aboutsummaryrefslogtreecommitdiff
path: root/src/crypto
diff options
context:
space:
mode:
authorFilippo Valsorda <filippo@golang.org>2024-04-15 03:56:10 +0200
committerGopher Robot <gobot@golang.org>2024-05-06 15:27:18 +0000
commitcc1659916d49fdfe93aa8879b7f0d0cfb50f017a (patch)
tree16b4476a0468a76e1ef02ac857cf0591d4a981cf /src/crypto
parenteabf59bc47484e3f09fe46cafe10221e6c345ccb (diff)
downloadgo-cc1659916d49fdfe93aa8879b7f0d0cfb50f017a.tar.gz
go-cc1659916d49fdfe93aa8879b7f0d0cfb50f017a.zip
crypto/internal/mlkem768: various performance optimizations
goos: linux goarch: amd64 pkg: crypto/internal/mlkem768 cpu: Intel(R) Core(TM) i5-7400 CPU @ 3.00GHz │ c0a0ba254c │ 2aeb615fa6 │ │ sec/op │ sec/op vs base │ KeyGen-4 73.36µ ± 0% 67.38µ ± 1% -8.15% (p=0.000 n=20) Encaps-4 108.96µ ± 0% 99.56µ ± 1% -8.63% (p=0.000 n=20) Decaps-4 132.19µ ± 0% 96.85µ ± 0% -26.74% (p=0.000 n=20) RoundTrip/Alice-4 216.4µ ± 0% 173.1µ ± 0% -20.01% (p=0.000 n=20) RoundTrip/Bob-4 109.5µ ± 0% 100.5µ ± 0% -8.19% (p=0.000 n=20) Change-Id: I600116baa0b390bb83950a42c7693cd7806dba9a Reviewed-on: https://go-review.googlesource.com/c/go/+/578797 Reviewed-by: Roland Shoemaker <roland@golang.org> LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com> Reviewed-by: Cherry Mui <cherryyz@google.com> Auto-Submit: Filippo Valsorda <filippo@golang.org>
Diffstat (limited to 'src/crypto')
-rw-r--r--src/crypto/internal/mlkem768/mlkem768.go455
-rw-r--r--src/crypto/internal/mlkem768/mlkem768_test.go117
2 files changed, 337 insertions, 235 deletions
diff --git a/src/crypto/internal/mlkem768/mlkem768.go b/src/crypto/internal/mlkem768/mlkem768.go
index c6b191c1ae..24bedea84f 100644
--- a/src/crypto/internal/mlkem768/mlkem768.go
+++ b/src/crypto/internal/mlkem768/mlkem768.go
@@ -68,57 +68,123 @@ const (
SeedSize = 32 + 32
)
-// GenerateKey generates an encapsulation key and a corresponding decapsulation
-// key, drawing random bytes from crypto/rand.
-//
-// The decapsulation key must be kept secret.
-func GenerateKey() (encapsulationKey, decapsulationKey []byte, err error) {
- d := make([]byte, 32)
- if _, err := rand.Read(d); err != nil {
- return nil, nil, errors.New("mlkem768: crypto/rand Read failed: " + err.Error())
+// A DecapsulationKey is the secret key used to decapsulate a shared key from a
+// ciphertext. It includes various precomputed values.
+type DecapsulationKey struct {
+ dk [DecapsulationKeySize]byte
+ encryptionKey
+ decryptionKey
+}
+
+// Bytes returns the extended encoding of the decapsulation key, according to
+// FIPS 203 (DRAFT).
+func (dk *DecapsulationKey) Bytes() []byte {
+ var b [DecapsulationKeySize]byte
+ copy(b[:], dk.dk[:])
+ return b[:]
+}
+
+// EncapsulationKey returns the public encapsulation key necessary to produce
+// ciphertexts.
+func (dk *DecapsulationKey) EncapsulationKey() []byte {
+ var b [EncapsulationKeySize]byte
+ copy(b[:], dk.dk[decryptionKeySize:])
+ return b[:]
+}
+
+// encryptionKey is the parsed and expanded form of a PKE encryption key.
+type encryptionKey struct {
+ t [k]nttElement // ByteDecode₁₂(ek[:384k])
+ A [k * k]nttElement // A[i*k+j] = sampleNTT(ρ, j, i)
+}
+
+// decryptionKey is the parsed and expanded form of a PKE decryption key.
+type decryptionKey struct {
+ s [k]nttElement // ByteDecode₁₂(dk[:decryptionKeySize])
+}
+
+// GenerateKey generates a new decapsulation key, drawing random bytes from
+// crypto/rand. The decapsulation key must be kept secret.
+func GenerateKey() (*DecapsulationKey, error) {
+ // The actual logic is in a separate function to outline this allocation.
