aboutsummaryrefslogtreecommitdiff
path: root/src/strconv
diff options
context:
space:
mode:
authorRémy Oudompheng <remyoudompheng@gmail.com>2019-03-24 23:21:38 +0100
committerEmmanuel Odeke <emmanuel@orijtech.com>2021-04-15 08:44:21 +0000
commit0184b445c04a0f30e34ce624298547f12630f3aa (patch)
tree72ea899a36bad8c66286768cf48154dd9303ae42 /src/strconv
parent8f4c5068e07a03e16998b6d8d38a0482433fc7fe (diff)
downloadgo-0184b445c04a0f30e34ce624298547f12630f3aa.tar.gz
go-0184b445c04a0f30e34ce624298547f12630f3aa.zip
strconv: implement Ryū-like algorithm for fixed precision ftoa
This patch implements a simplified version of Ulf Adams, "Ryū: Fast Float-to-String Conversion" (doi:10.1145/3192366.3192369) for formatting floating-point numbers with a fixed number of decimal digits. It uses the same principles but does not need to handle the complex task of finding a shortest representation. This allows to handle a few more cases than Grisu3, notably formatting with up to 18 significant digits. name old time/op new time/op delta AppendFloat/32Fixed8Hard-4 72.0ns ± 2% 56.0ns ± 2% -22.28% (p=0.000 n=10+10) AppendFloat/32Fixed9Hard-4 74.8ns ± 0% 64.2ns ± 2% -14.16% (p=0.000 n=8+10) AppendFloat/64Fixed1-4 60.4ns ± 1% 54.2ns ± 1% -10.31% (p=0.000 n=10+9) AppendFloat/64Fixed2-4 66.3ns ± 1% 53.3ns ± 1% -19.54% (p=0.000 n=10+9) AppendFloat/64Fixed3-4 61.0ns ± 1% 55.0ns ± 2% -9.80% (p=0.000 n=9+10) AppendFloat/64Fixed4-4 66.9ns ± 0% 52.0ns ± 2% -22.20% (p=0.000 n=8+10) AppendFloat/64Fixed12-4 95.5ns ± 1% 76.2ns ± 3% -20.19% (p=0.000 n=10+9) AppendFloat/64Fixed16-4 1.62µs ± 0% 0.07µs ± 2% -95.69% (p=0.000 n=10+10) AppendFloat/64Fixed12Hard-4 1.27µs ± 1% 0.07µs ± 1% -94.83% (p=0.000 n=9+9) AppendFloat/64Fixed17Hard-4 3.68µs ± 1% 0.08µs ± 2% -97.86% (p=0.000 n=10+9) AppendFloat/64Fixed18Hard-4 3.67µs ± 0% 3.72µs ± 1% +1.44% (p=0.000 n=9+10) Updates #15672 Change-Id: I160963e141dd48287ad8cf57bcc3c686277788e8 Reviewed-on: https://go-review.googlesource.com/c/go/+/170079 Reviewed-by: Emmanuel Odeke <emmanuel@orijtech.com> Trust: Emmanuel Odeke <emmanuel@orijtech.com> Trust: Nigel Tao <nigeltao@golang.org> Trust: Robert Griesemer <gri@golang.org> Run-TryBot: Emmanuel Odeke <emmanuel@orijtech.com> TryBot-Result: Go Bot <gobot@golang.org>
Diffstat (limited to 'src/strconv')
-rw-r--r--src/strconv/ftoa.go13
-rw-r--r--src/strconv/ftoa_test.go16
-rw-r--r--src/strconv/ftoaryu.go311
-rw-r--r--src/strconv/ftoaryu_test.go31
-rw-r--r--src/strconv/internal_test.go8
5 files changed, 374 insertions, 5 deletions
diff --git a/src/strconv/ftoa.go b/src/strconv/ftoa.go
index 8ce6ef30b4..a3bff52bc8 100644
--- a/src/strconv/ftoa.go
+++ b/src/strconv/ftoa.go
@@ -143,12 +143,15 @@ func genericFtoa(dst []byte, val float64, fmt byte, prec, bitSize int) []byte {
}
digits = prec
}
- if digits <= 15 {
- // try fast algorithm when the number of digits is reasonable.
