aboutsummaryrefslogtreecommitdiff
path: root/vendor/github.com/google/go-cmp/cmp/internal/diff/diff.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/google/go-cmp/cmp/internal/diff/diff.go')
-rw-r--r--vendor/github.com/google/go-cmp/cmp/internal/diff/diff.go372
1 files changed, 372 insertions, 0 deletions
diff --git a/vendor/github.com/google/go-cmp/cmp/internal/diff/diff.go b/vendor/github.com/google/go-cmp/cmp/internal/diff/diff.go
new file mode 100644
index 0000000..3d2e426
--- /dev/null
+++ b/vendor/github.com/google/go-cmp/cmp/internal/diff/diff.go
@@ -0,0 +1,372 @@
+// Copyright 2017, The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE.md file.
+
+// Package diff implements an algorithm for producing edit-scripts.
+// The edit-script is a sequence of operations needed to transform one list
+// of symbols into another (or vice-versa). The edits allowed are insertions,
+// deletions, and modifications. The summation of all edits is called the
+// Levenshtein distance as this problem is well-known in computer science.
+//
+// This package prioritizes performance over accuracy. That is, the run time
+// is more important than obtaining a minimal Levenshtein distance.
+package diff
+
+// EditType represents a single operation within an edit-script.
+type EditType uint8
+
+const (
+ // Identity indicates that a symbol pair is identical in both list X and Y.
+ Identity EditType = iota
+ // UniqueX indicates that a symbol only exists in X and not Y.
+ UniqueX
+ // UniqueY indicates that a symbol only exists in Y and not X.
+ UniqueY
+ // Modified indicates that a symbol pair is a modification of each other.
+ Modified
+)
+
+// EditScript represents the series of differences between two lists.
+type EditScript []EditType
+
+// String returns a human-readable string representing the edit-script where
+// Identity, UniqueX, UniqueY, and Modified are represented by the
+// '.', 'X', 'Y', and 'M' characters, respectively.
+func (es EditScript) String() string {
+ b := make([]byte, len(es))
+ for i, e := range es {
+ switch e {
+ case Identity:
+ b[i] = '.'
+ case UniqueX:
+ b[i] = 'X'
+ case UniqueY:
+ b[i] = 'Y'
+ case Modified:
+ b[i] = 'M'
+ default:
+ panic("invalid edit-type")
+ }
+ }
+ return string(b)
+}
+
+// stats returns a histogram of the number of each type of edit operation.
+func (es EditScript) stats() (s struct{ NI, NX, NY, NM int }) {
+ for _, e := range es {
+ switch e {
+ case Identity:
+ s.NI++
+ case UniqueX:
+ s.NX++
+ case UniqueY:
+ s.NY++
+ case Modified:
+ s.NM++
+ default:
+ panic("invalid edit-type")
+ }
+ }
+ return
+}
+
+// Dist is the Levenshtein distance and is guaranteed to be 0 if and only if
+// lists X and Y are equal.
+func (es EditScript) Dist() int { return len(es) - es.stats().NI }
+
+// LenX is the length of the X list.
+func (es EditScript) LenX() int { return len(es) - es.stats().NY }
+
+// LenY is the length of the Y list.
+func (es EditScript) LenY() int { return len(es) - es.stats().NX }
+
+// EqualFunc reports whether the symbols at indexes ix and iy are equal.
+// When called by Difference, the index is guaranteed to be within nx and ny.
+type EqualFunc func(ix int, iy int) Result
+
+// Result is the result of comparison.
+// NumSame is the number of sub-elements that are equal.
+// NumDiff is the number of sub-elements that are not equal.
+type Result struct{ NumSame, NumDiff int }
+
+// BoolResult returns a Result that is either Equal or not Equal.
+func BoolResult(b bool) Result {
+ if b {
+ return Result{NumSame: 1} // Equal, Similar
+ } else {
+ return Result{NumDiff: 2} // Not Equal, not Similar
+ }
+}
+
+// Equal indicates whether the symbols are equal. Two symbols are equal
+// if and only if NumDiff == 0. If Equal, then they are also Similar.
+func (r Result) Equal() bool { return r.NumDiff == 0 }
+
+// Similar indicates whether two symbols are similar and may be represented
+// by using the Modified type. As a special case, we consider binary comparisons
+// (i.e., those that return Result{1, 0} or Result{0, 1}) to be similar.
+//
+// The exact ratio of NumSame to NumDiff to determine similarity may change.
+func (r Result) Similar() bool {
+ // Use NumSame+1 to offset NumSame so that binary comparisons are similar.
+ return r.NumSame+1 >= r.NumDiff
+}
+
+// Difference reports whether two lists of lengths nx and ny are equal
+// given the definition of equality provided as f.
+//
+// This function returns an edit-script, which is a sequence of operations
+// needed to convert one list into the other. The following invariants for
+// the edit-script are maintained:
+// • eq == (es.Dist()==0)
+// • nx == es.LenX()
+// • ny == es.LenY()
+//
+// This algorithm is not guaranteed to be an optimal solution (i.e., one that
+// produces an edit-script with a minimal Levenshtein distance). This algorithm
+// favors performance over optimality. The exact output is not guaranteed to
+// be stable and may change over time.