+ dk := &DecapsulationKey{}
+ return generateKey(dk)
+}
+
+func generateKey(dk *DecapsulationKey) (*DecapsulationKey, error) {
+ var d [32]byte
+ if _, err := rand.Read(d[:]); err != nil {
+ return nil, errors.New("mlkem768: crypto/rand Read failed: " + err.Error())
}
- z := make([]byte, 32)
- if _, err := rand.Read(z); err != nil {
- return nil, nil, errors.New("mlkem768: crypto/rand Read failed: " + err.Error())
+ var z [32]byte
+ if _, err := rand.Read(z[:]); err != nil {
+ return nil, errors.New("mlkem768: crypto/rand Read failed: " + err.Error())
}
- ek, dk := kemKeyGen(d, z)
- return ek, dk, nil
+ return kemKeyGen(dk, &d, &z), nil
+}
+
+// NewKeyFromSeed deterministically generates a decapsulation key from a 64-byte
+// seed in the "d || z" form. The seed must be uniformly random.
+func NewKeyFromSeed(seed []byte) (*DecapsulationKey, error) {
+ // The actual logic is in a separate function to outline this allocation.
+ dk := &DecapsulationKey{}
+ return newKeyFromSeed(dk, seed)
}
-// NewKeyFromSeed deterministically generates an encapsulation key and a
-// corresponding decapsulation key from a 64-byte seed. The seed must be
-// uniformly random.
-func NewKeyFromSeed(seed []byte) (encapsulationKey, decapsulationKey []byte, err error) {
+func newKeyFromSeed(dk *DecapsulationKey, seed []byte) (*DecapsulationKey, error) {
if len(seed) != SeedSize {
- return nil, nil, errors.New("mlkem768: invalid seed length")
+ return nil, errors.New("mlkem768: invalid seed length")
}
- ek, dk := kemKeyGen(seed[:32], seed[32:])
- return ek, dk, nil
+ d := (*[32]byte)(seed[:32])
+ z := (*[32]byte)(seed[32:])
+ return kemKeyGen(dk, d, z), nil
}
-// kemKeyGen generates an encapsulation key and a corresponding decapsulation key.
-//
-// It implements ML-KEM.KeyGen according to FIPS 203 (DRAFT), Algorithm 15.
-func kemKeyGen(d, z []byte) (ek, dk []byte) {
- ekPKE, dkPKE := pkeKeyGen(d)
- dk = make([]byte, 0, DecapsulationKeySize)
- dk = append(dk, dkPKE...)
- dk = append(dk, ekPKE...)
- H := sha3.New256()
- H.Write(ekPKE)
- dk = H.Sum(dk)
- dk = append(dk, z...)
- return ekPKE, dk
+// NewKeyFromExtendedEncoding parses a decapsulation key from its FIPS 203
+// (DRAFT) extended encoding.
+func NewKeyFromExtendedEncoding(decapsulationKey []byte) (*DecapsulationKey, error) {
+ // The actual logic is in a separate function to outline this allocation.
+ dk := &DecapsulationKey{}
+ return newKeyFromExtendedEncoding(dk, decapsulationKey)
}
-// pkeKeyGen generates a key pair for the underlying PKE from a 32-byte random seed.
+func newKeyFromExtendedEncoding(dk *DecapsulationKey, dkBytes []byte) (*DecapsulationKey, error) {
+ if len(dkBytes) != DecapsulationKeySize {
+ return nil, errors.New("mlkem768: invalid decapsulation key length")
+ }
+
+ // Note that we don't check that H(ek) matches ekPKE, as that's not
+ // specified in FIPS 203 (DRAFT). This is one reason to prefer the seed
+ // private key format.
+ dk.dk = [DecapsulationKeySize]byte(dkBytes)
+
+ dkPKE := dkBytes[:decryptionKeySize]
+ if err := parseDK(&dk.decryptionKey, dkPKE); err != nil {
+ return nil, err
+ }
+
+ ekPKE := dkBytes[decryptionKeySize : decryptionKeySize+encryptionKeySize]
+ if err := parseEK(&dk.encryptionKey, ekPKE); err != nil {
+ return nil, err
+ }
+
+ return dk, nil
+}
+
+// kemKeyGen generates a decapsulation key.
//
-// It implements K-PKE.KeyGen according to FIPS 203 (DRAFT), Algorithm 12.
-func pkeKeyGen(d []byte) (ek, dk []byte) {
- G := sha3.Sum512(d)
+// It implements ML-KEM.KeyGen according to FIPS 203 (DRAFT), Algorithm 15, and
+// K-PKE.KeyGen according to FIPS 203 (DRAFT), Algorithm 12. The two are merged
+// to save copies and allocations.