- var buf [24]byte
+ var buf [24]byte
+ if bitSize == 32 && digits <= 9 {
digs.d = buf[:]
- f := extFloat{mant, exp - int(flt.mantbits), neg}
- ok = f.FixedDecimal(&digs, digits)
+ ryuFtoaFixed32(&digs, uint32(mant), exp-int(flt.mantbits), digits)
+ ok = true
+ } else if digits <= 18 {
+ digs.d = buf[:]
+ ryuFtoaFixed64(&digs, mant, exp-int(flt.mantbits), digits)
+ ok = true
}
}
if !ok {
diff --git a/src/strconv/ftoa_test.go b/src/strconv/ftoa_test.go
index 99cca17542..b1685aeb20 100644
--- a/src/strconv/ftoa_test.go
+++ b/src/strconv/ftoa_test.go
@@ -77,6 +77,14 @@ var ftoatests = []ftoaTest{
{1.2345e6, 'f', 5, "1234500.00000"},
{1.2345e6, 'g', 5, "1.2345e+06"},
+ // Round to even
+ {1.2345e6, 'e', 3, "1.234e+06"},
+ {1.2355e6, 'e', 3, "1.236e+06"},
+ {1.2345, 'f', 3, "1.234"},
+ {1.2355, 'f', 3, "1.236"},
+ {1234567890123456.5, 'e', 15, "1.234567890123456e+15"},
+ {1234567890123457.5, 'e', 15, "1.234567890123458e+15"},
+
{1e23, 'e', 17, "9.99999999999999916e+22"},
{1e23, 'f', 17, "99999999999999991611392.00000000000000000"},
{1e23, 'g', 17, "9.9999999999999992e+22"},
@@ -241,11 +249,19 @@ var ftoaBenches = []struct {
{"32Point", 339.7784, 'g', -1, 32},
{"32Exp", -5.09e25, 'g', -1, 32},
{"32NegExp", -5.11e-25, 'g', -1, 32},
+ {"32Fixed8Hard", math.Ldexp(15961084, -125), 'e', 8, 32},
+ {"32Fixed9Hard", math.Ldexp(14855922, -83), 'e', 9, 32},
{"64Fixed1", 123456, 'e', 3, 64},
{"64Fixed2", 123.456, 'e', 3, 64},
{"64Fixed3", 1.23456e+78, 'e', 3, 64},
{"64Fixed4", 1.23456e-78, 'e', 3, 64},
+ {"64Fixed12", 1.23456e-78, 'e', 12, 64},
+ {"64Fixed16", 1.23456e-78, 'e', 16, 64},
+ // From testdata/testfp.txt
+ {"64Fixed12Hard", math.Ldexp(6965949469487146, -249), 'e', 12, 64},
+ {"64Fixed17Hard", math.Ldexp(8887055249355788, 665), 'e', 17, 64},
+ {"64Fixed18Hard", math.Ldexp(6994187472632449, 690), 'e', 18, 64},
// Trigger slow path (see issue #15672).
{"Slowpath64", 622666234635.3213e-320, 'e', -1, 64},
diff --git a/src/strconv/ftoaryu.go b/src/strconv/ftoaryu.go
new file mode 100644
index 0000000000..44a55b1da9
--- /dev/null
+++ b/src/strconv/ftoaryu.go
@@ -0,0 +1,311 @@
+// Copyright 2021 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package strconv
+
+import (
+ "math/bits"
+)
+
+// binary to decimal conversion using the Ryū algorithm.
+//
+// See Ulf Adams, "Ryū: Fast Float-to-String Conversion" (doi:10.1145/3192366.3192369)
+//
+// Fixed precision formatting is a variant of the original paper's
+// algorithm, where a single multiplication by 10^k is required,
+// sharing the same rounding guarantees.
+
+// ryuFtoaFixed32 formats mant*(2^exp) with prec decimal digits.
+func ryuFtoaFixed32(d *decimalSlice, mant uint32, exp int, prec int) {
+ if prec < 0 {
+ panic("ryuFtoaFixed32 called with negative prec")
+ }
+ if prec > 9 {
+ panic("ryuFtoaFixed32 called with prec > 9")
+ }
+ // Zero input.
+ if mant == 0 {
+ d.nd, d.dp = 0, 0
+ return
+ }
+ // Renormalize to a 25-bit mantissa.
