aboutsummaryrefslogtreecommitdiff
path: root/src/test/test_prob_distr.c
blob: 0eca435ab5c2236af39543d2fb675d297d47ea47 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
/* Copyright (c) 2018-2021, The Tor Project, Inc. */
/* See LICENSE for licensing information */

/**
 * \file test_prob_distr.c
 * \brief Test probability distributions.
 * \detail
 *
 * For each probability distribution we do two kinds of tests:
 *
 * a) We do numerical deterministic testing of their cdf/icdf/sf/isf functions
 *    and the various relationships between them for each distribution. We also
 *    do deterministic tests on their sampling functions. Test vectors for
 *    these tests were computed from alternative implementations and were
 *    eyeballed to make sure they make sense
 *    (e.g. src/test/prob_distr_mpfr_ref.c computes logit(p) using GNU mpfr
 *    with 200-bit precision and is then tested in test_logit_logistic()).
 *
 * b) We do stochastic hypothesis testing (G-test) to ensure that sampling from
 *    the given distributions is distributed properly. The stochastic tests are
 *    slow and their false positive rate is not well suited for CI, so they are
 *    currently disabled-by-default and put into 'tests-slow'.
 */

#define PROB_DISTR_PRIVATE

#include "orconfig.h"

#include "test/test.h"

#include "core/or/or.h"

#include "lib/math/prob_distr.h"
#include "lib/math/fp.h"
#include "lib/crypt_ops/crypto_rand.h"
#include "test/rng_test_helpers.h"

#include <float.h>
#include <math.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>

/**
 * Return floor(d) converted to size_t, as a workaround for complaints
 * under -Wbad-function-cast for (size_t)floor(d).
 */
static size_t
floor_to_size_t(double d)
{
  double integral_d = floor(d);
  return (size_t)integral_d;
}

/**
 * Return ceil(d) converted to size_t, as a workaround for complaints
 * under -Wbad-function-cast for (size_t)ceil(d).
 */
static size_t
ceil_to_size_t(double d)
{
  double integral_d = ceil(d);
  return (size_t)integral_d;
}

/*
 * Geometric(p) distribution, supported on {1, 2, 3, ...}.
 *
 * Compute the probability mass function Geom(n; p) of the number of
 * trials before the first success when success has probability p.
 */
static double
logpmf_geometric(unsigned n, double p)
{
  /* This is actually a check against 1, but we do >= so that the compiler
     does not raise a -Wfloat-equal */
  if (p >= 1) {
    if (n == 1)
      return 0;
    else
      return -HUGE_VAL;
  }
  return (n - 1)*log1p(-p) + log(p);
}

/**
 * Compute the logistic function, translated in output by 1/2:
 * logistichalf(x) = logistic(x) - 1/2.  Well-conditioned on the entire
 * real plane, with maximum condition number 1 at 0.
 *
 * This implementation gives relative error bounded by 5 eps.
 */
static double
logistichalf(double x)
{
  /*
   * Rewrite this with the identity
   *
   *  1/(1 + e^{-x}) - 1/2
   *  = (1 - 1/2 - e^{-x}/2)/(1 + e^{-x})
   *  = (1/2 - e^{-x}/2)/(1 + e^{-x})
   *  = (1 - e^{-x})/[2 (1 + e^{-x})]
   *  = -(e^{-x} - 1)/[2 (1 + e^{-x})],
   *
   * which we can evaluate by -expm1(-x)/[2 (1 + exp(-x))].
   *
   * Suppose exp has error d0, + has error d1, expm1 has error
   * d2, and / has error d3, so we evaluate
   *
   *  -(1 + d2) (1 + d3) (e^{-x} - 1)
   *    / [2 (1 + d1) (1 + (1 + d0) e^{-x})].
   *
   * In the denominator,
   *
   *  1 + (1 + d0) e^{-x}
   *  = 1 + e^{-x} + d0 e^{-x}
   *  = (1 + e^{-x}) (1 + d0 e^{-x}/(1 + e^{-x})),
   *
   * so the relative error of the numerator is
   *
   *  d' = d2 + d3 + d2 d3,
   * and of the denominator,
   *  d'' = d1 + d0 e^{-x}/(1 + e^{-x}) + d0 d1 e^{-x}/(1 + e^{-x})
   *      = d1 + d0 L(-x) + d0 d1 L(-x),
   *
   * where L(-x) is logistic(-x).  By Lemma 1 the relative error
   * of the quotient is bounded by
   *
   *  2|d2 + d3 + d2 d3 - d1 - d0 L(x) + d0 d1 L(x)|,
   *
   * Since 0 < L(x) < 1, this is bounded by
   *
   *  2|d2| + 2|d3| + 2|d2 d3| + 2|d1| + 2|d0| + 2|d0 d1|
   *  <= 4 eps + 2 eps^2.
   */
  if (x < log(DBL_EPSILON/8)) {
    /*
     * Avoid overflow in e^{-x}.  When x < log(eps/4), we
     * we further have x < logit(eps/4), so that
     * logistic(x) < eps/4.  Hence the relative error of
     * logistic(x) - 1/2 from -1/2 is bounded by eps/2, and
     * so the relative error of -1/2 from logistic(x) - 1/2
     * is bounded by eps.
     */
    return -0.5;
  } else {
    return -expm1(-x)/(2*(1 + exp(-x)));
  }
}

/**
 * Compute the log of the sum of the exps.  Caller should arrange the
 * array in descending order to minimize error because I don't want to
 * deal with using temporary space and the one caller in this file
 * arranges that anyway.
 *
 * Warning: This implementation does not handle infinite or NaN inputs
 * sensibly, because I don't need that here at the moment.  (NaN, or
 * -inf and +inf together, should yield NaN; +inf and finite should
 * yield +inf; otherwise all -inf should be ignored because exp(-inf) =
 * 0.)
 */
static double
logsumexp(double *A, size_t n)
{
  double maximum, sum;
  size_t i;

  if (n == 0)
    return log(0);

  maximum = A[0];
  for (i = 1; i < n; i++) {
    if (A[i] > maximum)
      maximum = A[i];
  }

  sum = 0;
  for (i = n; i --> 0;)
    sum += exp(A[i] - maximum);

  return log(sum) + maximum;
}

/**
 * Compute log(1 - e^x).  Defined only for negative x so that e^x < 1.
 * This is the complement of a probability in log space.
 */
static double
log1mexp(double x)
{

  /*
   * We want to compute log on [0, 1/2) but log1p on [1/2, +inf),
   * so partition x at -log(2) = log(1/2).
   */
  if (-log(2) < x)
    return log(-expm1(x));
  else
    return log1p(-exp(x));
}

/*
 * Tests of numerical errors in computing logit, logistic, and the
 * various cdfs, sfs, icdfs, and isfs.
 */

#define arraycount(A) (sizeof(A)/sizeof(A[0]))