+func kemKeyGen(dk *DecapsulationKey, d, z *[32]byte) *DecapsulationKey {
+ if dk == nil {
+ dk = &DecapsulationKey{}
+ }
+
+ G := sha3.Sum512(d[:])
ρ, σ := G[:32], G[32:]
- A := make([]nttElement, k*k)
+ A := &dk.A
for i := byte(0); i < k; i++ {
for j := byte(0); j < k; j++ {
// Note that this is consistent with Kyber round 3, rather than with
@@ -129,36 +195,51 @@ func pkeKeyGen(d []byte) (ek, dk []byte) {
}
var N byte
- s, e := make([]nttElement, k), make([]nttElement, k)
+ s := &dk.s
for i := range s {
s[i] = ntt(samplePolyCBD(σ, N))
N++
}
+ e := make([]nttElement, k)
for i := range e {
e[i] = ntt(samplePolyCBD(σ, N))
N++
}
- t := make([]nttElement, k) // A ◦ s + e
- for i := range t {
+ t := &dk.t
+ for i := range t { // t = A ◦ s + e
t[i] = e[i]
for j := range s {
t[i] = polyAdd(t[i], nttMul(A[i*k+j], s[j]))
}
}
- ek = make([]byte, 0, encryptionKeySize)
+ // dkPKE ← ByteEncode₁₂(s)
+ // ekPKE ← ByteEncode₁₂(t) || ρ
+ // ek ← ekPKE
+ // dk ← dkPKE || ek || H(ek) || z
+ dkB := dk.dk[:0]
+
+ for i := range s {
+ dkB = polyByteEncode(dkB, s[i])
+ }
+
for i := range t {
- ek = polyByteEncode(ek, t[i])
+ dkB = polyByteEncode(dkB, t[i])
}
- ek = append(ek, ρ...)
+ dkB = append(dkB, ρ...)
- dk = make([]byte, 0, decryptionKeySize)
- for i := range s {
- dk = polyByteEncode(dk, s[i])
+ H := sha3.New256()
+ H.Write(dkB[decryptionKeySize:])
+ dkB = H.Sum(dkB)
+
+ dkB = append(dkB, z[:]...)
+
+ if len(dkB) != len(dk.dk) {
+ panic("mlkem768: internal error: invalid decapsulation key size")
}
- return ek, dk
+ return dk
}
// Encapsulate generates a shared key and an associated ciphertext from an
@@ -167,65 +248,79 @@ func pkeKeyGen(d []byte) (ek, dk []byte) {
//
// The shared key must be kept secret.
func Encapsulate(encapsulationKey []byte) (ciphertext, sharedKey []byte, err error) {
+ // The actual logic is in a separate function to outline this allocation.
+ var cc [CiphertextSize]byte
+ return encapsulate(&cc, encapsulationKey)
+}
+
+func encapsulate(cc *[CiphertextSize]byte, encapsulationKey []byte) (ciphertext, sharedKey []byte, err error) {
if len(encapsulationKey) != EncapsulationKeySize {
return nil, nil, errors.New("mlkem768: invalid encapsulation key length")
}
- m := make([]byte, messageSize)
- if _, err := rand.Read(m); err != nil {
+ var m [messageSize]byte
+ if _, err := rand.Read(m[:]); err != nil {
return nil, nil, errors.New("mlkem768: crypto/rand Read failed: " + err.Error())
}
- ciphertext, sharedKey, err = kemEncaps(encapsulationKey, m)
- if err != nil {
- return nil, nil, err
- }
- return ciphertext, sharedKey, nil
+ return kemEncaps(cc, encapsulationKey, &m)
}
// kemEncaps generates a shared key and an associated ciphertext.
//
// It implements ML-KEM.Encaps according to FIPS 203 (DRAFT), Algorithm 16.
-func kemEncaps(ek, m []byte) (c, K []byte, err error) {
- H := sha3.Sum256(ek)
+func kemEncaps(cc *[CiphertextSize]byte, ek []byte, m *[messageSize]byte) (c, K []byte, err error) {
+ if cc == nil {
+ cc = &[CiphertextSize]byte{}
+ }
+
+ H := sha3.Sum256(ek[:])
g := sha3.New512()
- g.Write(m)
+ g.Write(m[:])
g.Write(H[:])
G := g.Sum(nil)
K, r := G[:SharedKeySize], G[SharedKeySize:]
- c, err = pkeEncrypt(ek, m, r)
- return c, K, err
+ var ex encryptionKey
+ if err := parseEK(&ex, ek[:]); err != nil {
+ return nil, nil, err
+ }
+ c = pkeEncrypt(cc, &ex, m, r)
+ return c, K, nil
}
-// pkeEncrypt encrypt a plaintext message. It expects ek (the encryption key) to
-// be 1184 bytes, and m (the message) and rnd (the randomness) to be 32 bytes.
+// parseEK parses an encryption key from its encoded form.
//
-// It implements K-PKE.Encrypt according to FIPS 203 (DRAFT), Algorithm 13.
-func pkeEncrypt(ek, m, rnd []byte) ([]byte, error) {
- if len(ek) != encryptionKeySize {
- return nil, errors.New("mlkem768: invalid encryption key length")
- }
- if len(m) != messageSize {
- return nil, errors.New("mlkem768: invalid messages length")
+// It implements the initial stages of K-PKE.Encrypt according to FIPS 203
+// (DRAFT), Algorithm 13.
