar(ln), ctxExpr)
inlvars[ln] = inlf
- if genDwarfInline > 0 {
- if ln.Class() == PPARAM {
- inlf.Name.SetInlFormal(true)
+ if base.Flag.GenDwarfInl > 0 {
+ if ln.Class() == ir.PPARAM {
+ inlf.Name().SetInlFormal(true)
} else {
- inlf.Name.SetInlLocal(true)
+ inlf.Name().SetInlLocal(true)
}
- inlf.Pos = ln.Pos
+ inlf.SetPos(ln.Pos())
inlfvars = append(inlfvars, inlf)
}
}
nreturns := 0
- inspectList(asNodes(fn.Func.Inl.Body), func(n *Node) bool {
- if n != nil && n.Op == ORETURN {
+ ir.InspectList(ir.AsNodes(fn.Func().Inl.Body), func(n ir.Node) bool {
+ if n != nil && n.Op() == ir.ORETURN {
nreturns++
}
return true
@@ -1063,10 +1053,10 @@ func mkinlcall(n, fn *Node, maxCost int32, inlMap map[*Node]bool) *Node {
delayretvars := nreturns == 1
// temporaries for return values.
- var retvars []*Node
- for i, t := range fn.Type.Results().Fields().Slice() {
- var m *Node
- if n := asNode(t.Nname); n != nil && !n.isBlank() && !strings.HasPrefix(n.Sym.Name, "~r") {
+ var retvars []ir.Node
+ for i, t := range fn.Type().Results().Fields().Slice() {
+ var m ir.Node
+ if n := ir.AsNode(t.Nname); n != nil && !ir.IsBlank(n) && !strings.HasPrefix(n.Sym().Name, "~r") {
m = inlvar(n)
m = typecheck(m, ctxExpr)
inlvars[n] = m
@@ -1076,13 +1066,13 @@ func mkinlcall(n, fn *Node, maxCost int32, inlMap map[*Node]bool) *Node {
m = retvar(t, i)
}
- if genDwarfInline > 0 {
+ if base.Flag.GenDwarfInl > 0 {
// Don't update the src.Pos on a return variable if it
// was manufactured by the inliner (e.g. "~R2"); such vars
// were not part of the original callee.
- if !strings.HasPrefix(m.Sym.Name, "~R") {
- m.Name.SetInlFormal(true)
- m.Pos = t.Pos
+ if !strings.HasPrefix(m.Sym().Name, "~R") {
+ m.Name().SetInlFormal(true)
+ m.SetPos(t.Pos)
inlfvars = append(inlfvars, m)
}
}
@@ -1091,53 +1081,53 @@ func mkinlcall(n, fn *Node, maxCost int32, inlMap map[*Node]bool) *Node {
}
// Assign arguments to the parameters' temp names.
- as := nod(OAS2, nil, nil)
+ as := ir.Nod(ir.OAS2, nil, nil)
as.SetColas(true)
- if n.Op == OCALLMETH {
- if n.Left.Left == nil {
- Fatalf("method call without receiver: %+v", n)
+ if n.Op() == ir.OCALLMETH {
+ if n.Left().Left() == nil {
+ base.Fatalf("method call without receiver: %+v", n)
}
- as.Rlist.Append(n.Left.Left)
+ as.PtrRlist().Append(n.Left().Left())
}
- as.Rlist.Append(n.List.Slice()...)
+ as.PtrRlist().Append(n.List().Slice()...)
// For non-dotted calls to variadic functions, we assign the
// variadic parameter's temp name separately.
- var vas *Node
+ var vas ir.Node
- if recv := fn.Type.Recv(); recv != nil {
- as.List.Append(inlParam(recv, as, inlvars))
+ if recv := fn.Type().Recv(); recv != nil {
+ as.PtrList().Append(inlParam(recv, as, inlvars))
}
- for _, param := range fn.Type.Params().Fields().Slice() {
+ for _, param := range fn.Type().Params().Fields().Slice() {
// For ordinary parameters or variadic parameters in
// dotted calls, just add the variable to the
// assignment list, and we're done.
if !param.IsDDD() || n.IsDDD() {
- as.List.Append(inlParam(param, as, inlvars))
+ as.PtrList().Append(inlParam(param, as, inlvars))
continue
}
// Otherwise, we need to collect the remaining values
// to pass as a slice.
