1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
|
/* Copyright (c) 2001-2004, Roger Dingledine.
* Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
* Copyright (c) 2007-2019, The Tor Project, Inc. */
/* See LICENSE for licensing information */
#include "orconfig.h"
#define CRYPTO_RAND_PRIVATE
#include "core/or/or.h"
#include "test/test.h"
#include "lib/crypt_ops/aes.h"
#include "lib/crypt_ops/crypto_format.h"
#include "lib/crypt_ops/crypto_rand.h"
/** Run unit tests for our random number generation function and its wrappers.
*/
static void
test_crypto_rng(void *arg)
{
int i, j, allok;
char data1[100], data2[100];
double d;
char *h=NULL;
/* Try out RNG. */
(void)arg;
tt_assert(! crypto_seed_rng());
crypto_rand(data1, 100);
crypto_rand(data2, 100);
tt_mem_op(data1,OP_NE, data2,100);
allok = 1;
for (i = 0; i < 100; ++i) {
uint64_t big;
char *host;
j = crypto_rand_int(100);
if (j < 0 || j >= 100)
allok = 0;
big = crypto_rand_uint64(UINT64_C(1)<<40);
if (big >= (UINT64_C(1)<<40))
allok = 0;
big = crypto_rand_uint64(UINT64_C(5));
if (big >= 5)
allok = 0;
d = crypto_rand_double();
tt_assert(d >= 0);
tt_assert(d < 1.0);
host = crypto_random_hostname(3,8,"www.",".onion");
if (strcmpstart(host,"www.") ||
strcmpend(host,".onion") ||
strlen(host) < 13 ||
strlen(host) > 18)
allok = 0;
tor_free(host);
}
/* Make sure crypto_random_hostname clips its inputs properly. */
h = crypto_random_hostname(20000, 9000, "www.", ".onion");
tt_assert(! strcmpstart(h,"www."));
tt_assert(! strcmpend(h,".onion"));
tt_int_op(63+4+6, OP_EQ, strlen(h));
tt_assert(allok);
done:
tor_free(h);
}
static void
test_crypto_rng_range(void *arg)
{
int got_smallest = 0, got_largest = 0;
int i;
(void)arg;
for (i = 0; i < 1000; ++i) {
int x = crypto_rand_int_range(5,9);
tt_int_op(x, OP_GE, 5);
tt_int_op(x, OP_LT, 9);
if (x == 5)
got_smallest = 1;
if (x == 8)
got_largest = 1;
}
/* These fail with probability 1/10^603. */
tt_assert(got_smallest);
tt_assert(got_largest);
got_smallest = got_largest = 0;
const uint64_t ten_billion = 10 * ((uint64_t)1000000000000);
for (i = 0; i < 1000; ++i) {
uint64_t x = crypto_rand_uint64_range(ten_billion, ten_billion+10);
tt_u64_op(x, OP_GE, ten_billion);
tt_u64_op(x, OP_LT, ten_billion+10);
if (x == ten_billion)
got_smallest = 1;
if (x == ten_billion+9)
got_largest = 1;
}
tt_assert(got_smallest);
tt_assert(got_largest);
const time_t now = time(NULL);
for (i = 0; i < 2000; ++i) {
time_t x = crypto_rand_time_range(now, now+60);
tt_i64_op(x, OP_GE, now);
tt_i64_op(x, OP_LT, now+60);
if (x == now)
got_smallest = 1;
if (x == now+59)
got_largest = 1;
}
tt_assert(got_smallest);
tt_assert(got_largest);
done:
;
}
static void
test_crypto_rng_strongest(void *arg)
{
const char *how = arg;
int broken = 0;
if (how == NULL) {
;
} else if (!strcmp(how, "nosyscall")) {
break_strongest_rng_syscall = 1;
} else if (!strcmp(how, "nofallback")) {
break_strongest_rng_fallback = 1;
} else if (!strcmp(how, "broken")) {
broken = break_strongest_rng_syscall = break_strongest_rng_fallback = 1;
}
#define N 128
uint8_t combine_and[N];
uint8_t combine_or[N];
int i, j;
memset(combine_and, 0xff, N);
memset(combine_or, 0, N);
for (i = 0; i < 100; ++i) { /* 2^-100 chances just don't happen. */
uint8_t output[N];
memset(output, 0, N);
if (how == NULL) {
/* this one can't fail. */
crypto_strongest_rand(output, sizeof(output));
} else {
int r = crypto_strongest_rand_raw(output, sizeof(output));
if (r == -1) {
if (broken) {
goto done; /* we're fine. */
}
/* This function is allowed to break, but only if it always breaks. */
tt_int_op(i, OP_EQ, 0);
tt_skip();
} else {
tt_assert(! broken);
}
}
for (j = 0; j < N; ++j) {
combine_and[j] &= output[j];
combine_or[j] |= output[j];
}
}
for (j = 0; j < N; ++j) {
tt_int_op(combine_and[j], OP_EQ, 0);
tt_int_op(combine_or[j], OP_EQ, 0xff);
}
done:
;
#undef N
}
static void
test_crypto_rng_fast(void *arg)
{
(void)arg;