+func parseEK(ex *encryptionKey, ekPKE []byte) error {
+ if len(ekPKE) != encryptionKeySize {
+ return errors.New("mlkem768: invalid encryption key length")
}
- t := make([]nttElement, k)
- for i := range t {
+ for i := range ex.t {
var err error
- t[i], err = polyByteDecode[nttElement](ek[:encodingSize12])
+ ex.t[i], err = polyByteDecode[nttElement](ekPKE[:encodingSize12])
if err != nil {
- return nil, err
+ return err
}
- ek = ek[encodingSize12:]
+ ekPKE = ekPKE[encodingSize12:]
}
- ρ := ek
+ ρ := ekPKE
- AT := make([]nttElement, k*k)
for i := byte(0); i < k; i++ {
for j := byte(0); j < k; j++ {
- // Note that i and j are inverted, as we need the transposed of A.
- AT[i*k+j] = sampleNTT(ρ, i, j)
+ // See the note in pkeKeyGen about the order of the indices being
+ // consistent with Kyber round 3.
+ ex.A[i*k+j] = sampleNTT(ρ, j, i)
}
}
+ return nil
+}
+
+// pkeEncrypt encrypt a plaintext message.
+//
+// It implements K-PKE.Encrypt according to FIPS 203 (DRAFT), Algorithm 13,
+// although the computation of t and AT is done in parseEK.
+func pkeEncrypt(cc *[CiphertextSize]byte, ex *encryptionKey, m *[messageSize]byte, rnd []byte) []byte {
var N byte
r, e1 := make([]nttElement, k), make([]ringElement, k)
for i := range r {
@@ -242,125 +337,107 @@ func pkeEncrypt(ek, m, rnd []byte) ([]byte, error) {
for i := range u {
u[i] = e1[i]
for j := range r {
- u[i] = polyAdd(u[i], inverseNTT(nttMul(AT[i*k+j], r[j])))
+ // Note that i and j are inverted, as we need the transposed of A.
+ u[i] = polyAdd(u[i], inverseNTT(nttMul(ex.A[j*k+i], r[j])))
}
}
- μ, err := ringDecodeAndDecompress1(m)
- if err != nil {
- return nil, err
- }
+ μ := ringDecodeAndDecompress1(m)
var vNTT nttElement // t⊺ ◦ r
- for i := range t {
- vNTT = polyAdd(vNTT, nttMul(t[i], r[i]))
+ for i := range ex.t {
+ vNTT = polyAdd(vNTT, nttMul(ex.t[i], r[i]))
}
v := polyAdd(polyAdd(inverseNTT(vNTT), e2), μ)
- c := make([]byte, 0, CiphertextSize)
+ c := cc[:0]
for _, f := range u {
c = ringCompressAndEncode10(c, f)
}
c = ringCompressAndEncode4(c, v)
- return c, nil
+ return c
}
// Decapsulate generates a shared key from a ciphertext and a decapsulation key.
-// If the decapsulation key or the ciphertext are not valid, Decapsulate returns
-// an error.
+// If the ciphertext is not valid, Decapsulate returns an error.
//
// The shared key must be kept secret.
-func Decapsulate(decapsulationKey, ciphertext []byte) (sharedKey []byte, err error) {
- if len(decapsulationKey) != DecapsulationKeySize {
- return nil, errors.New("mlkem768: invalid decapsulation key length")
- }
+func Decapsulate(dk *DecapsulationKey, ciphertext []byte) (sharedKey []byte, err error) {
if len(ciphertext) != CiphertextSize {
return nil, errors.New("mlkem768: invalid ciphertext length")
}
- return kemDecaps(decapsulationKey, ciphertext)
+ c := (*[CiphertextSize]byte)(ciphertext)
+ return kemDecaps(dk, c), nil
}
// kemDecaps produces a shared key from a ciphertext.
//
// It implements ML-KEM.Decaps according to FIPS 203 (DRAFT), Algorithm 17.
-func kemDecaps(dk, c []byte) (K []byte, err error) {
- dkPKE := dk[:decryptionKeySize]
- ekPKE := dk[decryptionKeySize : decryptionKeySize+encryptionKeySize]
- h := dk[decryptionKeySize+encryptionKeySize : decryptionKeySize+encryptionKeySize+32]
- z := dk[decryptionKeySize+encryptionKeySize+32:]
-
- m, err := pkeDecrypt(dkPKE, c)
- if err != nil {
- // This is only reachable if the ciphertext or the decryption key are
- // encoded incorrectly, so it leaks no information about the message.
- return nil, err
- }
+func kemDecaps(dk *DecapsulationKey, c *[CiphertextSize]byte) (K []byte) {
+ h := dk.dk[decryptionKeySize+encryptionKeySize : decryptionKeySize+encryptionKeySize+32]
+ z := dk.dk[decryptionKeySize+encryptionKeySize+32:]
+
+ m := pkeDecrypt(&dk.decryptionKey, c)
g := sha3.New512()
- g.Write(m)
+ g.Write(m[:])
g.Write(h)
G := g.Sum(nil)
Kprime, r := G[:SharedKeySize], G[SharedKeySize:]
J := sha3.NewShake256()
J.Write(z)
- J.Write(c)
+ J.Write(c[:])
Kout := make([]byte, SharedKeySize)
J.Read(Kout)
- c1, err := pkeEncrypt(ekPKE, m, r)
- if err != nil {
- // Likewise, this is only reachable if the encryption key is encoded
- // incorrectly, so it leaks no secret information through timing.
