aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/msize.go
diff options
context:
space:
mode:
authorKeith Randall <khr@golang.org>2016-10-26 21:25:56 -0700
committerKeith Randall <khr@golang.org>2016-10-30 03:48:49 +0000
commit7ba36f4adb43355ef4b870d64d23f9988b1279ea (patch)
tree6cba94b528c17a72497235cdb3ffb2b3a8495a33 /src/runtime/msize.go
parent753caecc7e576e46a329b71c49dbf0ea9bfbd867 (diff)
downloadgo-7ba36f4adb43355ef4b870d64d23f9988b1279ea.tar.gz
go-7ba36f4adb43355ef4b870d64d23f9988b1279ea.zip
runtime: compute size classes statically
No point in computing this info on startup. Compute it at build time. This lets us spend more time computing & checking the size classes. Improve the div magic for rounding to the start of an object. We can now use 32-bit multiplies & shifts, which should help 32-bit platforms. The static data is <1KB. The actual size classes are not changed by this CL. Change-Id: I6450cec7d1b2b4ad31fd3f945f504ed2ec6570e7 Reviewed-on: https://go-review.googlesource.com/32219 Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Austin Clements <austin@google.com>
Diffstat (limited to 'src/runtime/msize.go')
-rw-r--r--src/runtime/msize.go252
1 files changed, 5 insertions, 247 deletions
diff --git a/src/runtime/msize.go b/src/runtime/msize.go
index 00c1e9d340..438c987513 100644
--- a/src/runtime/msize.go
+++ b/src/runtime/msize.go
@@ -5,60 +5,22 @@
// Malloc small size classes.
//
// See malloc.go for overview.
-//
-// The size classes are chosen so that rounding an allocation
-// request up to the next size class wastes at most 12.5% (1.125x).
-//
-// Each size class has its own page count that gets allocated
-// and chopped up when new objects of the size class are needed.
-// That page count is chosen so that chopping up the run of
-// pages into objects of the given size wastes at most 12.5% (1.125x)
-// of the memory. It is not necessary that the cutoff here be
-// the same as above.
-//
-// The two sources of waste multiply, so the worst possible case
-// for the above constraints would be that allocations of some
-// size might have a 26.6% (1.266x) overhead.
-// In practice, only one of the wastes comes into play for a
-// given size (sizes < 512 waste mainly on the round-up,
-// sizes > 512 waste mainly on the page chopping).
-//
-// TODO(rsc): Compute max waste for any given size.
+// See also mksizeclasses.go for how we decide what size classes to use.
package runtime
-// Size classes. Computed and initialized by InitSizes.
-//
-// SizeToClass(0 <= n <= MaxSmallSize) returns the size class,
+// sizeToClass(0 <= n <= MaxSmallSize) returns the size class,
// 1 <= sizeclass < NumSizeClasses, for n.
// Size class 0 is reserved to mean "not small".
//
-// class_to_size[i] = largest size in class i
-// class_to_allocnpages[i] = number of pages to allocate when
-// making new objects in class i
-
-// The SizeToClass lookup is implemented using two arrays,
+// The sizeToClass lookup is implemented using two arrays,
// one mapping sizes <= 1024 to their class and one mapping
// sizes >= 1024 and <= MaxSmallSize to their class.
// All objects are 8-aligned, so the first array is indexed by
// the size divided by 8 (rounded up). Objects >= 1024 bytes
// are 128-aligned, so the second array is indexed by the
-// size divided by 128 (rounded up). The arrays are filled in
-// by InitSizes.
-
-const (
- smallSizeDiv = 8
- smallSizeMax = 1024
- largeSizeDiv = 128
-)
-
-var class_to_size [_NumSizeClasses]uint32
-var class_to_allocnpages [_NumSizeClasses]uint32
-var class_to_divmagic [_NumSizeClasses]divMagic
-
-var size_to_class8 [smallSizeMax/smallSizeDiv + 1]uint8
-var size_to_class128 [(_MaxSmallSize-smallSizeMax)/largeSizeDiv + 1]uint8
-
+// size divided by 128 (rounded up). The arrays are constants
+// in sizeclass.go generated by mksizeclass.go.
func sizeToClass(size uint32) uint32 {
if size > _MaxSmallSize {
throw("invalid size")
@@ -69,147 +31,6 @@ func sizeToClass(size uint32) uint32 {
return uint32(size_to_class8[(size+smallSizeDiv-1)/smallSizeDiv])
}
-func initSizes() {
- // Initialize the runtime·class_to_size table (and choose class sizes in the process).