- x := as.List.Len()
- for as.List.Len() < as.Rlist.Len() {
- as.List.Append(argvar(param.Type, as.List.Len()))
+ x := as.List().Len()
+ for as.List().Len() < as.Rlist().Len() {
+ as.PtrList().Append(argvar(param.Type, as.List().Len()))
}
- varargs := as.List.Slice()[x:]
+ varargs := as.List().Slice()[x:]
- vas = nod(OAS, nil, nil)
- vas.Left = inlParam(param, vas, inlvars)
+ vas = ir.Nod(ir.OAS, nil, nil)
+ vas.SetLeft(inlParam(param, vas, inlvars))
if len(varargs) == 0 {
- vas.Right = nodnil()
- vas.Right.Type = param.Type
+ vas.SetRight(nodnil())
+ vas.Right().SetType(param.Type)
} else {
- vas.Right = nod(OCOMPLIT, nil, typenod(param.Type))
- vas.Right.List.Set(varargs)
+ vas.SetRight(ir.Nod(ir.OCOMPLIT, nil, typenod(param.Type)))
+ vas.Right().PtrList().Set(varargs)
}
}
- if as.Rlist.Len() != 0 {
+ if as.Rlist().Len() != 0 {
as = typecheck(as, ctxStmt)
ninit.Append(as)
}
@@ -1150,8 +1140,8 @@ func mkinlcall(n, fn *Node, maxCost int32, inlMap map[*Node]bool) *Node {
if !delayretvars {
// Zero the return parameters.
for _, n := range retvars {
- ninit.Append(nod(ODCL, n, nil))
- ras := nod(OAS, n, nil)
+ ninit.Append(ir.Nod(ir.ODCL, n, nil))
+ ras := ir.Nod(ir.OAS, n, nil)
ras = typecheck(ras, ctxStmt)
ninit.Append(ras)
}
@@ -1162,25 +1152,25 @@ func mkinlcall(n, fn *Node, maxCost int32, inlMap map[*Node]bool) *Node {
inlgen++
parent := -1
- if b := Ctxt.PosTable.Pos(n.Pos).Base(); b != nil {
+ if b := base.Ctxt.PosTable.Pos(n.Pos()).Base(); b != nil {
parent = b.InliningIndex()
}
- newIndex := Ctxt.InlTree.Add(parent, n.Pos, fn.Sym.Linksym())
+ newIndex := base.Ctxt.InlTree.Add(parent, n.Pos(), fn.Sym().Linksym())
// Add an inline mark just before the inlined body.
// This mark is inline in the code so that it's a reasonable spot
// to put a breakpoint. Not sure if that's really necessary or not
// (in which case it could go at the end of the function instead).
// Note issue 28603.