- return nil, err
- }
+ var cc [CiphertextSize]byte
+ c1 := pkeEncrypt(&cc, &dk.encryptionKey, (*[32]byte)(m), r)
- subtle.ConstantTimeCopy(subtle.ConstantTimeCompare(c, c1), Kout, Kprime)
- return Kout, nil
+ subtle.ConstantTimeCopy(subtle.ConstantTimeCompare(c[:], c1), Kout, Kprime)
+ return Kout
}
-// pkeDecrypt decrypts a ciphertext. It expects dk (the decryption key) to
-// be 1152 bytes, and c (the ciphertext) to be 1088 bytes.
+// parseDK parses a decryption key from its encoded form.
//
-// It implements K-PKE.Decrypt according to FIPS 203 (DRAFT), Algorithm 14.
-func pkeDecrypt(dk, c []byte) ([]byte, error) {
- if len(dk) != decryptionKeySize {
- return nil, errors.New("mlkem768: invalid decryption key length")
- }
- if len(c) != CiphertextSize {
- return nil, errors.New("mlkem768: invalid ciphertext length")
+// It implements the computation of s from K-PKE.Decrypt according to FIPS 203
+// (DRAFT), Algorithm 14.
+func parseDK(dx *decryptionKey, dkPKE []byte) error {
+ if len(dkPKE) != decryptionKeySize {
+ return errors.New("mlkem768: invalid decryption key length")
}
- u := make([]ringElement, k)
- for i := range u {
- f, err := ringDecodeAndDecompress10(c[:encodingSize10])
+ for i := range dx.s {
+ f, err := polyByteDecode[nttElement](dkPKE[:encodingSize12])
if err != nil {
- return nil, err
+ return err
}
- u[i] = f
- c = c[encodingSize10:]
+ dx.s[i] = f
+ dkPKE = dkPKE[encodingSize12:]
}
- v, err := ringDecodeAndDecompress4(c)
- if err != nil {
- return nil, err
- }
+ return nil
+}
- s := make([]nttElement, k)
- for i := range s {
- f, err := polyByteDecode[nttElement](dk[:encodingSize12])
- if err != nil {
- return nil, err
- }
- s[i] = f
- dk = dk[encodingSize12:]
+// pkeDecrypt decrypts a ciphertext.
+//
+// It implements K-PKE.Decrypt according to FIPS 203 (DRAFT), Algorithm 14,
+// although the computation of s is done in parseDK.
+func pkeDecrypt(dx *decryptionKey, c *[CiphertextSize]byte) []byte {
+ u := make([]ringElement, k)
+ for i := range u {
+ b := (*[encodingSize10]byte)(c[encodingSize10*i : encodingSize10*(i+1)])
+ u[i] = ringDecodeAndDecompress10(b)
}
+ b := (*[encodingSize4]byte)(c[encodingSize10*k:])
+ v := ringDecodeAndDecompress4(b)
+
var mask nttElement // s⊺ ◦ NTT(u)
- for i := range s {
- mask = polyAdd(mask, nttMul(s[i], ntt(u[i])))
+ for i := range dx.s {
+ mask = polyAdd(mask, nttMul(dx.s[i], ntt(u[i])))
}
w := polySub(v, inverseNTT(mask))
- return ringCompressAndEncode1(nil, w), nil
+ return ringCompressAndEncode1(nil, w)
}
// fieldElement is an integer modulo q, an element of ℤ_q. It is always reduced.
@@ -397,7 +474,7 @@ const (
barrettShift = 24 // log₂(2¹² * 2¹²)
)
-// fieldReduce reduces a value a < q² using Barrett reduction, to avoid
+// fieldReduce reduces a value a < 2q² using Barrett reduction, to avoid
// potentially variable-time division.
func fieldReduce(a uint32) fieldElement {
quotient := uint32((uint64(a) * barrettMultiplier) >> barrettShift)
@@ -409,6 +486,21 @@ func fieldMul(a, b fieldElement) fieldElement {
return fieldReduce(x)
}
+// fieldMulSub returns a * (b - c). This operation is fused to save a
+// fieldReduceOnce after the subtraction.
+func fieldMulSub(a, b, c fieldElement) fieldElement {
+ x := uint32(a) * uint32(b-c+q)
+ return fieldReduce(x)
+}
+
+// fieldAddMul returns a * b + c * d. This operation is fused to save a
+// fieldReduceOnce and a fieldReduce.
+func fieldAddMul(a, b, c, d fieldElement) fieldElement {
+ x := uint32(a) * uint32(b)
+ x += uint32(c) * uint32(d)
+ return fieldReduce(x)
+}
+
// compress maps a field element uniformly to the range 0 to 2ᵈ-1, according to
// FIPS 203 (DRAFT), Definition 4.5.
func compress(x fieldElement, d uint8) uint16 {
@@ -558,17 +650,14 @@ func ringCompressAndEncode1(s []byte, f ringElement) []byte {
//
// It implements ByteDecode₁, according to FIPS 203 (DRAFT), Algorithm 5,
// followed by Decompress₁, according to FIPS 203 (DRAFT), Definition 4.6.