/** Return relative error between <b>actual</b> and <b>expected</b>.
 *  Special cases: If <b>expected</b> is zero or infinite, return 1 if
 *  <b>actual</b> is equal to <b>expected</b> and 0 if not, since the
 *  usual notion of relative error is undefined but we only use this
 *  for testing relerr(e, a) <= bound.  If either is NaN, return NaN,
 *  which has the property that NaN <= bound is false no matter what
 *  bound is.
 *
 *  Beware: if you test !(relerr(e, a) > bound), then then the result
 *  is true when a is NaN because NaN > bound is false too.  See
 *  CHECK_RELERR for correct use to decide when to report failure.
 */
static double
relerr(double expected, double actual)
{
  /*
   * To silence -Wfloat-equal, we have to test for equality using
   * inequalities: we have (fabs(expected) <= 0) iff (expected == 0),
   * and (actual <= expected && actual >= expected) iff actual ==
   * expected whether expected is zero or infinite.
   */
  if (fabs(expected) <= 0 || tor_isinf(expected)) {
    if (actual <= expected && actual >= expected)
      return 0;
    else
      return 1;
  } else {
    return fabs((expected - actual)/expected);
  }
}

/** Check that relative error of <b>expected</b> and <b>actual</b> is within
 *  <b>relerr_bound</b>.  Caller must arrange to have i and relerr_bound in
 *  scope.  */
#define CHECK_RELERR(expected, actual) do {                                   \
  double check_expected = (expected);                                         \
  double check_actual = (actual);                                             \
  const char *str_expected = #expected;                                       \
  const char *str_actual = #actual;                                           \
  double check_relerr = relerr(expected, actual);                             \
  if (!(relerr(check_expected, check_actual) <= relerr_bound)) {              \
    log_warn(LD_GENERAL, "%s:%d: case %u: relerr(%s=%.17e, %s=%.17e)"        \
             " = %.17e > %.17e\n",                                            \
             __func__, __LINE__, (unsigned) i,                                \
             str_expected, check_expected,                                    \
             str_actual, check_actual,                                        \
             check_relerr, relerr_bound);                                     \
    ok = false;                                                               \
  }                                                                           \
} while (0)

/* Check that a <= b.
 * Caller must arrange to have i in scope.  */
#define CHECK_LE(a, b) do {                                                   \
  double check_a = (a);                                                       \
  double check_b = (b);                                                       \
  const char *str_a = #a;                                                     \
  const char *str_b = #b;                                                     \
  if (!(check_a <= check_b)) {                                                \
    log_warn(LD_GENERAL, "%s:%d: case %u: %s=%.17e > %s=%.17e\n",             \
             __func__, __LINE__, (unsigned) i,                                \
             str_a, check_a, str_b, check_b);                                 \
    ok = false;                                                               \
  }                                                                           \
} while (0)

/**
 * Test the logit and logistic functions.  Confirm that they agree with
 * the cdf, sf, icdf, and isf of the standard Logistic distribution.
 * Confirm that the sampler for the standard logistic distribution maps
 * [0, 1] into the right subinterval for the inverse transform, for
 * this implementation.
 */
static void
test_logit_logistic(void *arg)
{
  (void) arg;

  static const struct {
    double x;                   /* x = logit(p) */
    double p;                   /* p = logistic(x) */
    double phalf;               /* p - 1/2 = logistic(x) - 1/2 */
  } cases[] = {
    { -HUGE_VAL, 0, -0.5 },
    { -1000, 0, -0.5 },
    { -710, 4.47628622567513e-309, -0.5 },
    { -708, 3.307553003638408e-308, -0.5 },
    { -2, .11920292202211755, -.3807970779778824 },
    { -1.0000001, .2689414017088022, -.23105859829119776 },
    { -1, .2689414213699951, -.23105857863000487 },
    { -0.9999999, .26894144103118883, -.2310585589688111 },
    /* see src/test/prob_distr_mpfr_ref.c for computation */
    { -4.000000000537333e-5, .49999, -1.0000000000010001e-5 },
    { -4.000000000533334e-5, .49999, -.00001 },
    { -4.000000108916878e-9, .499999999, -1.0000000272292198e-9 },
    { -4e-9, .499999999, -1e-9 },
    { -4e-16, .5, -1e-16 },
    { -4e-300, .5, -1e-300 },
    { 0, .5, 0 },
    { 4e-300, .5, 1e-300 },
    { 4e-16, .5, 1e-16 },
    { 3.999999886872274e-9, .500000001, 9.999999717180685e-10 },
    { 4e-9, .500000001, 1e-9 },
    { 4.0000000005333336e-5, .50001, .00001 },
    { 8.000042667076272e-3, .502, .002 },
    { 0.9999999, .7310585589688111, .2310585589688111 },
    { 1, .7310585786300049, .23105857863000487 },
    { 1.0000001, .7310585982911977, .23105859829119774 },
    { 2, .8807970779778823, .3807970779778824 },
    { 708, 1, .5 },
    { 710, 1, .5 },
    { 1000, 1, .5 },
    { HUGE_VAL, 1, .5 },
  };
  double relerr_bound = 3e-15; /* >10eps */
  size_t i;
  bool ok = true;

  for (i = 0; i < arraycount(cases); i++) {
    double x = cases[i].x;
    double p = cases[i].p;
    double phalf = cases[i].phalf;

    /*
     * cdf is logistic, icdf is logit, and symmetry for
     * sf/isf.
     */
    CHECK_RELERR(logistic(x), cdf_logistic(x, 0, 1));
    CHECK_RELERR(logistic(-x), sf_logistic(x, 0, 1));
    CHECK_RELERR(logit(p), icdf_logistic(p, 0, 1));
    CHECK_RELERR(-logit(p), isf_logistic(p, 0, 1));

    CHECK_RELERR(cdf_logistic(x, 0, 1), cdf_logistic(x*2, 0, 2));
    CHECK_RELERR(sf_logistic(x, 0, 1), sf_logistic(x*2, 0, 2));
    CHECK_RELERR(icdf_logistic(p, 0, 1), icdf_logistic(p, 0, 2)/2);
    CHECK_RELERR(isf_logistic(p, 0, 1), isf_logistic(p, 0, 2)/2);

    CHECK_RELERR(cdf_logistic(x, 0, 1), cdf_logistic(x/2, 0, .5));
    CHECK_RELERR(sf_logistic(x, 0, 1), sf_logistic(x/2, 0, .5));
    CHECK_RELERR(icdf_logistic(p, 0, 1), icdf_logistic(p, 0,.5)*2);
    CHECK_RELERR(isf_logistic(p, 0, 1), isf_logistic(p, 0, .5)*2);

    CHECK_RELERR(cdf_logistic(x, 0, 1), cdf_logistic(x*2 + 1, 1, 2));
    CHECK_RELERR(sf_logistic(x, 0, 1), sf_logistic(x*2 + 1, 1, 2));