+ e2 := exp
+ if b := bits.Len32(mant); b < 25 {
+ mant <<= uint(25 - b)
+ e2 += int(b) - 25
+ }
+ // Choose an exponent such that rounded mant*(2^e2)*(10^q) has
+ // at least prec decimal digits, i.e
+ // mant*(2^e2)*(10^q) >= 10^(prec-1)
+ // Because mant >= 2^24, it is enough to choose:
+ // 2^(e2+24) >= 10^(-q+prec-1)
+ // or q = -mulByLog2Log10(e2+24) + prec - 1
+ q := -mulByLog2Log10(e2+24) + prec - 1
+
+ // Now compute mant*(2^e2)*(10^q).
+ // Is it an exact computation?
+ // Only small positive powers of 10 are exact (5^28 has 66 bits).
+ exact := q <= 27 && q >= 0
+
+ di, dexp2, d0 := mult64bitPow10(mant, e2, q)
+ if dexp2 >= 0 {
+ panic("not enough significant bits after mult64bitPow10")
+ }
+ // As a special case, computation might still be exact, if exponent
+ // was negative and if it amounts to computing an exact division.
+ // In that case, we ignore all lower bits.
+ // Note that division by 10^11 cannot be exact as 5^11 has 26 bits.
+ if q < 0 && q >= -10 && divisibleByPower5(uint64(mant), -q) {
+ exact = true
+ d0 = true
+ }
+ // Remove extra lower bits and keep rounding info.
+ extra := uint(-dexp2)
+ extraMask := uint32(1<<extra - 1)
+
+ di, dfrac := di>>extra, di&extraMask
+ roundUp := false
+ if exact {
+ // If we computed an exact product, d + 1/2
+ // should round to d+1 if 'd' is odd.
+ roundUp = dfrac > 1<<(extra-1) ||
+ (dfrac == 1<<(extra-1) && !d0) ||
+ (dfrac == 1<<(extra-1) && d0 && di&1 == 1)
+ } else {
+ // otherwise, d+1/2 always rounds up because
+ // we truncated below.
+ roundUp = dfrac>>(extra-1) == 1
+ }
+ if dfrac != 0 {
+ d0 = false
+ }
+ // Proceed to the requested number of digits
+ formatDecimal(d, uint64(di), !d0, roundUp, prec)
+ // Adjust exponent
+ d.dp -= q
+}
+
+// ryuFtoaFixed64 formats mant*(2^exp) with prec decimal digits.
+func ryuFtoaFixed64(d *decimalSlice, mant uint64, exp int, prec int) {
+ if prec > 18 {
+ panic("ryuFtoaFixed64 called with prec > 18")
+ }
+ // Zero input.
+ if mant == 0 {
+ d.nd, d.dp = 0, 0
+ return
+ }
+ // Renormalize to a 55-bit mantissa.
+ e2 := exp
+ if b := bits.Len64(mant); b < 55 {
+ mant = mant << uint(55-b)
+ e2 += int(b) - 55
+ }
+ // Choose an exponent such that rounded mant*(2^e2)*(10^q) has
+ // at least prec decimal digits, i.e
+ // mant*(2^e2)*(10^q) >= 10^(prec-1)
+ // Because mant >= 2^54, it is enough to choose:
+ // 2^(e2+54) >= 10^(-q+prec-1)
+ // or q = -mulByLog2Log10(e2+54) + prec - 1
+ //
+ // The minimal required exponent is -mulByLog2Log10(1025)+18 = -291
+ // The maximal required exponent is mulByLog2Log10(1074)+18 = 342
+ q := -mulByLog2Log10(e2+54) + prec - 1
+
+ // Now compute mant*(2^e2)*(10^q).
+ // Is it an exact computation?
+ // Only small positive powers of 10 are exact (5^55 has 128 bits).
+ exact := q <= 55 && q >= 0
+
+ di, dexp2, d0 := mult128bitPow10(mant, e2, q)
+ if dexp2 >= 0 {
+ panic("not enough significant bits after mult128bitPow10")
+ }
+ // As a special case, computation might still be exact, if exponent
+ // was negative and if it amounts to computing an exact division.
+ // In that case, we ignore all lower bits.
+ // Note that division by 10^23 cannot be exact as 5^23 has 54 bits.
+ if q < 0 && q >= -22 && divisibleByPower5(mant, -q) {
+ exact = true
+ d0 = true
+ }
+ // Remove extra lower bits and keep rounding info.