-func ringDecodeAndDecompress1(b []byte) (ringElement, error) {
- if len(b) != encodingSize1 {
- return ringElement{}, errors.New("mlkem768: invalid message length")
- }
+func ringDecodeAndDecompress1(b *[encodingSize1]byte) ringElement {
var f ringElement
for i := range f {
b_i := b[i/8] >> (i % 8) & 1
const halfQ = (q + 1) / 2 // ⌈q/2⌋, rounded up per FIPS 203 (DRAFT), Section 2.3
f[i] = fieldElement(b_i) * halfQ // 0 decompresses to 0, and 1 to ⌈q/2⌋
}
- return f, nil
+ return f
}
// ringCompressAndEncode4 appends a 128-byte encoding of a ring element to s,
@@ -589,16 +678,13 @@ func ringCompressAndEncode4(s []byte, f ringElement) []byte {
//
// It implements ByteDecode₄, according to FIPS 203 (DRAFT), Algorithm 5,
// followed by Decompress₄, according to FIPS 203 (DRAFT), Definition 4.6.
-func ringDecodeAndDecompress4(b []byte) (ringElement, error) {
- if len(b) != encodingSize4 {
- return ringElement{}, errors.New("mlkem768: invalid encoding length")
- }
+func ringDecodeAndDecompress4(b *[encodingSize4]byte) ringElement {
var f ringElement
for i := 0; i < n; i += 2 {
f[i] = fieldElement(decompress(uint16(b[i/2]&0b1111), 4))
f[i+1] = fieldElement(decompress(uint16(b[i/2]>>4), 4))
}
- return f, nil
+ return f
}
// ringCompressAndEncode10 appends a 320-byte encoding of a ring element to s,
@@ -629,10 +715,8 @@ func ringCompressAndEncode10(s []byte, f ringElement) []byte {
//
// It implements ByteDecode₁₀, according to FIPS 203 (DRAFT), Algorithm 5,
// followed by Decompress₁₀, according to FIPS 203 (DRAFT), Definition 4.6.
-func ringDecodeAndDecompress10(b []byte) (ringElement, error) {
- if len(b) != encodingSize10 {
- return ringElement{}, errors.New("mlkem768: invalid encoding length")
- }
+func ringDecodeAndDecompress10(bb *[encodingSize10]byte) ringElement {
+ b := bb[:]
var f ringElement
for i := 0; i < n; i += 4 {
x := uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 | uint64(b[4])<<32
@@ -642,7 +726,7 @@ func ringDecodeAndDecompress10(b []byte) (ringElement, error) {
f[i+2] = fieldElement(decompress(uint16(x>>20&0b11_1111_1111), 10))
f[i+3] = fieldElement(decompress(uint16(x>>30&0b11_1111_1111), 10))
}
- return f, nil
+ return f
}
// samplePolyCBD draws a ringElement from the special Dη distribution given a
@@ -681,11 +765,12 @@ var gammas = [128]fieldElement{17, 3312, 2761, 568, 583, 2746, 2649, 680, 1637,
// It implements MultiplyNTTs, according to FIPS 203 (DRAFT), Algorithm 10.
func nttMul(f, g nttElement) nttElement {
var h nttElement
- for i := 0; i < 128; i++ {
- a0, a1 := f[2*i], f[2*i+1]
- b0, b1 := g[2*i], g[2*i+1]
- h[2*i] = fieldAdd(fieldMul(a0, b0), fieldMul(fieldMul(a1, b1), gammas[i]))
- h[2*i+1] = fieldAdd(fieldMul(a0, b1), fieldMul(a1, b0))
+ // We use i += 2 for bounds check elimination. See https://go.dev/issue/66826.
+ for i := 0; i < 256; i += 2 {
+ a0, a1 := f[i], f[i+1]
+ b0, b1 := g[i], g[i+1]
+ h[i] = fieldAddMul(a0, b0, fieldMul(a1, b1), gammas[i/2])
+ h[i+1] = fieldAddMul(a0, b1, a1, b0)
}
return h
}
@@ -702,18 +787,12 @@ func ntt(f ringElement) nttElement {
for start := 0; start < 256; start += 2 * len {
zeta := zetas[k]
k++
- for j := start; j < start+len; j += 2 {
- // Loop 2x unrolled for performance.
- {
- t := fieldMul(zeta, f[j+len])
- f[j+len] = fieldSub(f[j], t)
- f[j] = fieldAdd(f[j], t)
- }
- {
- t := fieldMul(zeta, f[j+1+len])
- f[j+1+len] = fieldSub(f[j+1], t)
- f[j+1] = fieldAdd(f[j+1], t)
- }
+ // Bounds check elimination hint.
+ f, flen := f[start:start+len], f[start+len:start+len+len]
+ for j := 0; j < len; j++ {
+ t := fieldMul(zeta, flen[j])
+ flen[j] = fieldSub(f[j], t)
+ f[j] = fieldAdd(f[j], t)
}
}
}
@@ -729,18 +808,12 @@ func inverseNTT(f nttElement) ringElement {
for start := 0; start < 256; start += 2 * len {
zeta := zetas[k]
k--
- for j := start; j < start+len; j += 2 {
- // Loop 2x unrolled for performance.