    /*
     * For p near 0 and p near 1/2, the arithmetic of
     * translating by 1 loses precision.
     */
    if (fabs(p) > DBL_EPSILON && fabs(p) < 0.4) {
      CHECK_RELERR(icdf_logistic(p, 0, 1),
          (icdf_logistic(p, 1, 2) - 1)/2);
      CHECK_RELERR(isf_logistic(p, 0, 1),
          (isf_logistic(p, 1, 2) - 1)/2);
    }

    CHECK_RELERR(p, logistic(x));
    CHECK_RELERR(phalf, logistichalf(x));

    /*
     * On the interior floating-point numbers, either logit or
     * logithalf had better give the correct answer.
     *
     * For probabilities near 0, we can get much finer resolution with
     * logit, and for probabilities near 1/2, we can get much finer
     * resolution with logithalf by representing them using p - 1/2.
     *
     * E.g., we can write -.00001 for phalf, and .49999 for p, but the
     * difference 1/2 - .00001 gives 1.0000000000010001e-5 in binary64
     * arithmetic.  So test logit(.49999) which should give the same
     * answer as logithalf(-1.0000000000010001e-5), namely
     * -4.000000000537333e-5, and also test logithalf(-.00001) which
     * gives -4.000000000533334e-5 instead -- but don't expect
     * logit(.49999) to give -4.000000000533334e-5 even though it looks
     * like 1/2 - .00001.
     *
     * A naive implementation of logit will just use log(p/(1 - p)) and
     * give the answer -4.000000000551673e-05 for .49999, which is
     * wrong in a lot of digits, which happens because log is
     * ill-conditioned near 1 and thus amplifies whatever relative
     * error we made in computing p/(1 - p).
     */
    if ((0 < p && p < 1) || tor_isinf(x)) {
      if (phalf >= p - 0.5 && phalf <= p - 0.5)
        CHECK_RELERR(x, logit(p));
      if (p >= 0.5 + phalf && p <= 0.5 + phalf)
        CHECK_RELERR(x, logithalf(phalf));
    }

    CHECK_RELERR(-phalf, logistichalf(-x));
    if (fabs(phalf) < 0.5 || tor_isinf(x))
      CHECK_RELERR(-x, logithalf(-phalf));
    if (p < 1 || tor_isinf(x)) {
      CHECK_RELERR(1 - p, logistic(-x));
      if (p > .75 || tor_isinf(x))
        CHECK_RELERR(-x, logit(1 - p));
    } else {
      CHECK_LE(logistic(-x), 1e-300);
    }
  }

  for (i = 0; i <= 100; i++) {
    double p0 = (double)i/100;

    CHECK_RELERR(logit(p0/(1 + M_E)), sample_logistic(0, 0, p0));
    CHECK_RELERR(-logit(p0/(1 + M_E)), sample_logistic(1, 0, p0));
    CHECK_RELERR(logithalf(p0*(0.5 - 1/(1 + M_E))),
        sample_logistic(0, 1, p0));
    CHECK_RELERR(-logithalf(p0*(0.5 - 1/(1 + M_E))),
        sample_logistic(1, 1, p0));
  }

  if (!ok)
    printf("fail logit/logistic / logistic cdf/sf\n");

  tt_assert(ok);

 done:
  ;
}

/**
 * Test the cdf, sf, icdf, and isf of the LogLogistic distribution.
 */
static void
test_log_logistic(void *arg)
{
  (void) arg;

  static const struct {
    /* x is a point in the support of the LogLogistic distribution */
    double x;
    /* 'p' is the probability that a random variable X for a given LogLogistic
     * probability distribution will take value less-or-equal to x */
    double p;
    /* 'np' is the probability that a random variable X for a given LogLogistic
     * probability distribution will take value greater-or-equal to x. */
    double np;
  } cases[] = {
    { 0, 0, 1 },
    { 1e-300, 1e-300, 1 },
    { 1e-17, 1e-17, 1 },
    { 1e-15, 1e-15, .999999999999999 },
    { .1, .09090909090909091, .90909090909090909 },
    { .25, .2, .8 },
    { .5, .33333333333333333, .66666666666666667 },
    { .75, .42857142857142855, .5714285714285714 },
    { .9999, .49997499874993756, .5000250012500626 },
    { .99999999, .49999999749999996, .5000000025 },
    { .999999999999999, .49999999999999994, .5000000000000002 },
    { 1, .5, .5 },
  };
  double relerr_bound = 3e-15;
  size_t i;
  bool ok = true;

  for (i = 0; i < arraycount(cases); i++) {
    double x = cases[i].x;
    double p = cases[i].p;
    double np = cases[i].np;

    CHECK_RELERR(p, cdf_log_logistic(x, 1, 1));
    CHECK_RELERR(p, cdf_log_logistic(x/2, .5, 1));
    CHECK_RELERR(p, cdf_log_logistic(x*2, 2, 1));
    CHECK_RELERR(p, cdf_log_logistic(sqrt(x), 1, 2));
    CHECK_RELERR(p, cdf_log_logistic(sqrt(x)/2, .5, 2));
    CHECK_RELERR(p, cdf_log_logistic(sqrt(x)*2, 2, 2));
    if (2*sqrt(DBL_MIN) < x) {
      CHECK_RELERR(p, cdf_log_logistic(x*x, 1, .5));
      CHECK_RELERR(p, cdf_log_logistic(x*x/2, .5, .5));
      CHECK_RELERR(p, cdf_log_logistic(x*x*2, 2, .5));
    }

    CHECK_RELERR(np, sf_log_logistic(x, 1, 1));
    CHECK_RELERR(np, sf_log_logistic(x/2, .5, 1));
    CHECK_RELERR(np, sf_log_logistic(x*2, 2, 1));
    CHECK_RELERR(np, sf_log_logistic(sqrt(x), 1, 2));
    CHECK_RELERR(np, sf_log_logistic(sqrt(x)/2, .5, 2));
    CHECK_RELERR(np, sf_log_logistic(sqrt(x)*2, 2, 2));
    if (2*sqrt(DBL_MIN) < x) {
      CHECK_RELERR(np, sf_log_logistic(x*x, 1, .5));
      CHECK_RELERR(np, sf_log_logistic(x*x/2, .5, .5));
      CHECK_RELERR(np, sf_log_logistic(x*x*2, 2, .5));
    }

    CHECK_RELERR(np, cdf_log_logistic(1/x, 1, 1));
    CHECK_RELERR(np, cdf_log_logistic(1/(2*x), .5, 1));
    CHECK_RELERR(np, cdf_log_logistic(2/x, 2, 1));
    CHECK_RELERR(np, cdf_log_logistic(1/sqrt(x), 1, 2));
    CHECK_RELERR(np, cdf_log_logistic(1/(2*sqrt(x)), .5, 2));
    CHECK_RELERR(np, cdf_log_logistic(2/sqrt(x), 2, 2));
    if (2*sqrt(DBL_MIN) < x && x < 1/(2*sqrt(DBL_MIN))) {
      CHECK_RELERR(np, cdf_log_logistic(1/(x*x), 1, .5));
      CHECK_RELERR(np, cdf_log_logistic(1/(2*x*x), .5, .5));
      CHECK_RELERR(np, cdf_log_logistic(2/(x*x), 2, .5));
    }