- inlMark := nod(OINLMARK, nil, nil)
- inlMark.Pos = n.Pos.WithIsStmt()
- inlMark.Xoffset = int64(newIndex)
+ inlMark := ir.Nod(ir.OINLMARK, nil, nil)
+ inlMark.SetPos(n.Pos().WithIsStmt())
+ inlMark.SetOffset(int64(newIndex))
ninit.Append(inlMark)
- if genDwarfInline > 0 {
- if !fn.Sym.Linksym().WasInlined() {
- Ctxt.DwFixups.SetPrecursorFunc(fn.Sym.Linksym(), fn)
- fn.Sym.Linksym().Set(obj.AttrWasInlined, true)
+ if base.Flag.GenDwarfInl > 0 {
+ if !fn.Sym().Linksym().WasInlined() {
+ base.Ctxt.DwFixups.SetPrecursorFunc(fn.Sym().Linksym(), fn)
+ fn.Sym().Linksym().Set(obj.AttrWasInlined, true)
}
}
@@ -1193,26 +1183,26 @@ func mkinlcall(n, fn *Node, maxCost int32, inlMap map[*Node]bool) *Node {
newInlIndex: newIndex,
}
- body := subst.list(asNodes(fn.Func.Inl.Body))
+ body := subst.list(ir.AsNodes(fn.Func().Inl.Body))
- lab := nodSym(OLABEL, nil, retlabel)
+ lab := nodSym(ir.OLABEL, nil, retlabel)
body = append(body, lab)
typecheckslice(body, ctxStmt)
- if genDwarfInline > 0 {
+ if base.Flag.GenDwarfInl > 0 {
for _, v := range inlfvars {
- v.Pos = subst.updatedPos(v.Pos)
+ v.SetPos(subst.updatedPos(v.Pos()))
}
}
//dumplist("ninit post", ninit);
- call := nod(OINLCALL, nil, nil)
- call.Ninit.Set(ninit.Slice())
- call.Nbody.Set(body)
- call.Rlist.Set(retvars)
- call.Type = n.Type
+ call := ir.Nod(ir.OINLCALL, nil, nil)
+ call.PtrInit().Set(ninit.Slice())
+ call.PtrBody().Set(body)
+ call.PtrRlist().Set(retvars)
+ call.SetType(n.Type())
call.SetTypecheck(1)
// transitive inlining
@@ -1221,15 +1211,15 @@ func mkinlcall(n, fn *Node, maxCost int32, inlMap map[*Node]bool) *Node {
// instead we emit the things that the body needs
// and each use must redo the inlining.
// luckily these are small.
- inlnodelist(call.Nbody, maxCost, inlMap)
- for _, n := range call.Nbody.Slice() {
- if n.Op == OINLCALL {
+ inlnodelist(call.Body(), maxCost, inlMap)
+ for _, n := range call.Body().Slice() {
+ if n.Op() == ir.OINLCALL {
inlconv2stmt(n)
}
}
- if Debug.m > 2 {
- fmt.Printf("%v: After inlining %+v\n\n", call.Line(), call)
+ if base.Flag.LowerM > 2 {
+ fmt.Printf("%v: After inlining %+v\n\n", ir.Line(call), call)
}
return call
@@ -1238,42 +1228,42 @@ func mkinlcall(n, fn *Node, maxCost int32, inlMap map[*Node]bool) *Node {
// Every time we expand a function we generate a new set of tmpnames,
// PAUTO's in the calling functions, and link them off of the
// PPARAM's, PAUTOS and PPARAMOUTs of the called function.
-func inlvar(var_ *Node) *Node {
- if Debug.m > 3 {
+func inlvar(var_ ir.Node) ir.Node {
+ if base.Flag.LowerM > 3 {
fmt.Printf("inlvar %+v\n", var_)
}
- n := newname(var_.Sym)
- n.Type = var_.Type
- n.SetClass(PAUTO)
- n.Name.SetUsed(true)
- n.Name.Curfn = Curfn // the calling function, not the called one
- n.Name.SetAddrtaken(var_.Name.Addrtaken())
+ n := NewName(var_.Sym())
+ n.SetType(var_.Type())
+ n.SetClass(ir.PAUTO)
+ n.Name().SetUsed(true)
+ n.Name().Curfn = Curfn // the calling function, not the called one
+ n.Name().SetAddrtaken(var_.Name().Addrtaken())
- Curfn.Func.Dcl = append(Curfn.Func.Dcl, n)
+ Curfn.Func().Dcl = append(Curfn.Func().Dcl, n)
return n
}
// Synthesize a variable to store the inlined function's results in.