- class_to_size[0] = 0
- sizeclass := 1 // 0 means no class
- align := 8
- for size := align; size <= _MaxSmallSize; size += align {
- if size&(size-1) == 0 { // bump alignment once in a while
- if size >= 2048 {
- align = 256
- } else if size >= 128 {
- align = size / 8
- } else if size >= 16 {
- align = 16 // required for x86 SSE instructions, if we want to use them
- }
- }
- if align&(align-1) != 0 {
- throw("incorrect alignment")
- }
-
- // Make the allocnpages big enough that
- // the leftover is less than 1/8 of the total,
- // so wasted space is at most 12.5%.
- allocsize := _PageSize
- for allocsize%size > allocsize/8 {
- allocsize += _PageSize
- }
- npages := allocsize >> _PageShift
-
- // If the previous sizeclass chose the same
- // allocation size and fit the same number of
- // objects into the page, we might as well
- // use just this size instead of having two
- // different sizes.
- if sizeclass > 1 && npages == int(class_to_allocnpages[sizeclass-1]) && allocsize/size == allocsize/int(class_to_size[sizeclass-1]) {
- class_to_size[sizeclass-1] = uint32(size)
- continue
- }
-
- class_to_allocnpages[sizeclass] = uint32(npages)
- class_to_size[sizeclass] = uint32(size)
- sizeclass++
- }
- if sizeclass != _NumSizeClasses {
- print("runtime: sizeclass=", sizeclass, " NumSizeClasses=", _NumSizeClasses, "\n")
- throw("bad NumSizeClasses")
- }
-
- // Increase object sizes if we can fit the same number of larger objects
- // into the same number of pages. For example, we choose size 8448 above
- // with 6 objects in 7 pages. But we can well use object size 9472,
- // which is also 6 objects in 7 pages but +1024 bytes (+12.12%).
- // We need to preserve at least largeSizeDiv alignment otherwise
- // sizeToClass won't work.
- for i := 1; i < _NumSizeClasses; i++ {
- npages := class_to_allocnpages[i]
- psize := npages * _PageSize
- size := class_to_size[i]
- new_size := (psize / (psize / size)) &^ (largeSizeDiv - 1)
- if new_size > size {
- class_to_size[i] = new_size
- }
- }
-
- // Check maxObjsPerSpan => number of objects invariant.
- for i, size := range class_to_size {
- if i != 0 && class_to_size[i-1] >= size {
- throw("non-monotonic size classes")
- }
-
- if size != 0 && class_to_allocnpages[i]*pageSize/size > maxObjsPerSpan {
- throw("span contains too many objects")
- }
- if size == 0 && i != 0 {
- throw("size is 0 but class is not 0")
- }
- }
- // Initialize the size_to_class tables.
- nextsize := 0
- for sizeclass = 1; sizeclass < _NumSizeClasses; sizeclass++ {
- for ; nextsize < 1024 && nextsize <= int(class_to_size[sizeclass]); nextsize += 8 {
- size_to_class8[nextsize/8] = uint8(sizeclass)
- }
- if nextsize >= 1024 {
- for ; nextsize <= int(class_to_size[sizeclass]); nextsize += 128 {
- size_to_class128[(nextsize-1024)/128] = uint8(sizeclass)
- }
- }
- }
-
- // Double-check SizeToClass.