    CHECK_RELERR(p, sf_log_logistic(1/x, 1, 1));
    CHECK_RELERR(p, sf_log_logistic(1/(2*x), .5, 1));
    CHECK_RELERR(p, sf_log_logistic(2/x, 2, 1));
    CHECK_RELERR(p, sf_log_logistic(1/sqrt(x), 1, 2));
    CHECK_RELERR(p, sf_log_logistic(1/(2*sqrt(x)), .5, 2));
    CHECK_RELERR(p, sf_log_logistic(2/sqrt(x), 2, 2));
    if (2*sqrt(DBL_MIN) < x && x < 1/(2*sqrt(DBL_MIN))) {
      CHECK_RELERR(p, sf_log_logistic(1/(x*x), 1, .5));
      CHECK_RELERR(p, sf_log_logistic(1/(2*x*x), .5, .5));
      CHECK_RELERR(p, sf_log_logistic(2/(x*x), 2, .5));
    }

    CHECK_RELERR(x, icdf_log_logistic(p, 1, 1));
    CHECK_RELERR(x/2, icdf_log_logistic(p, .5, 1));
    CHECK_RELERR(x*2, icdf_log_logistic(p, 2, 1));
    CHECK_RELERR(x, icdf_log_logistic(p, 1, 1));
    CHECK_RELERR(sqrt(x)/2, icdf_log_logistic(p, .5, 2));
    CHECK_RELERR(sqrt(x)*2, icdf_log_logistic(p, 2, 2));
    CHECK_RELERR(sqrt(x), icdf_log_logistic(p, 1, 2));
    CHECK_RELERR(x*x/2, icdf_log_logistic(p, .5, .5));
    CHECK_RELERR(x*x*2, icdf_log_logistic(p, 2, .5));

    if (np < .9) {
      CHECK_RELERR(x, isf_log_logistic(np, 1, 1));
      CHECK_RELERR(x/2, isf_log_logistic(np, .5, 1));
      CHECK_RELERR(x*2, isf_log_logistic(np, 2, 1));
      CHECK_RELERR(sqrt(x), isf_log_logistic(np, 1, 2));
      CHECK_RELERR(sqrt(x)/2, isf_log_logistic(np, .5, 2));
      CHECK_RELERR(sqrt(x)*2, isf_log_logistic(np, 2, 2));
      CHECK_RELERR(x*x, isf_log_logistic(np, 1, .5));
      CHECK_RELERR(x*x/2, isf_log_logistic(np, .5, .5));
      CHECK_RELERR(x*x*2, isf_log_logistic(np, 2, .5));

      CHECK_RELERR(1/x, icdf_log_logistic(np, 1, 1));
      CHECK_RELERR(1/(2*x), icdf_log_logistic(np, .5, 1));
      CHECK_RELERR(2/x, icdf_log_logistic(np, 2, 1));
      CHECK_RELERR(1/sqrt(x), icdf_log_logistic(np, 1, 2));
      CHECK_RELERR(1/(2*sqrt(x)),
          icdf_log_logistic(np, .5, 2));
      CHECK_RELERR(2/sqrt(x), icdf_log_logistic(np, 2, 2));
      CHECK_RELERR(1/(x*x), icdf_log_logistic(np, 1, .5));
      CHECK_RELERR(1/(2*x*x), icdf_log_logistic(np, .5, .5));
      CHECK_RELERR(2/(x*x), icdf_log_logistic(np, 2, .5));
    }

    CHECK_RELERR(1/x, isf_log_logistic(p, 1, 1));
    CHECK_RELERR(1/(2*x), isf_log_logistic(p, .5, 1));
    CHECK_RELERR(2/x, isf_log_logistic(p, 2, 1));
    CHECK_RELERR(1/sqrt(x), isf_log_logistic(p, 1, 2));
    CHECK_RELERR(1/(2*sqrt(x)), isf_log_logistic(p, .5, 2));
    CHECK_RELERR(2/sqrt(x), isf_log_logistic(p, 2, 2));
    CHECK_RELERR(1/(x*x), isf_log_logistic(p, 1, .5));
    CHECK_RELERR(1/(2*x*x), isf_log_logistic(p, .5, .5));
    CHECK_RELERR(2/(x*x), isf_log_logistic(p, 2, .5));
  }

  for (i = 0; i <= 100; i++) {
    double p0 = (double)i/100;

    CHECK_RELERR(0.5*p0/(1 - 0.5*p0), sample_log_logistic(0, p0));
    CHECK_RELERR((1 - 0.5*p0)/(0.5*p0),
        sample_log_logistic(1, p0));
  }

  if (!ok)
    printf("fail log logistic cdf/sf\n");

  tt_assert(ok);

 done:
  ;
}

/**
 * Test the cdf, sf, icdf, isf of the Weibull distribution.
 */
static void
test_weibull(void *arg)
{
  (void) arg;

  static const struct {
    /* x is a point in the support of the Weibull distribution */
    double x;
    /* 'p' is the probability that a random variable X for a given Weibull
     * probability distribution will take value less-or-equal to x */
    double p;
    /* 'np' is the probability that a random variable X for a given Weibull
     * probability distribution will take value greater-or-equal to x. */
    double np;
  } cases[] = {
    { 0, 0, 1 },
    { 1e-300, 1e-300, 1 },
    { 1e-17, 1e-17, 1 },
    { .1, .09516258196404043, .9048374180359595 },
    { .5, .3934693402873666, .6065306597126334 },
    { .6931471805599453, .5, .5 },
    { 1, .6321205588285577, .36787944117144233 },
    { 10, .9999546000702375, 4.5399929762484854e-5 },
    { 36, .9999999999999998, 2.319522830243569e-16 },
    { 37, .9999999999999999, 8.533047625744066e-17 },
    { 38, 1, 3.1391327920480296e-17 },
    { 100, 1, 3.720075976020836e-44 },
    { 708, 1, 3.307553003638408e-308 },
    { 710, 1, 4.47628622567513e-309 },
    { 1000, 1, 0 },
    { HUGE_VAL, 1, 0 },
  };
  double relerr_bound = 3e-15;
  size_t i;
  bool ok = true;

  for (i = 0; i < arraycount(cases); i++) {
    double x = cases[i].x;
    double p = cases[i].p;
    double np = cases[i].np;