-func retvar(t *types.Field, i int) *Node {
- n := newname(lookupN("~R", i))
- n.Type = t.Type
- n.SetClass(PAUTO)
- n.Name.SetUsed(true)
- n.Name.Curfn = Curfn // the calling function, not the called one
- Curfn.Func.Dcl = append(Curfn.Func.Dcl, n)
+func retvar(t *types.Field, i int) ir.Node {
+ n := NewName(lookupN("~R", i))
+ n.SetType(t.Type)
+ n.SetClass(ir.PAUTO)
+ n.Name().SetUsed(true)
+ n.Name().Curfn = Curfn // the calling function, not the called one
+ Curfn.Func().Dcl = append(Curfn.Func().Dcl, n)
return n
}
// Synthesize a variable to store the inlined function's arguments
// when they come from a multiple return call.
-func argvar(t *types.Type, i int) *Node {
- n := newname(lookupN("~arg", i))
- n.Type = t.Elem()
- n.SetClass(PAUTO)
- n.Name.SetUsed(true)
- n.Name.Curfn = Curfn // the calling function, not the called one
- Curfn.Func.Dcl = append(Curfn.Func.Dcl, n)
+func argvar(t *types.Type, i int) ir.Node {
+ n := NewName(lookupN("~arg", i))
+ n.SetType(t.Elem())
+ n.SetClass(ir.PAUTO)
+ n.Name().SetUsed(true)
+ n.Name().Curfn = Curfn // the calling function, not the called one
+ Curfn.Func().Dcl = append(Curfn.Func().Dcl, n)
return n
}
@@ -1284,13 +1274,13 @@ type inlsubst struct {
retlabel *types.Sym
// Temporary result variables.
- retvars []*Node
+ retvars []ir.Node
// Whether result variables should be initialized at the
// "return" statement.
delayretvars bool
- inlvars map[*Node]*Node
+ inlvars map[ir.Node]ir.Node
// bases maps from original PosBase to PosBase with an extra
// inlined call frame.
@@ -1302,8 +1292,8 @@ type inlsubst struct {
}
// list inlines a list of nodes.
-func (subst *inlsubst) list(ll Nodes) []*Node {
- s := make([]*Node, 0, ll.Len())
+func (subst *inlsubst) list(ll ir.Nodes) []ir.Node {
+ s := make([]ir.Node, 0, ll.Len())
for _, n := range ll.Slice() {
s = append(s, subst.node(n))
}
@@ -1314,98 +1304,101 @@ func (subst *inlsubst) list(ll Nodes) []*Node {
// inlined function, substituting references to input/output
// parameters with ones to the tmpnames, and substituting returns with
// assignments to the output.
-func (subst *inlsubst) node(n *Node) *Node {
+func (subst *inlsubst) node(n ir.Node) ir.Node {
if n == nil {
return nil
}
- switch n.Op {
- case ONAME:
+ switch n.Op() {
+ case ir.ONAME:
if inlvar := subst.inlvars[n]; inlvar != nil { // These will be set during inlnode
- if Debug.m > 2 {
+ if base.Flag.LowerM > 2 {
fmt.Printf("substituting name %+v -> %+v\n", n, inlvar)
}
return inlvar
}
- if Debug.m > 2 {
+ if base.Flag.LowerM > 2 {
fmt.Printf("not substituting name %+v\n", n)
}
return n
- case OLITERAL, OTYPE:
+ case ir.OMETHEXPR:
+ return n
+
+ case ir.OLITERAL, ir.ONIL, ir.OTYPE:
// If n is a named constant or type, we can continue
// using it in the inline copy. Otherwise, make a copy
// so we can update the line number.
- if n.Sym != nil {
+ if n.Sym() != nil {
return n
}
// Since we don't handle bodies with closures, this return is guaranteed to belong to the current inlined function.
// dump("Return before substitution", n);
- case ORETURN:
- m := nodSym(OGOTO, nil, subst.retlabel)
- m.Ninit.Set(subst.list(n.Ninit))
+ case ir.ORETURN:
+ m := nodSym(ir.OGOTO, nil, subst.retlabel)
+ m.PtrInit().Set(subst.list(n.Init()))
- if len(subst.retvars) != 0 && n.List.Len() != 0 {
- as := nod(OAS2, nil, nil)
+ if len(subst.retvars) != 0 && n.List().Len() != 0 {
+ as := ir.Nod(ir.OAS2, nil, nil)
// Make a shallow copy of retvars.