- if false {
- for n := uint32(0); n < _MaxSmallSize; n++ {
- sizeclass := sizeToClass(n)
- if sizeclass < 1 || sizeclass >= _NumSizeClasses || class_to_size[sizeclass] < n {
- print("runtime: size=", n, " sizeclass=", sizeclass, " runtime·class_to_size=", class_to_size[sizeclass], "\n")
- print("incorrect SizeToClass\n")
- goto dump
- }
- if sizeclass > 1 && class_to_size[sizeclass-1] >= n {
- print("runtime: size=", n, " sizeclass=", sizeclass, " runtime·class_to_size=", class_to_size[sizeclass], "\n")
- print("SizeToClass too big\n")
- goto dump
- }
- }
- }
-
- testdefersizes()
-
- // Copy out for statistics table.
- for i := 0; i < len(class_to_size); i++ {
- memstats.by_size[i].size = uint32(class_to_size[i])
- }
-
- for i := 1; i < len(class_to_size); i++ {
- class_to_divmagic[i] = computeDivMagic(uint32(class_to_size[i]))
- }
-
- return
-
-dump:
- if true {
- print("runtime: NumSizeClasses=", _NumSizeClasses, "\n")
- print("runtime·class_to_size:")
- for sizeclass = 0; sizeclass < _NumSizeClasses; sizeclass++ {
- print(" ", class_to_size[sizeclass], "")
- }
- print("\n\n")
- print("runtime: size_to_class8:")
- for i := 0; i < len(size_to_class8); i++ {
- print(" ", i*8, "=>", size_to_class8[i], "(", class_to_size[size_to_class8[i]], ")\n")
- }
- print("\n")
- print("runtime: size_to_class128:")
- for i := 0; i < len(size_to_class128); i++ {
- print(" ", i*128, "=>", size_to_class128[i], "(", class_to_size[size_to_class128[i]], ")\n")
- }
- print("\n")
- }
- throw("InitSizes failed")
-}
-
// Returns size of the memory block that mallocgc will allocate if you ask for the size.
func roundupsize(size uintptr) uintptr {
if size < _MaxSmallSize {
@@ -224,66 +45,3 @@ func roundupsize(size uintptr) uintptr {
}
return round(size, _PageSize)
}
-
-// divMagic holds magic constants to implement division
-// by a particular constant as a shift, multiply, and shift.
-// That is, given
-// m = computeMagic(d)
-// then
-// n/d == ((n>>m.shift) * m.mul) >> m.shift2
-//
-// The magic computation picks m such that
-// d = d₁*d₂
-// d₂= 2^m.shift
-// m.mul = ⌈2^m.shift2 / d₁⌉
-//
-// The magic computation here is tailored for malloc block sizes
-// and does not handle arbitrary d correctly. Malloc block sizes d are
-// always even, so the first shift implements the factors of 2 in d
-// and then the mul and second shift implement the odd factor
-// that remains. Because the first shift divides n by at least 2 (actually 8)
-// before the multiply gets involved, the huge corner cases that
-// require additional adjustment are impossible, so the usual
-// fixup is not needed.
-//
-// For more details see Hacker's Delight, Chapter 10, and
-// http://ridiculousfish.com/blog/posts/labor-of-division-episode-i.html
-// http://ridiculousfish.com/blog/posts/labor-of-division-episode-iii.html
-type divMagic struct {
- shift uint8
- mul uint32
- shift2 uint8
- baseMask uintptr
-}
-
-func computeDivMagic(d uint32) divMagic {
- var m divMagic
-
- // If the size is a power of two, heapBitsForObject can divide even faster by masking.
- // Compute this mask.
- if d&(d-1) == 0 {
- // It is a power of 2 (assuming dinptr != 1)
- m.baseMask = ^(uintptr(d) - 1)
- } else {
- m.baseMask = 0
- }
-
- // Compute pre-shift by factoring power of 2 out of d.
- for d&1 == 0 {
- m.shift++
- d >>= 1
- }
-
- // Compute largest k such that ⌈2^k / d⌉ fits in a 32-bit int.
- // This is always a good enough approximation.
- // We could use smaller k for some divisors but there's no point.
- k := uint8(63)
- d64 := uint64(d)
- for ((1<<k)+d64-1)/d64 >= 1<<32 {
- k--
- }
- m.mul = uint32(((1 << k) + d64 - 1) / d64) // ⌈2^k / d⌉
- m.shift2 = k
-
- return m
-}