    CHECK_RELERR(p, cdf_weibull(x, 1, 1));
    CHECK_RELERR(p, cdf_weibull(x/2, .5, 1));
    CHECK_RELERR(p, cdf_weibull(x*2, 2, 1));
    /* For 0 < x < sqrt(DBL_MIN), x^2 loses lots of bits.  */
    if (x <= 0 ||
        sqrt(DBL_MIN) <= x) {
      CHECK_RELERR(p, cdf_weibull(x*x, 1, .5));
      CHECK_RELERR(p, cdf_weibull(x*x/2, .5, .5));
      CHECK_RELERR(p, cdf_weibull(x*x*2, 2, .5));
    }
    CHECK_RELERR(p, cdf_weibull(sqrt(x), 1, 2));
    CHECK_RELERR(p, cdf_weibull(sqrt(x)/2, .5, 2));
    CHECK_RELERR(p, cdf_weibull(sqrt(x)*2, 2, 2));
    CHECK_RELERR(np, sf_weibull(x, 1, 1));
    CHECK_RELERR(np, sf_weibull(x/2, .5, 1));
    CHECK_RELERR(np, sf_weibull(x*2, 2, 1));
    CHECK_RELERR(np, sf_weibull(x*x, 1, .5));
    CHECK_RELERR(np, sf_weibull(x*x/2, .5, .5));
    CHECK_RELERR(np, sf_weibull(x*x*2, 2, .5));
    if (x >= 10) {
      /*
       * exp amplifies the error of sqrt(x)^2
       * proportionally to exp(x); for large inputs
       * this is significant.
       */
      double t = -expm1(-x*(2*DBL_EPSILON + DBL_EPSILON));
      relerr_bound = t + DBL_EPSILON + t*DBL_EPSILON;
      if (relerr_bound < 3e-15)
        /*
         * The tests are written only to 16
         * decimal places anyway even if your
         * `double' is, say, i387 binary80, for
         * whatever reason.
         */
        relerr_bound = 3e-15;
      CHECK_RELERR(np, sf_weibull(sqrt(x), 1, 2));
      CHECK_RELERR(np, sf_weibull(sqrt(x)/2, .5, 2));
      CHECK_RELERR(np, sf_weibull(sqrt(x)*2, 2, 2));
    }

    if (p <= 0.75) {
      /*
       * For p near 1, not enough precision near 1 to
       * recover x.
       */
      CHECK_RELERR(x, icdf_weibull(p, 1, 1));
      CHECK_RELERR(x/2, icdf_weibull(p, .5, 1));
      CHECK_RELERR(x*2, icdf_weibull(p, 2, 1));
    }
    if (p >= 0.25 && !tor_isinf(x) && np > 0) {
      /*
       * For p near 0, not enough precision in np
       * near 1 to recover x.  For 0, isf gives inf,
       * even if p is precise enough for the icdf to
       * work.
       */
      CHECK_RELERR(x, isf_weibull(np, 1, 1));
      CHECK_RELERR(x/2, isf_weibull(np, .5, 1));
      CHECK_RELERR(x*2, isf_weibull(np, 2, 1));
    }
  }

  for (i = 0; i <= 100; i++) {
    double p0 = (double)i/100;

    CHECK_RELERR(3*sqrt(-log(p0/2)), sample_weibull(0, p0, 3, 2));
    CHECK_RELERR(3*sqrt(-log1p(-p0/2)),
        sample_weibull(1, p0, 3, 2));
  }

  if (!ok)
    printf("fail Weibull cdf/sf\n");

  tt_assert(ok);

 done:
  ;
}

/**
 * Test the cdf, sf, icdf, and isf of the generalized Pareto
 * distribution.
 */
static void
test_genpareto(void *arg)
{
  (void) arg;

  struct {
    /* xi is the 'xi' parameter of the generalized Pareto distribution, and the
     * rest are the same as in the above tests */
    double xi, x, p, np;
  } cases[] = {
    { 0, 0, 0, 1 },
    { 1e-300, .004, 3.992010656008528e-3, .9960079893439915 },
    { 1e-300, .1, .09516258196404043, .9048374180359595 },
    { 1e-300, 1, .6321205588285577, .36787944117144233 },
    { 1e-300, 10, .9999546000702375, 4.5399929762484854e-5 },
    { 1e-200, 1e-16, 9.999999999999999e-17, .9999999999999999 },
    { 1e-16, 1e-200, 9.999999999999998e-201, 1 },
    { 1e-16, 1e-16, 1e-16, 1 },
    { 1e-16, .004, 3.992010656008528e-3, .9960079893439915 },
    { 1e-16, .1, .09516258196404043, .9048374180359595 },
    { 1e-16, 1, .6321205588285577, .36787944117144233 },
    { 1e-16, 10, .9999546000702375, 4.539992976248509e-5 },
    { 1e-10, 1e-6, 9.999995000001667e-7, .9999990000005 },
    { 1e-8, 1e-8, 9.999999950000001e-9, .9999999900000001 },
    { 1, 1e-300, 1e-300, 1 },
    { 1, 1e-16, 1e-16, .9999999999999999 },
    { 1, .1, .09090909090909091, .9090909090909091 },
    { 1, 1, .5, .5 },
    { 1, 10, .9090909090909091, .0909090909090909 },
    { 1, 100, .9900990099009901, .0099009900990099 },
    { 1, 1000, .999000999000999, 9.990009990009992e-4 },
    { 10, 1e-300, 1e-300, 1 },
    { 10, 1e-16, 9.999999999999995e-17, .9999999999999999 },
    { 10, .1, .06696700846319258, .9330329915368074 },
    { 10, 1, .21320655780322778, .7867934421967723 },
    { 10, 10, .3696701667040189, .6303298332959811 },
    { 10, 100, .49886285755007337, .5011371424499267 },
    { 10, 1000, .6018968102992647, .3981031897007353 },
  };
  double xi_array[] = { -1.5, -1, -1e-30, 0, 1e-30, 1, 1.5 };
  size_t i, j;
  double relerr_bound = 3e-15;
  bool ok = true;

  for (i = 0; i < arraycount(cases); i++) {
    double xi = cases[i].xi;
    double x = cases[i].x;
    double p = cases[i].p;
    double np = cases[i].np;

    CHECK_RELERR(p, cdf_genpareto(x, 0, 1, xi));
    CHECK_RELERR(p, cdf_genpareto(x*2, 0, 2, xi));
    CHECK_RELERR(p, cdf_genpareto(x/2, 0, .5, xi));
    CHECK_RELERR(np, sf_genpareto(x, 0, 1, xi));
    CHECK_RELERR(np, sf_genpareto(x*2, 0, 2, xi));
    CHECK_RELERR(np, sf_genpareto(x/2, 0, .5, xi));

    if (p < .5) {
      CHECK_RELERR(x, icdf_genpareto(p, 0, 1, xi));
      CHECK_RELERR(x*2, icdf_genpareto(p, 0, 2, xi));
      CHECK_RELERR(x/2, icdf_genpareto(p, 0, .5, xi));
    }
    if (np < .5) {
      CHECK_RELERR(x, isf_genpareto(np, 0, 1, xi));
      CHECK_RELERR(x*2, isf_genpareto(np, 0, 2, xi));
      CHECK_RELERR(x/2, isf_genpareto(np, 0, .5, xi));
    }
  }

  for (i = 0; i < arraycount(xi_array); i++) {
    for (j = 0; j <= 100; j++) {
      double p0 = (j == 0 ? 2*DBL_MIN : (double)j/100);