- {
- t := f[j]
- f[j] = fieldAdd(t, f[j+len])
- f[j+len] = fieldMul(zeta, fieldSub(f[j+len], t))
- }
- {
- t := f[j+1]
- f[j+1] = fieldAdd(t, f[j+1+len])
- f[j+1+len] = fieldMul(zeta, fieldSub(f[j+1+len], t))
- }
+ // Bounds check elimination hint.
+ f, flen := f[start:start+len], f[start+len:start+len+len]
+ for j := 0; j < len; j++ {
+ t := f[j]
+ f[j] = fieldAdd(t, flen[j])
+ flen[j] = fieldMulSub(zeta, flen[j], t)
}
}
}
diff --git a/src/crypto/internal/mlkem768/mlkem768_test.go b/src/crypto/internal/mlkem768/mlkem768_test.go
index 6e2ac769ef..b91b42a424 100644
--- a/src/crypto/internal/mlkem768/mlkem768_test.go
+++ b/src/crypto/internal/mlkem768/mlkem768_test.go
@@ -9,6 +9,7 @@ import (
"crypto/rand"
_ "embed"
"encoding/hex"
+ "errors"
"flag"
"math/big"
"strconv"
@@ -17,6 +18,16 @@ import (
"golang.org/x/crypto/sha3"
)
+func TestFieldReduce(t *testing.T) {
+ for a := uint32(0); a < 2*q*q; a++ {
+ got := fieldReduce(a)
+ exp := fieldElement(a % q)
+ if got != exp {
+ t.Fatalf("reduce(%d) = %d, expected %d", a, got, exp)
+ }
+ }
+}
+
func TestFieldAdd(t *testing.T) {
for a := fieldElement(0); a < q; a++ {
for b := fieldElement(0); b < q; b++ {
@@ -188,11 +199,11 @@ func TestGammas(t *testing.T) {
}
func TestRoundTrip(t *testing.T) {
- ek, dk, err := GenerateKey()
+ dk, err := GenerateKey()
if err != nil {
t.Fatal(err)
}
- c, Ke, err := Encapsulate(ek)
+ c, Ke, err := Encapsulate(dk.EncapsulationKey())
if err != nil {
t.Fatal(err)
}
@@ -204,21 +215,21 @@ func TestRoundTrip(t *testing.T) {
t.Fail()
}
- ek1, dk1, err := GenerateKey()
+ dk1, err := GenerateKey()
if err != nil {
t.Fatal(err)
}
- if bytes.Equal(ek, ek1) {
+ if bytes.Equal(dk.EncapsulationKey(), dk1.EncapsulationKey()) {
t.Fail()
}
- if bytes.Equal(dk, dk1) {
+ if bytes.Equal(dk.Bytes(), dk1.Bytes()) {
t.Fail()
}
- if bytes.Equal(dk[len(dk)-32:], dk1[len(dk)-32:]) {
+ if bytes.Equal(dk.Bytes()[EncapsulationKeySize-32:], dk1.Bytes()[EncapsulationKeySize-32:]) {
t.Fail()
}
- c1, Ke1, err := Encapsulate(ek)
+ c1, Ke1, err := Encapsulate(dk.EncapsulationKey())
if err != nil {
t.Fatal(err)
}
@@ -231,10 +242,11 @@ func TestRoundTrip(t *testing.T) {
}
func TestBadLengths(t *testing.T) {
- ek, dk, err := GenerateKey()
+ dk, err := GenerateKey()
if err != nil {
t.Fatal(err)
}
+ ek := dk.EncapsulationKey()
for i := 0; i < len(ek)-1; i++ {
if _, _, err := Encapsulate(ek[:i]); err == nil {
@@ -254,15 +266,15 @@ func TestBadLengths(t *testing.T) {
t.Fatal(err)
}
- for i := 0; i < len(dk)-1; i++ {
- if _, err := Decapsulate(dk[:i], c); err == nil {
+ for i := 0; i < len(dk.Bytes())-1; i++ {
+ if _, err := NewKeyFromExtendedEncoding(dk.Bytes()[:i]); err == nil {
t.Errorf("expected error for dk length %d", i)
}
}
- dkLong := dk
+ dkLong := dk.Bytes()
for i := 0; i < 100; i++ {
dkLong = append(dkLong, 0)
- if _, err := Decapsulate(dkLong, c); err == nil {
+ if _, err := NewKeyFromExtendedEncoding(dkLong); err == nil {
t.Errorf("expected error for dk length %d", len(dkLong))
}
}
@@ -281,6 +293,29 @@ func TestBadLengths(t *testing.T) {
}
}
+func EncapsulateDerand(ek, m []byte) (c, K []byte, err error) {
+ if len(m) != messageSize {
+ return nil, nil, errors.New("bad message length")
+ }
+ return kemEncaps(nil, ek, (*[messageSize]byte)(m))
+}
+
+func DecapsulateFromBytes(dkBytes []byte, c []byte) ([]byte, error) {