// Otherwise OINLCALL.Rlist will be the same list,
// and later walk and typecheck may clobber it.
for _, n := range subst.retvars {
- as.List.Append(n)
+ as.PtrList().Append(n)
}
- as.Rlist.Set(subst.list(n.List))
+ as.PtrRlist().Set(subst.list(n.List()))
if subst.delayretvars {
- for _, n := range as.List.Slice() {
- as.Ninit.Append(nod(ODCL, n, nil))
- n.Name.Defn = as
+ for _, n := range as.List().Slice() {
+ as.PtrInit().Append(ir.Nod(ir.ODCL, n, nil))
+ n.Name().Defn = as
}
}
as = typecheck(as, ctxStmt)
- m.Ninit.Append(as)
+ m.PtrInit().Append(as)
}
- typecheckslice(m.Ninit.Slice(), ctxStmt)
+ typecheckslice(m.Init().Slice(), ctxStmt)
m = typecheck(m, ctxStmt)
// dump("Return after substitution", m);
return m
- case OGOTO, OLABEL:
- m := n.copy()
- m.Pos = subst.updatedPos(m.Pos)
- m.Ninit.Set(nil)
- p := fmt.Sprintf("%s·%d", n.Sym.Name, inlgen)
- m.Sym = lookup(p)
+ case ir.OGOTO, ir.OLABEL:
+ m := ir.Copy(n)
+ m.SetPos(subst.updatedPos(m.Pos()))
+ m.PtrInit().Set(nil)
+ p := fmt.Sprintf("%s·%d", n.Sym().Name, inlgen)
+ m.SetSym(lookup(p))
return m
}
- m := n.copy()
- m.Pos = subst.updatedPos(m.Pos)
- m.Ninit.Set(nil)
+ m := ir.Copy(n)
+ m.SetPos(subst.updatedPos(m.Pos()))
+ m.PtrInit().Set(nil)
- if n.Op == OCLOSURE {
- Fatalf("cannot inline function containing closure: %+v", n)
+ if n.Op() == ir.OCLOSURE {
+ base.Fatalf("cannot inline function containing closure: %+v", n)
}
- m.Left = subst.node(n.Left)
- m.Right = subst.node(n.Right)
- m.List.Set(subst.list(n.List))
- m.Rlist.Set(subst.list(n.Rlist))
- m.Ninit.Set(append(m.Ninit.Slice(), subst.list(n.Ninit)...))
- m.Nbody.Set(subst.list(n.Nbody))
+ m.SetLeft(subst.node(n.Left()))
+ m.SetRight(subst.node(n.Right()))
+ m.PtrList().Set(subst.list(n.List()))
+ m.PtrRlist().Set(subst.list(n.Rlist()))
+ m.PtrInit().Set(append(m.Init().Slice(), subst.list(n.Init())...))
+ m.PtrBody().Set(subst.list(n.Body()))
return m
}
func (subst *inlsubst) updatedPos(xpos src.XPos) src.XPos {
- pos := Ctxt.PosTable.Pos(xpos)
+ pos := base.Ctxt.PosTable.Pos(xpos)
oldbase := pos.Base() // can be nil
newbase := subst.bases[oldbase]
if newbase == nil {
@@ -1413,13 +1406,13 @@ func (subst *inlsubst) updatedPos(xpos src.XPos) src.XPos {
subst.bases[oldbase] = newbase
}
pos.SetBase(newbase)
- return Ctxt.PosTable.XPos(pos)
+ return base.Ctxt.PosTable.XPos(pos)
}
-func pruneUnusedAutos(ll []*Node, vis *hairyVisitor) []*Node {
- s := make([]*Node, 0, len(ll))
+func pruneUnusedAutos(ll []ir.Node, vis *hairyVisitor) []ir.Node {
+ s := make([]ir.Node, 0, len(ll))
for _, n := range ll {
- if n.Class() == PAUTO {
+ if n.Class() == ir.PAUTO {
if _, found := vis.usedLocals[n]; !found {
continue
}
@@ -1431,49 +1424,49 @@ func pruneUnusedAutos(ll []*Node, vis *hairyVisitor) []*Node {
// devirtualize replaces interface method calls within fn with direct
// concrete-type method calls where applicable.