      /* This is actually a check against 0, but we do <= so that the compiler
         does not raise a -Wfloat-equal */
      if (fabs(xi_array[i]) <= 0) {
        /*
         * When xi == 0, the generalized Pareto
         * distribution reduces to an
         * exponential distribution.
         */
        CHECK_RELERR(-log(p0/2),
            sample_genpareto(0, p0, 0));
        CHECK_RELERR(-log1p(-p0/2),
            sample_genpareto(1, p0, 0));
      } else {
        CHECK_RELERR(expm1(-xi_array[i]*log(p0/2))/xi_array[i],
            sample_genpareto(0, p0, xi_array[i]));
        CHECK_RELERR((j == 0 ? DBL_MIN :
                expm1(-xi_array[i]*log1p(-p0/2))/xi_array[i]),
            sample_genpareto(1, p0, xi_array[i]));
      }

      CHECK_RELERR(isf_genpareto(p0/2, 0, 1, xi_array[i]),
          sample_genpareto(0, p0, xi_array[i]));
      CHECK_RELERR(icdf_genpareto(p0/2, 0, 1, xi_array[i]),
          sample_genpareto(1, p0, xi_array[i]));
    }
  }

  tt_assert(ok);

 done:
  ;
}

/**
 * Test the deterministic sampler for uniform distribution on [a, b].
 *
 * This currently only tests whether the outcome lies within [a, b].
 */
static void
test_uniform_interval(void *arg)
{
  (void) arg;
  struct {
    /* Sample from a uniform distribution with parameters 'a' and 'b', using
     * 't' as the sampling index. */
    double t, a, b;
  } cases[] = {
    { 0, 0, 0 },
    { 0, 0, 1 },
    { 0, 1.0000000000000007, 3.999999999999995 },
    { 0, 4000, 4000 },
    { 0.42475836677491291, 4000, 4000 },
    { 0, -DBL_MAX, DBL_MAX },
    { 0.25, -DBL_MAX, DBL_MAX },
    { 0.5, -DBL_MAX, DBL_MAX },
  };
  size_t i = 0;
  bool ok = true;

  for (i = 0; i < arraycount(cases); i++) {
    double t = cases[i].t;
    double a = cases[i].a;
    double b = cases[i].b;

    CHECK_LE(a, sample_uniform_interval(t, a, b));
    CHECK_LE(sample_uniform_interval(t, a, b), b);

    CHECK_LE(a, sample_uniform_interval(1 - t, a, b));
    CHECK_LE(sample_uniform_interval(1 - t, a, b), b);

    CHECK_LE(sample_uniform_interval(t, -b, -a), -a);
    CHECK_LE(-b, sample_uniform_interval(t, -b, -a));

    CHECK_LE(sample_uniform_interval(1 - t, -b, -a), -a);
    CHECK_LE(-b, sample_uniform_interval(1 - t, -b, -a));
  }

  tt_assert(ok);

 done:
  ;
}

/********************** Stochastic tests ****************************/

/*
 * Psi test, sometimes also called G-test.  The psi test statistic,
 * suitably scaled, has chi^2 distribution, but the psi test tends to
 * have better statistical power in practice to detect deviations than
 * the chi^2 test does.  (The chi^2 test statistic is the first term of
 * the Taylor expansion of the psi test statistic.)  The psi test is
 * generic, for any CDF; particular distributions might have higher-
 * power tests to distinguish them from predictable deviations or bugs.
 *
 * We choose the psi critical value so that a single psi test has
 * probability below alpha = 1% of spuriously failing even if all the
 * code is correct.  But the false positive rate for a suite of n tests
 * is higher: 1 - Binom(0; n, alpha) = 1 - (1 - alpha)^n.  For n = 10,
 * this is about 10%, and for n = 100 it is well over 50%.
 *
 * Given that these tests will run with every CI job, we want to drive down the
 * false positive rate. We can drive it down by running each test four times,
 * and accepting it if it passes at least once; in that case, it is as if we
 * used Binom(4; 2, alpha) = alpha^4 as the false positive rate for each test,
 * and for n = 10 tests, it would be 9.99999959506e-08. If each CI build has 14
 * jobs, then the chance of a CI build failing is 1.39999903326e-06, which
 * means that a CI build will break with probability 50% after about 495106
 * builds.
 *
 * The critical value for a chi^2 distribution with 100 degrees of
 * freedom and false positive rate alpha = 1% was taken from:
 *
 *  NIST/SEMATECH e-Handbook of Statistical Methods, Section
 *  1.3.6.7.4 `Critical Values of the Chi-Square Distribution',
 *  <https://www.itl.nist.gov/div898/handbook/eda/section3/eda3674.htm>,
 *  retrieved 2018-10-28.
 */

static const size_t NSAMPLES = 100000;
/* Number of chances we give to the test to succeed. */
static const unsigned NTRIALS = 4;
/* Number of times we want the test to pass per NTRIALS. */
static const unsigned NPASSES_MIN = 1;

#define PSI_DF 100                          /* degrees of freedom */
static const double PSI_CRITICAL = 135.807; /* critical value, alpha = .01 */

/**
 * Perform a psi test on an array of sample counts, C, adding up to N
 * samples, and an array of log expected probabilities, logP,
 * representing the null hypothesis for the distribution of samples
 * counted.  Return false if the psi test rejects the null hypothesis,
 * true if otherwise.
 */
static bool
psi_test(const size_t C[PSI_DF], const double logP[PSI_DF], size_t N)
{
  double psi = 0;
  double c = 0;                 /* Kahan compensation */
  double t, u;
  size_t i;

  for (i = 0; i < PSI_DF; i++) {
    /*
     * c*log(c/(n*p)) = (1/n) * f*log(f/p) where f = c/n is
     * the frequency, and f*log(f/p) ---> 0 as f ---> 0, so
     * this is a reasonable choice.  Further, any mass that
     * _fails_ to turn up in this bin will inflate another
     * bin instead, so we don't really lose anything by
     * ignoring empty bins even if they have high
     * probability.
     */
    if (C[i] == 0)
      continue;
    t = C[i]*(log((double)C[i]/N) - logP[i]) - c;
    u = psi + t;
    c = (u - psi) - t;
    psi = u;
  }
  psi *= 2;

  return psi <= PSI_CRITICAL;
}

static bool
test_stochastic_geometric_impl(double p)
{
  const struct geometric_t geometric = {
    .base = GEOMETRIC(geometric),
    .p = p,
  };
  double logP[PSI_DF] = {0};
  unsigned ntry = NTRIALS, npass = 0;
  unsigned i;
  size_t j;

  /* Compute logP[i] = Geom(i + 1; p).  */
  for (i = 0; i < PSI_DF - 1; i++)
    logP[i] = logpmf_geometric(i + 1, p);

  /* Compute logP[n-1] = log (1 - (P[0] + P[1] + ... + P[n-2])).  */
  logP[PSI_DF - 1] = log1mexp(logsumexp(logP, PSI_DF - 1));

  while (ntry --> 0) {
    size_t C[PSI_DF] = {0};

    for (j = 0; j < NSAMPLES; j++) {
      double n_tmp = dist_sample(&geometric.base);