+ dk, err := NewKeyFromExtendedEncoding(dkBytes)
+ if err != nil {
+ return nil, err
+ }
+ return Decapsulate(dk, c)
+}
+
+func GenerateKeyDerand(t testing.TB, d, z []byte) ([]byte, *DecapsulationKey) {
+ if len(d) != 32 || len(z) != 32 {
+ t.Fatal("bad length")
+ }
+ dk := kemKeyGen(nil, (*[32]byte)(d), (*[32]byte)(z))
+ return dk.EncapsulationKey(), dk
+}
+
var millionFlag = flag.Bool("million", false, "run the million vector test")
// TestPQCrystalsAccumulated accumulates the 10k vectors generated by the
@@ -308,19 +343,19 @@ func TestPQCrystalsAccumulated(t *testing.T) {
for i := 0; i < n; i++ {
s.Read(d)
s.Read(z)
- ek, dk := kemKeyGen(d, z)
+ ek, dk := GenerateKeyDerand(t, d, z)
o.Write(ek)
- o.Write(dk)
+ o.Write(dk.Bytes())
s.Read(msg)
- ct, k, err := kemEncaps(ek, msg)
+ ct, k, err := EncapsulateDerand(ek, msg)
if err != nil {
t.Fatal(err)
}
o.Write(ct)
o.Write(k)
- kk, err := kemDecaps(dk, ct)
+ kk, err := Decapsulate(dk, ct)
if err != nil {
t.Fatal(err)
}
@@ -329,7 +364,7 @@ func TestPQCrystalsAccumulated(t *testing.T) {
}
s.Read(ct1)
- k1, err := kemDecaps(dk, ct1)
+ k1, err := Decapsulate(dk, ct1)
if err != nil {
t.Fatal(err)
}
@@ -342,25 +377,17 @@ func TestPQCrystalsAccumulated(t *testing.T) {
}
}
-var sinkElement fieldElement
-
-func BenchmarkSampleNTT(b *testing.B) {
- for i := 0; i < b.N; i++ {
- sinkElement ^= sampleNTT(bytes.Repeat([]byte("A"), 32), '4', '2')[0]
- }
-}
-
var sink byte
func BenchmarkKeyGen(b *testing.B) {
- d := make([]byte, 32)
- rand.Read(d)
- z := make([]byte, 32)
- rand.Read(z)
+ var dk DecapsulationKey
+ var d, z [32]byte
+ rand.Read(d[:])
+ rand.Read(z[:])
b.ResetTimer()
for i := 0; i < b.N; i++ {
- ek, dk := kemKeyGen(d, z)
- sink ^= ek[0] ^ dk[0]
+ dk := kemKeyGen(&dk, &d, &z)
+ sink ^= dk.EncapsulationKey()[0]
}
}
@@ -369,12 +396,13 @@ func BenchmarkEncaps(b *testing.B) {
rand.Read(d)
z := make([]byte, 32)
rand.Read(z)
- m := make([]byte, 32)
- rand.Read(m)
- ek, _ := kemKeyGen(d, z)
+ var m [messageSize]byte
+ rand.Read(m[:])
+ ek, _ := GenerateKeyDerand(b, d, z)
+ var c [CiphertextSize]byte
b.ResetTimer()
for i := 0; i < b.N; i++ {
- c, K, err := kemEncaps(ek, m)
+ c, K, err := kemEncaps(&c, ek, &m)
if err != nil {
b.Fatal(err)
}
@@ -389,41 +417,42 @@ func BenchmarkDecaps(b *testing.B) {
rand.Read(z)
m := make([]byte, 32)
rand.Read(m)
- ek, dk := kemKeyGen(d, z)
- c, _, err := kemEncaps(ek, m)
+ ek, dk := GenerateKeyDerand(b, d, z)
+ c, _, err := EncapsulateDerand(ek, m)
if err != nil {
b.Fatal(err)
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
- K, err := kemDecaps(dk, c)
- if err != nil {
- b.Fatal(err)
- }
+ K := kemDecaps(dk, (*[CiphertextSize]byte)(c))
sink ^= K[0]
}
}
func BenchmarkRoundTrip(b *testing.B) {
- ek, dk, err := GenerateKey()
+ dk, err := GenerateKey()
if err != nil {
b.Fatal(err)
}
+ ek := dk.EncapsulationKey()
c, _, err := Encapsulate(ek)
if err != nil {
b.Fatal(err)
}
b.Run("Alice", func(b *testing.B) {
for i := 0; i < b.N; i++ {
- ekS, dkS, err := GenerateKey()
+ dkS, err := GenerateKey()
if err != nil {
b.Fatal(err)
}
+ ekS := dkS.EncapsulationKey()
+ sink ^= ekS[0]
+
Ks, err := Decapsulate(dk, c)
if err != nil {
b.Fatal(err)
}
- sink ^= ekS[0] ^ dkS[0] ^ Ks[0]
+ sink ^= Ks[0]
}
})
b.Run("Bob", func(b *testing.B) {