+ extra := uint(-dexp2)
+ extraMask := uint64(1<<extra - 1)
+
+ di, dfrac := di>>extra, di&extraMask
+ roundUp := false
+ if exact {
+ // If we computed an exact product, d + 1/2
+ // should round to d+1 if 'd' is odd.
+ roundUp = dfrac > 1<<(extra-1) ||
+ (dfrac == 1<<(extra-1) && !d0) ||
+ (dfrac == 1<<(extra-1) && d0 && di&1 == 1)
+ } else {
+ // otherwise, d+1/2 always rounds up because
+ // we truncated below.
+ roundUp = dfrac>>(extra-1) == 1
+ }
+ if dfrac != 0 {
+ d0 = false
+ }
+ // Proceed to the requested number of digits
+ formatDecimal(d, di, !d0, roundUp, prec)
+ // Adjust exponent
+ d.dp -= q
+}
+
+// formatDecimal fills d with at most prec decimal digits
+// of mantissa m. The boolean trunc indicates whether m
+// is truncated compared to the original number being formatted.
+func formatDecimal(d *decimalSlice, m uint64, trunc bool, roundUp bool, prec int) {
+ max := uint64pow10[prec]
+ trimmed := 0
+ for m >= max {
+ a, b := m/10, m%10
+ m = a
+ trimmed++
+ if b > 5 {
+ roundUp = true
+ } else if b < 5 {
+ roundUp = false
+ } else { // b == 5
+ // round up if there are trailing digits,
+ // or if the new value of m is odd (round-to-even convention)
+ roundUp = trunc || m&1 == 1
+ }
+ if b != 0 {
+ trunc = true
+ }
+ }
+ if roundUp {
+ m++
+ }
+ if m >= max {
+ // Happens if di was originally 99999....xx
+ m /= 10
+ trimmed++
+ }
+ // render digits (similar to formatBits)
+ n := uint(prec)
+ d.nd = int(prec)
+ v := m
+ for v >= 100 {
+ var v1, v2 uint64
+ if v>>32 == 0 {
+ v1, v2 = uint64(uint32(v)/100), uint64(uint32(v)%100)
+ } else {
+ v1, v2 = v/100, v%100
+ }
+ n -= 2
+ d.d[n+1] = smallsString[2*v2+1]
+ d.d[n+0] = smallsString[2*v2+0]
+ v = v1
+ }
+ if v > 0 {
+ n--
+ d.d[n] = smallsString[2*v+1]
+ }
+ if v >= 10 {
+ n--
+ d.d[n] = smallsString[2*v]
+ }
+ for d.d[d.nd-1] == '0' {
+ d.nd--
+ trimmed++
+ }
+ d.dp = d.nd + trimmed
+}
+
+// mulByLog2Log10 returns math.Floor(x * log(2)/log(10)) for an integer x in
+// the range -1600 <= x && x <= +1600.
+//
+// The range restriction lets us work in faster integer arithmetic instead of
+// slower floating point arithmetic. Correctness is verified by unit tests.
+func mulByLog2Log10(x int) int {
+ // log(2)/log(10) ≈ 0.30102999566 ≈ 78913 / 2^18
+ return (x * 78913) >> 18
+}
+
+// mulByLog10Log2 returns math.Floor(x * log(10)/log(2)) for an integer x in
+// the range -500 <= x && x <= +500.
+//
+// The range restriction lets us work in faster integer arithmetic instead of
+// slower floating point arithmetic. Correctness is verified by unit tests.
+func mulByLog10Log2(x int) int {
+ // log(10)/log(2) ≈ 3.32192809489 ≈ 108853 / 2^15
+ return (x * 108853) >> 15
+}
+
+// mult64bitPow10 takes a floating-point input with a 25-bit
+// mantissa and multiplies it with 10^q. The resulting mantissa
+// is m*P >> 57 where P is a 64-bit element of the detailedPowersOfTen tables.
+// It is typically 31 or 32-bit wide.
+// The returned boolean is true if all trimmed bits were zero.