+func Difference(nx, ny int, f EqualFunc) (es EditScript) {
+ // This algorithm is based on traversing what is known as an "edit-graph".
+ // See Figure 1 from "An O(ND) Difference Algorithm and Its Variations"
+ // by Eugene W. Myers. Since D can be as large as N itself, this is
+ // effectively O(N^2). Unlike the algorithm from that paper, we are not
+ // interested in the optimal path, but at least some "decent" path.
+ //
+ // For example, let X and Y be lists of symbols:
+ // X = [A B C A B B A]
+ // Y = [C B A B A C]
+ //
+ // The edit-graph can be drawn as the following:
+ // A B C A B B A
+ // ┌─────────────┐
+ // C │_|_|\|_|_|_|_│ 0
+ // B │_|\|_|_|\|\|_│ 1
+ // A │\|_|_|\|_|_|\│ 2
+ // B │_|\|_|_|\|\|_│ 3
+ // A │\|_|_|\|_|_|\│ 4
+ // C │ | |\| | | | │ 5
+ // └─────────────┘ 6
+ // 0 1 2 3 4 5 6 7
+ //
+ // List X is written along the horizontal axis, while list Y is written
+ // along the vertical axis. At any point on this grid, if the symbol in
+ // list X matches the corresponding symbol in list Y, then a '\' is drawn.
+ // The goal of any minimal edit-script algorithm is to find a path from the
+ // top-left corner to the bottom-right corner, while traveling through the
+ // fewest horizontal or vertical edges.
+ // A horizontal edge is equivalent to inserting a symbol from list X.
+ // A vertical edge is equivalent to inserting a symbol from list Y.
+ // A diagonal edge is equivalent to a matching symbol between both X and Y.
+
+ // Invariants:
+ // • 0 ≤ fwdPath.X ≤ (fwdFrontier.X, revFrontier.X) ≤ revPath.X ≤ nx
+ // • 0 ≤ fwdPath.Y ≤ (fwdFrontier.Y, revFrontier.Y) ≤ revPath.Y ≤ ny
+ //
+ // In general:
+ // • fwdFrontier.X < revFrontier.X
+ // • fwdFrontier.Y < revFrontier.Y
+ // Unless, it is time for the algorithm to terminate.
+ fwdPath := path{+1, point{0, 0}, make(EditScript, 0, (nx+ny)/2)}
+ revPath := path{-1, point{nx, ny}, make(EditScript, 0)}
+ fwdFrontier := fwdPath.point // Forward search frontier
+ revFrontier := revPath.point // Reverse search frontier
+
+ // Search budget bounds the cost of searching for better paths.
+ // The longest sequence of non-matching symbols that can be tolerated is
+ // approximately the square-root of the search budget.
+ searchBudget := 4 * (nx + ny) // O(n)
+
+ // The algorithm below is a greedy, meet-in-the-middle algorithm for
+ // computing sub-optimal edit-scripts between two lists.
+ //
+ // The algorithm is approximately as follows:
+ // • Searching for differences switches back-and-forth between
+ // a search that starts at the beginning (the top-left corner), and
+ // a search that starts at the end (the bottom-right corner). The goal of
+ // the search is connect with the search from the opposite corner.
+ // • As we search, we build a path in a greedy manner, where the first
+ // match seen is added to the path (this is sub-optimal, but provides a
+ // decent result in practice). When matches are found, we try the next pair
+ // of symbols in the lists and follow all matches as far as possible.
+ // • When searching for matches, we search along a diagonal going through
+ // through the "frontier" point. If no matches are found, we advance the
+ // frontier towards the opposite corner.
+ // • This algorithm terminates when either the X coordinates or the
+ // Y coordinates of the forward and reverse frontier points ever intersect.
+ //
+ // This algorithm is correct even if searching only in the forward direction
+ // or in the reverse direction. We do both because it is commonly observed
+ // that two lists commonly differ because elements were added to the front
+ // or end of the other list.
+ //
+ // Running the tests with the "cmp_debug" build tag prints a visualization
+ // of the algorithm running in real-time. This is educational for
+ // understanding how the algorithm works. See debug_enable.go.
+ f = debug.Begin(nx, ny, f, &fwdPath.es, &revPath.es)
+ for {
+ // Forward search from the beginning.
+ if fwdFrontier.X >= revFrontier.X || fwdFrontier.Y >= revFrontier.Y || searchBudget == 0 {
+ break
+ }
+ for stop1, stop2, i := false, false, 0; !(stop1 && stop2) && searchBudget > 0; i++ {
+ // Search in a diagonal pattern for a match.
+ z := zigzag(i)
+ p := point{fwdFrontier.X + z, fwdFrontier.Y - z}
+ switch {
+ case p.X >= revPath.X || p.Y < fwdPath.Y:
+ stop1 = true // Hit top-right corner
+ case p.Y >= revPath.Y || p.X < fwdPath.X:
+ stop2 = true // Hit bottom-left corner
+ case f(p.X, p.Y).Equal():
+ // Match found, so connect the path to this point.