crypto_fast_rng_t *rng = crypto_fast_rng_new();
tt_assert(rng);
/* Rudimentary black-block test to make sure that our prng outputs
* have all bits sometimes on and all bits sometimes off. */
uint64_t m1 = 0, m2 = ~(uint64_t)0;
const int N = 128;
for (int i=0; i < N; ++i) {
uint64_t v;
crypto_fast_rng_getbytes(rng, (void*)&v, sizeof(v));
m1 |= v;
m2 &= v;
}
tt_u64_op(m1, OP_EQ, ~(uint64_t)0);
tt_u64_op(m2, OP_EQ, 0);
/* Check range functions. */
int counts[5];
memset(counts, 0, sizeof(counts));
for (int i=0; i < N; ++i) {
unsigned u = crypto_fast_rng_get_uint(rng, 5);
tt_int_op(u, OP_GE, 0);
tt_int_op(u, OP_LT, 5);
counts[u]++;
uint64_t u64 = crypto_fast_rng_get_uint64(rng, UINT64_C(1)<<40);
tt_u64_op(u64, OP_GE, 0);
tt_u64_op(u64, OP_LT, UINT64_C(1)<<40);
}
/* All values should have come up once. */
for (int i=0; i<5; ++i) {
tt_int_op(counts[i], OP_GT, 0);
}
done:
crypto_fast_rng_free(rng);
}
static void
test_crypto_rng_fast_whitebox(void *arg)
{
(void)arg;
const size_t buflen = crypto_fast_rng_get_bytes_used_per_stream();
char *buf = tor_malloc_zero(buflen);
char *buf2 = tor_malloc_zero(buflen);
crypto_cipher_t *cipher = NULL;
uint8_t seed[CRYPTO_FAST_RNG_SEED_LEN];
memset(seed, 0, sizeof(seed));
/* Start with a prng with zero key and zero IV. */
crypto_fast_rng_t *rng = crypto_fast_rng_new_from_seed(seed);
tt_assert(rng);
/* We'll use a stream cipher to keep in sync */
cipher = crypto_cipher_new_with_iv_and_bits(seed, seed+32, 256);
/* The first 48 bytes are used for the next seed -- let's make sure we have
* them.
*/
memset(seed, 0, sizeof(seed));
crypto_cipher_crypt_inplace(cipher, (char*)seed, sizeof(seed));
/* if we get 128 bytes, they should match the bytes from the aes256-counter
* stream, starting at position 48.
*/
crypto_fast_rng_getbytes(rng, (uint8_t*)buf, 128);
memset(buf2, 0, 128);
crypto_cipher_crypt_inplace(cipher, buf2, 128);
tt_mem_op(buf, OP_EQ, buf2, 128);
/* Try that again, with an odd number of bytes. */
crypto_fast_rng_getbytes(rng, (uint8_t*)buf, 199);
memset(buf2, 0, 199);
crypto_cipher_crypt_inplace(cipher, buf2, 199);
tt_mem_op(buf, OP_EQ, buf2, 199);
/* Make sure that refilling works as expected: skip all but the last 5 bytes
* of this steam. */
size_t skip = buflen - (199+128) - 5;
crypto_fast_rng_getbytes(rng, (uint8_t*)buf, skip);
crypto_cipher_crypt_inplace(cipher, buf2, skip);
/* Now get the next 128 bytes. The first 5 will come from this stream, and
* the next 5 will come from the stream keyed by the new value of 'seed'. */
crypto_fast_rng_getbytes(rng, (uint8_t*)buf, 128);
memset(buf2, 0, 128);
crypto_cipher_crypt_inplace(cipher, buf2, 5);
crypto_cipher_free(cipher);
cipher = crypto_cipher_new_with_iv_and_bits(seed, seed+32, 256);
memset(seed, 0, sizeof(seed));
crypto_cipher_crypt_inplace(cipher, (char*)seed, sizeof(seed));
crypto_cipher_crypt_inplace(cipher, buf2+5, 128-5);
tt_mem_op(buf, OP_EQ, buf2, 128);
/* And check the next 7 bytes to make sure we didn't discard anything. */
crypto_fast_rng_getbytes(rng, (uint8_t*)buf, 7);
memset(buf2, 0, 7);
crypto_cipher_crypt_inplace(cipher, buf2, 7);
tt_mem_op(buf, OP_EQ, buf2, 7);
done:
crypto_fast_rng_free(rng);
crypto_cipher_free(cipher);
tor_free(buf);
tor_free(buf2);
}
struct testcase_t crypto_rng_tests[] = {
{ "rng", test_crypto_rng, 0, NULL, NULL },
{ "rng_range", test_crypto_rng_range, 0, NULL, NULL },
{ "rng_strongest", test_crypto_rng_strongest, TT_FORK, NULL, NULL },
{ "rng_strongest_nosyscall", test_crypto_rng_strongest, TT_FORK,
&passthrough_setup, (void*)"nosyscall" },
{ "rng_strongest_nofallback", test_crypto_rng_strongest, TT_FORK,
&passthrough_setup, (void*)"nofallback" },
{ "rng_strongest_broken", test_crypto_rng_strongest, TT_FORK,
&passthrough_setup, (void*)"broken" },
{ "fast", test_crypto_rng_fast, 0, NULL, NULL },
{ "fast_whitebox", test_crypto_rng_fast_whitebox, 0, NULL, NULL },
END_OF_TESTCASES
};
|