+//
+// That is:
+// m*2^e2 * round(10^q) = resM * 2^resE + ε
+// exact = ε == 0
+func mult64bitPow10(m uint32, e2, q int) (resM uint32, resE int, exact bool) {
+ if q == 0 {
+ return m << 7, e2 - 7, true
+ }
+ if q < detailedPowersOfTenMinExp10 || detailedPowersOfTenMaxExp10 < q {
+ // This never happens due to the range of float32/float64 exponent
+ panic("mult64bitPow10: power of 10 is out of range")
+ }
+ pow := detailedPowersOfTen[q-detailedPowersOfTenMinExp10][1]
+ if q < 0 {
+ // Inverse powers of ten must be rounded up.
+ pow += 1
+ }
+ hi, lo := bits.Mul64(uint64(m), pow)
+ e2 += mulByLog10Log2(q) - 63 + 57
+ return uint32(hi<<7 | lo>>57), e2, lo<<7 == 0
+}
+
+// mult128bitPow10 takes a floating-point input with a 55-bit
+// mantissa and multiplies it with 10^q. The resulting mantissa
+// is m*P >> 119 where P is a 128-bit element of the detailedPowersOfTen tables.
+// It is typically 63 or 64-bit wide.
+// The returned boolean is true is all trimmed bits were zero.
+//
+// That is:
+// m*2^e2 * round(10^q) = resM * 2^resE + ε
+// exact = ε == 0
+func mult128bitPow10(m uint64, e2, q int) (resM uint64, resE int, exact bool) {
+ if q == 0 {
+ return m << 9, e2 - 9, true
+ }
+ if q < detailedPowersOfTenMinExp10 || detailedPowersOfTenMaxExp10 < q {
+ // This never happens due to the range of float32/float64 exponent
+ panic("mult128bitPow10: power of 10 is out of range")
+ }
+ pow := detailedPowersOfTen[q-detailedPowersOfTenMinExp10]
+ if q < 0 {
+ // Inverse powers of ten must be rounded up.
+ pow[0] += 1
+ }
+ e2 += mulByLog10Log2(q) - 127 + 119
+
+ // long multiplication
+ l1, l0 := bits.Mul64(m, pow[0])
+ h1, h0 := bits.Mul64(m, pow[1])
+ mid, carry := bits.Add64(l1, h0, 0)
+ h1 += carry
+ return h1<<9 | mid>>55, e2, mid<<9 == 0 && l0 == 0
+}
+
+func divisibleByPower5(m uint64, k int) bool {
+ if m == 0 {
+ return true
+ }
+ for i := 0; i < k; i++ {
+ if m%5 != 0 {
+ return false
+ }
+ m /= 5
+ }
+ return true
+}
diff --git a/src/strconv/ftoaryu_test.go b/src/strconv/ftoaryu_test.go
new file mode 100644
index 0000000000..9758619ad1
--- /dev/null
+++ b/src/strconv/ftoaryu_test.go
@@ -0,0 +1,31 @@
+// Copyright 2021 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package strconv_test
+
+import (
+ "math"
+ . "strconv"
+ "testing"
+)
+
+func TestMulByLog2Log10(t *testing.T) {
+ for x := -1600; x <= +1600; x++ {
+ iMath := MulByLog2Log10(x)
+ fMath := int(math.Floor(float64(x) * math.Ln2 / math.Ln10))
+ if iMath != fMath {
+ t.Errorf("mulByLog2Log10(%d) failed: %d vs %d\n", x, iMath, fMath)
+ }
+ }
+}
+
+func TestMulByLog10Log2(t *testing.T) {
+ for x := -500; x <= +500; x++ {
+ iMath := MulByLog10Log2(x)
+ fMath := int(math.Floor(float64(x) * math.Ln10 / math.Ln2))
+ if iMath != fMath {
+ t.Errorf("mulByLog10Log2(%d) failed: %d vs %d\n", x, iMath, fMath)
+ }
+ }
+}
diff --git a/src/strconv/internal_test.go b/src/strconv/internal_test.go
index bb4a418b30..f2cceff20e 100644
--- a/src/strconv/internal_test.go
+++ b/src/strconv/internal_test.go
@@ -21,3 +21,11 @@ func SetOptimize(b bool) bool {
func ParseFloatPrefix(s string, bitSize int) (float64, int, error) {
return parseFloatPrefix(s, bitSize)
}
+
+func MulByLog2Log10(x int) int {
+ return mulByLog2Log10(x)
+}
+
+func MulByLog10Log2(x int) int {
+ return mulByLog10Log2(x)
+}