      /* Must be an integer.  (XXX -Wfloat-equal)  */
      tor_assert(ceil(n_tmp) <= n_tmp && ceil(n_tmp) >= n_tmp);

      /* Must be a positive integer.  */
      tor_assert(n_tmp >= 1);

      /* Probability of getting a value in the billions is negligible.  */
      tor_assert(n_tmp <= (double)UINT_MAX);

      unsigned n = (unsigned) n_tmp;

      if (n > PSI_DF)
        n = PSI_DF;
      C[n - 1]++;
    }

    if (psi_test(C, logP, NSAMPLES)) {
      if (++npass >= NPASSES_MIN)
        break;
    }
  }

  if (npass >= NPASSES_MIN) {
    /* printf("pass %s sampler\n", "geometric"); */
    return true;
  } else {
    printf("fail %s sampler\n", "geometric");
    return false;
  }
}

/**
 * Divide the support of <b>dist</b> into histogram bins in <b>logP</b>. Start
 * at the 1st percentile and ending at the 99th percentile. Pick the bin
 * boundaries using linear interpolation so that they are uniformly spaced.
 *
 * In each bin logP[i] we insert the expected log-probability that a sampled
 * value will fall into that bin. We will use this as the null hypothesis of
 * the psi test.
 *
 * Set logP[i] = log(CDF(x_i) - CDF(x_{i-1})), where x_-1 = -inf, x_n =
 * +inf, and x_i = i*(hi - lo)/(n - 2).
 */
static void
bin_cdfs(const struct dist_t *dist, double lo, double hi, double *logP,
         size_t n)
{
#define CDF(x)  dist_cdf(dist, x)
#define SF(x)   dist_sf(dist, x)
  const double w = (hi - lo)/(n - 2);
  double halfway = dist_icdf(dist, 0.5);
  double x_0, x_1;
  size_t i;
  size_t n2 = ceil_to_size_t((halfway - lo)/w);

  tor_assert(lo <= halfway);
  tor_assert(halfway <= hi);
  tor_assert(n2 <= n);

  x_1 = lo;
  logP[0] = log(CDF(x_1) - 0); /* 0 = CDF(-inf) */
  for (i = 1; i < n2; i++) {
    x_0 = x_1;
    /* do the linear interpolation */
    x_1 = (i <= n/2 ? lo + i*w : hi - (n - 2 - i)*w);
    /* set the expected log-probability */
    logP[i] = log(CDF(x_1) - CDF(x_0));
  }
  x_0 = hi;
  logP[n - 1] = log(SF(x_0) - 0); /* 0 = SF(+inf) = 1 - CDF(+inf) */

  /* In this loop we are filling out the high part of the array. We are using
   * SF because in these cases the CDF is near 1 where precision is lower. So
   * instead we are using SF near 0 where the precision is higher. We have
   * SF(t) = 1 - CDF(t).  */
  for (i = 1; i < n - n2; i++) {
    x_1 = x_0;
    /* do the linear interpolation */
    x_0 = (i <= n/2 ? hi - i*w : lo + (n - 2 - i)*w);
    /* set the expected log-probability */
    logP[n - i - 1] = log(SF(x_0) - SF(x_1));
  }
#undef SF
#undef CDF
}

/**
 * Draw NSAMPLES samples from dist, counting the number of samples x in
 * the ith bin C[i] if x_{i-1} <= x < x_i, where x_-1 = -inf, x_n =
 * +inf, and x_i = i*(hi - lo)/(n - 2).
 */
static void
bin_samples(const struct dist_t *dist, double lo, double hi, size_t *C,
            size_t n)
{
  const double w = (hi - lo)/(n - 2);
  size_t i;

  for (i = 0; i < NSAMPLES; i++) {
    double x = dist_sample(dist);
    size_t bin;

    if (x < lo)
      bin = 0;
    else if (x < hi)
      bin = 1 + floor_to_size_t((x - lo)/w);
    else
      bin = n - 1;
    tor_assert(bin < n);
    C[bin]++;
  }
}

/**
 * Carry out a Psi test on <b>dist</b>.
 *
 * Sample NSAMPLES from dist, putting them in bins from -inf to lo to
 * hi to +inf, and apply up to two psi tests.  True if at least one psi
 * test passes; false if not.  False positive rate should be bounded by
 * 0.01^2 = 0.0001.
 */
static bool
test_psi_dist_sample(const struct dist_t *dist)
{
  double logP[PSI_DF] = {0};
  unsigned ntry = NTRIALS, npass = 0;
  double lo = dist_icdf(dist, 1/(double)(PSI_DF + 2));
  double hi = dist_isf(dist, 1/(double)(PSI_DF + 2));

  /* Create the null hypothesis in logP */
  bin_cdfs(dist, lo, hi, logP, PSI_DF);

  /* Now run the test */
  while (ntry --> 0) {
    size_t C[PSI_DF] = {0};
    bin_samples(dist, lo, hi, C, PSI_DF);
    if (psi_test(C, logP, NSAMPLES)) {
      if (++npass >= NPASSES_MIN)
        break;
    }
  }

  /* Did we fail or succeed? */
  if (npass >= NPASSES_MIN) {
    /* printf("pass %s sampler\n", dist_name(dist));*/
    return true;
  } else {
    printf("fail %s sampler\n", dist_name(dist));
    return false;
  }
}

static void
write_stochastic_warning(void)
{
  if (tinytest_cur_test_has_failed()) {
    printf("\n"
         "NOTE: This is a stochastic test, and we expect it to fail from\n"
         "time to time, with some low probability. If you see it fail more\n"
         "than one trial in 100, though, please tell us.\n\n");
  }
}

static void
test_stochastic_uniform(void *arg)
{
  (void) arg;

  const struct uniform_t uniform01 = {
    .base = UNIFORM(uniform01),
    .a = 0,
    .b = 1,
  };
  const struct uniform_t uniform_pos = {
    .base = UNIFORM(uniform_pos),
    .a = 1.23,
    .b = 4.56,
  };
  const struct uniform_t uniform_neg = {
    .base = UNIFORM(uniform_neg),
    .a = -10,
    .b = -1,
  };
  const struct uniform_t uniform_cross = {
    .base = UNIFORM(uniform_cross),
    .a = -1.23,
    .b = 4.56,
  };
  const struct uniform_t uniform_subnormal = {
    .base = UNIFORM(uniform_subnormal),
    .a = 4e-324,
    .b = 4e-310,
  };
  const struct uniform_t uniform_subnormal_cross = {
    .base = UNIFORM(uniform_subnormal_cross),
    .a = -4e-324,
    .b = 4e-310,
  };
  bool ok = true, tests_failed = true;

  testing_enable_reproducible_rng();

  ok &= test_psi_dist_sample(&uniform01.base);
  ok &= test_psi_dist_sample(&uniform_pos.base);
  ok &= test_psi_dist_sample(&uniform_neg.base);
  ok &= test_psi_dist_sample(&uniform_cross.base);
  ok &= test_psi_dist_sample(&uniform_subnormal.base);
  ok &= test_psi_dist_sample(&uniform_subnormal_cross.base);

  tt_assert(ok);

  tests_failed = false;

 done:
  if (tests_failed) {
    write_stochastic_warning();
  }
  testing_disable_reproducible_rng();
}

static bool
test_stochastic_logistic_impl(double mu, double sigma)
{
  const struct logistic_t dist = {
    .base = LOGISTIC(dist),
    .mu = mu,
    .sigma = sigma,
  };