-func devirtualize(fn *Node) {
+func devirtualize(fn ir.Node) {
Curfn = fn
- inspectList(fn.Nbody, func(n *Node) bool {
- if n.Op == OCALLINTER {
+ ir.InspectList(fn.Body(), func(n ir.Node) bool {
+ if n.Op() == ir.OCALLINTER {
devirtualizeCall(n)
}
return true
})
}
-func devirtualizeCall(call *Node) {
- recv := staticValue(call.Left.Left)
- if recv.Op != OCONVIFACE {
+func devirtualizeCall(call ir.Node) {
+ recv := staticValue(call.Left().Left())
+ if recv.Op() != ir.OCONVIFACE {
return
}
- typ := recv.Left.Type
+ typ := recv.Left().Type()
if typ.IsInterface() {
return
}
- x := nodl(call.Left.Pos, ODOTTYPE, call.Left.Left, nil)
- x.Type = typ
- x = nodlSym(call.Left.Pos, OXDOT, x, call.Left.Sym)
+ x := ir.NodAt(call.Left().Pos(), ir.ODOTTYPE, call.Left().Left(), nil)
+ x.SetType(typ)
+ x = nodlSym(call.Left().Pos(), ir.OXDOT, x, call.Left().Sym())
x = typecheck(x, ctxExpr|ctxCallee)
- switch x.Op {
- case ODOTMETH:
- if Debug.m != 0 {
- Warnl(call.Pos, "devirtualizing %v to %v", call.Left, typ)
- }
- call.Op = OCALLMETH
- call.Left = x
- case ODOTINTER:
+ switch x.Op() {
+ case ir.ODOTMETH:
+ if base.Flag.LowerM != 0 {
+ base.WarnfAt(call.Pos(), "devirtualizing %v to %v", call.Left(), typ)
+ }
+ call.SetOp(ir.OCALLMETH)
+ call.SetLeft(x)
+ case ir.ODOTINTER:
// Promoted method from embedded interface-typed field (#42279).
- if Debug.m != 0 {
- Warnl(call.Pos, "partially devirtualizing %v to %v", call.Left, typ)
+ if base.Flag.LowerM != 0 {
+ base.WarnfAt(call.Pos(), "partially devirtualizing %v to %v", call.Left(), typ)
}
- call.Op = OCALLINTER
- call.Left = x
+ call.SetOp(ir.OCALLINTER)
+ call.SetLeft(x)
default:
// TODO(mdempsky): Turn back into Fatalf after more testing.
- if Debug.m != 0 {
- Warnl(call.Pos, "failed to devirtualize %v (%v)", x, x.Op)
+ if base.Flag.LowerM != 0 {
+ base.WarnfAt(call.Pos(), "failed to devirtualize %v (%v)", x, x.Op())
}
return
}
@@ -1484,12 +1477,12 @@ func devirtualizeCall(call *Node) {
// Receiver parameter size may have changed; need to update
// call.Type to get correct stack offsets for result
// parameters.
- checkwidth(x.Type)
- switch ft := x.Type; ft.NumResults() {
+ checkwidth(x.Type())
+ switch ft := x.Type(); ft.NumResults() {
case 0:
case 1:
- call.Type = ft.Results().Field(0).Type
+ call.SetType(ft.Results().Field(0).Type)
default:
- call.Type = ft.Results()
+ call.SetType(ft.Results())
}
}