+ fwdPath.connect(p, f)
+ fwdPath.append(Identity)
+ // Follow sequence of matches as far as possible.
+ for fwdPath.X < revPath.X && fwdPath.Y < revPath.Y {
+ if !f(fwdPath.X, fwdPath.Y).Equal() {
+ break
+ }
+ fwdPath.append(Identity)
+ }
+ fwdFrontier = fwdPath.point
+ stop1, stop2 = true, true
+ default:
+ searchBudget-- // Match not found
+ }
+ debug.Update()
+ }
+ // Advance the frontier towards reverse point.
+ if revPath.X-fwdFrontier.X >= revPath.Y-fwdFrontier.Y {
+ fwdFrontier.X++
+ } else {
+ fwdFrontier.Y++
+ }
+
+ // Reverse search from the end.
+ if fwdFrontier.X >= revFrontier.X || fwdFrontier.Y >= revFrontier.Y || searchBudget == 0 {
+ break
+ }
+ for stop1, stop2, i := false, false, 0; !(stop1 && stop2) && searchBudget > 0; i++ {
+ // Search in a diagonal pattern for a match.
+ z := zigzag(i)
+ p := point{revFrontier.X - z, revFrontier.Y + z}
+ switch {
+ case fwdPath.X >= p.X || revPath.Y < p.Y:
+ stop1 = true // Hit bottom-left corner
+ case fwdPath.Y >= p.Y || revPath.X < p.X:
+ stop2 = true // Hit top-right corner
+ case f(p.X-1, p.Y-1).Equal():
+ // Match found, so connect the path to this point.
+ revPath.connect(p, f)
+ revPath.append(Identity)
+ // Follow sequence of matches as far as possible.
+ for fwdPath.X < revPath.X && fwdPath.Y < revPath.Y {
+ if !f(revPath.X-1, revPath.Y-1).Equal() {
+ break
+ }
+ revPath.append(Identity)
+ }
+ revFrontier = revPath.point
+ stop1, stop2 = true, true
+ default:
+ searchBudget-- // Match not found
+ }
+ debug.Update()
+ }
+ // Advance the frontier towards forward point.
+ if revFrontier.X-fwdPath.X >= revFrontier.Y-fwdPath.Y {
+ revFrontier.X--
+ } else {
+ revFrontier.Y--
+ }
+ }
+
+ // Join the forward and reverse paths and then append the reverse path.
+ fwdPath.connect(revPath.point, f)
+ for i := len(revPath.es) - 1; i >= 0; i-- {
+ t := revPath.es[i]
+ revPath.es = revPath.es[:i]
+ fwdPath.append(t)
+ }
+ debug.Finish()
+ return fwdPath.es
+}
+
+type path struct {
+ dir int // +1 if forward, -1 if reverse
+ point // Leading point of the EditScript path
+ es EditScript
+}
+
+// connect appends any necessary Identity, Modified, UniqueX, or UniqueY types
+// to the edit-script to connect p.point to dst.
+func (p *path) connect(dst point, f EqualFunc) {
+ if p.dir > 0 {
+ // Connect in forward direction.
+ for dst.X > p.X && dst.Y > p.Y {
+ switch r := f(p.X, p.Y); {
+ case r.Equal():
+ p.append(Identity)
+ case r.Similar():
+ p.append(Modified)
+ case dst.X-p.X >= dst.Y-p.Y:
+ p.append(UniqueX)
+ default:
+ p.append(UniqueY)
+ }
+ }
+ for dst.X > p.X {
+ p.append(UniqueX)
+ }
+ for dst.Y > p.Y {
+ p.append(UniqueY)
+ }
+ } else {
+ // Connect in reverse direction.
+ for p.X > dst.X && p.Y > dst.Y {
+ switch r := f(p.X-1, p.Y-1); {
+ case r.Equal():
+ p.append(Identity)
+ case r.Similar():
+ p.append(Modified)
+ case p.Y-dst.Y >= p.X-dst.X:
+ p.append(UniqueY)
+ default:
+ p.append(UniqueX)
+ }
+ }
+ for p.X > dst.X {
+ p.append(UniqueX)
+ }
+ for p.Y > dst.Y {
+ p.append(UniqueY)
+ }
+ }
+}
+
+func (p *path) append(t EditType) {
+ p.es = append(p.es, t)
+ switch t {
+ case Identity, Modified:
+ p.add(p.dir, p.dir)
+ case UniqueX:
+ p.add(p.dir, 0)
+ case UniqueY:
+ p.add(0, p.dir)
+ }
+ debug.Update()
+}
+
+type point struct{ X, Y int }
+
+func (p *point) add(dx, dy int) { p.X += dx; p.Y += dy }
+
+// zigzag maps a consecutive sequence of integers to a zig-zag sequence.
+// [0 1 2 3 4 5 ...] => [0 -1 +1 -2 +2 ...]
+func zigzag(x int) int {
+ if x&1 != 0 {
+ x = ^x
+ }
+ return x >> 1
+}