  /* XXX Consider some fancier logistic test.  */
  return test_psi_dist_sample(&dist.base);
}

static bool
test_stochastic_log_logistic_impl(double alpha, double beta)
{
  const struct log_logistic_t dist = {
    .base = LOG_LOGISTIC(dist),
    .alpha = alpha,
    .beta = beta,
  };

  /* XXX Consider some fancier log logistic test.  */
  return test_psi_dist_sample(&dist.base);
}

static bool
test_stochastic_weibull_impl(double lambda, double k)
{
  const struct weibull_t dist = {
    .base = WEIBULL(dist),
    .lambda = lambda,
    .k = k,
  };

// clang-format off
/*
 * XXX Consider applying a Tiku-Singh test:
 *
 *    M.L. Tiku and M. Singh, `Testing the two-parameter
 *    Weibull distribution', Communications in Statistics --
 *    Theory and Methods A10(9), 1981, 907--918.
https://www.tandfonline.com/doi/pdf/10.1080/03610928108828082?needAccess=true
 */
// clang-format on
  return test_psi_dist_sample(&dist.base);
}

static bool
test_stochastic_genpareto_impl(double mu, double sigma, double xi)
{
  const struct genpareto_t dist = {
    .base = GENPARETO(dist),
    .mu = mu,
    .sigma = sigma,
    .xi = xi,
  };

  /* XXX Consider some fancier GPD test.  */
  return test_psi_dist_sample(&dist.base);
}

static void
test_stochastic_genpareto(void *arg)
{
  bool ok = 0;
  bool tests_failed = true;
  (void) arg;

  testing_enable_reproducible_rng();

  ok = test_stochastic_genpareto_impl(0, 1, -0.25);
  tt_assert(ok);
  ok = test_stochastic_genpareto_impl(0, 1, -1e-30);
  tt_assert(ok);
  ok = test_stochastic_genpareto_impl(0, 1, 0);
  tt_assert(ok);
  ok = test_stochastic_genpareto_impl(0, 1, 1e-30);
  tt_assert(ok);
  ok = test_stochastic_genpareto_impl(0, 1, 0.25);
  tt_assert(ok);
  ok = test_stochastic_genpareto_impl(-1, 1, -0.25);
  tt_assert(ok);
  ok = test_stochastic_genpareto_impl(1, 2, 0.25);
  tt_assert(ok);

  tests_failed = false;

 done:
  if (tests_failed) {
    write_stochastic_warning();
  }
  testing_disable_reproducible_rng();
}

static void
test_stochastic_geometric(void *arg)
{
  bool ok = 0;
  bool tests_failed = true;

  (void) arg;

  testing_enable_reproducible_rng();

  ok = test_stochastic_geometric_impl(0.1);
  tt_assert(ok);
  ok = test_stochastic_geometric_impl(0.5);
  tt_assert(ok);
  ok = test_stochastic_geometric_impl(0.9);
  tt_assert(ok);
  ok = test_stochastic_geometric_impl(1);
  tt_assert(ok);

  tests_failed = false;

 done:
  if (tests_failed) {
    write_stochastic_warning();
  }
  testing_disable_reproducible_rng();
}

static void
test_stochastic_logistic(void *arg)
{
  bool ok = 0;
  bool tests_failed = true;
  (void) arg;

  testing_enable_reproducible_rng();

  ok = test_stochastic_logistic_impl(0, 1);
  tt_assert(ok);
  ok = test_stochastic_logistic_impl(0, 1e-16);
  tt_assert(ok);
  ok = test_stochastic_logistic_impl(1, 10);
  tt_assert(ok);
  ok = test_stochastic_logistic_impl(-10, 100);
  tt_assert(ok);

  tests_failed = false;

 done:
  if (tests_failed) {
    write_stochastic_warning();
  }
  testing_disable_reproducible_rng();
}

static void
test_stochastic_log_logistic(void *arg)
{
  bool ok = 0;
  (void) arg;

  testing_enable_reproducible_rng();

  ok = test_stochastic_log_logistic_impl(1, 1);
  tt_assert(ok);
  ok = test_stochastic_log_logistic_impl(1, 10);
  tt_assert(ok);
  ok = test_stochastic_log_logistic_impl(M_E, 1e-1);
  tt_assert(ok);
  ok = test_stochastic_log_logistic_impl(exp(-10), 1e-2);
  tt_assert(ok);

 done:
  write_stochastic_warning();
  testing_disable_reproducible_rng();
}

static void
test_stochastic_weibull(void *arg)
{
  bool ok = 0;
  (void) arg;

  testing_enable_reproducible_rng();

  ok = test_stochastic_weibull_impl(1, 0.5);
  tt_assert(ok);
  ok = test_stochastic_weibull_impl(1, 1);
  tt_assert(ok);
  ok = test_stochastic_weibull_impl(1, 1.5);
  tt_assert(ok);
  ok = test_stochastic_weibull_impl(1, 2);
  tt_assert(ok);
  ok = test_stochastic_weibull_impl(10, 1);
  tt_assert(ok);

 done:
  write_stochastic_warning();
  testing_disable_reproducible_rng();
  UNMOCK(crypto_rand);
}

struct testcase_t prob_distr_tests[] = {
  { "logit_logistics", test_logit_logistic, TT_FORK, NULL, NULL },
  { "log_logistic", test_log_logistic, TT_FORK, NULL, NULL },
  { "weibull", test_weibull, TT_FORK, NULL, NULL },
  { "genpareto", test_genpareto, TT_FORK, NULL, NULL },
  { "uniform_interval", test_uniform_interval, TT_FORK, NULL, NULL },
  END_OF_TESTCASES
};

struct testcase_t slow_stochastic_prob_distr_tests[] = {
  { "stochastic_genpareto", test_stochastic_genpareto, TT_FORK, NULL, NULL },
  { "stochastic_geometric", test_stochastic_geometric, TT_FORK, NULL, NULL },
  { "stochastic_uniform", test_stochastic_uniform, TT_FORK, NULL, NULL },
  { "stochastic_logistic", test_stochastic_logistic, TT_FORK, NULL, NULL },
  { "stochastic_log_logistic", test_stochastic_log_logistic, TT_FORK, NULL,
    NULL },
  { "stochastic_weibull", test_stochastic_weibull, TT_FORK, NULL, NULL },
  END_OF_TESTCASES
};