1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
|
/* Copyright (c) 2018, The Tor Project, Inc. */
/* See LICENSE for licensing information */
/**
* \file test_bwmgt.c
* \brief tests for bandwidth management / token bucket functions
*/
#define TOKEN_BUCKET_PRIVATE
#include "or/or.h"
#include "test/test.h"
#include "common/token_bucket.h"
// an imaginary time, in timestamp units. Chosen so it will roll over.
static const uint32_t START_TS = UINT32_MAX-10;
static const int32_t KB = 1024;
static const uint32_t GB = (UINT64_C(1) << 30);
static void
test_bwmgt_token_buf_init(void *arg)
{
(void)arg;
token_bucket_rw_t b;
token_bucket_rw_init(&b, 16*KB, 64*KB, START_TS);
// Burst is correct
tt_uint_op(b.cfg.burst, OP_EQ, 64*KB);
// Rate is correct, within 1 percent.
{
uint32_t ticks_per_sec =
(uint32_t) monotime_msec_to_approx_coarse_stamp_units(1000);
uint32_t rate_per_sec = (b.cfg.rate * ticks_per_sec / TICKS_PER_STEP);
tt_uint_op(rate_per_sec, OP_GT, 16*KB-160);
tt_uint_op(rate_per_sec, OP_LT, 16*KB+160);
}
// Bucket starts out full:
tt_uint_op(b.last_refilled_at_timestamp, OP_EQ, START_TS);
tt_int_op(b.read_bucket.bucket, OP_EQ, 64*KB);
done:
;
}
static void
test_bwmgt_token_buf_adjust(void *arg)
{
(void)arg;
token_bucket_rw_t b;
token_bucket_rw_init(&b, 16*KB, 64*KB, START_TS);
uint32_t rate_orig = b.cfg.rate;
// Increasing burst
token_bucket_rw_adjust(&b, 16*KB, 128*KB);
tt_uint_op(b.cfg.rate, OP_EQ, rate_orig);
tt_uint_op(b.read_bucket.bucket, OP_EQ, 64*KB);
tt_uint_op(b.cfg.burst, OP_EQ, 128*KB);
// Decreasing burst but staying above bucket
token_bucket_rw_adjust(&b, 16*KB, 96*KB);
tt_uint_op(b.cfg.rate, OP_EQ, rate_orig);
tt_uint_op(b.read_bucket.bucket, OP_EQ, 64*KB);
tt_uint_op(b.cfg.burst, OP_EQ, 96*KB);
// Decreasing burst below bucket,
token_bucket_rw_adjust(&b, 16*KB, 48*KB);
tt_uint_op(b.cfg.rate, OP_EQ, rate_orig);
tt_uint_op(b.read_bucket.bucket, OP_EQ, 48*KB);
tt_uint_op(b.cfg.burst, OP_EQ, 48*KB);
// Changing rate.
token_bucket_rw_adjust(&b, 32*KB, 48*KB);
tt_uint_op(b.cfg.rate, OP_GE, rate_orig*2 - 10);
tt_uint_op(b.cfg.rate, OP_LE, rate_orig*2 + 10);
tt_uint_op(b.read_bucket.bucket, OP_EQ, 48*KB);
tt_uint_op(b.cfg.burst, OP_EQ, 48*KB);
done:
;
}
static void
test_bwmgt_token_buf_dec(void *arg)
{
(void)arg;
token_bucket_rw_t b;
token_bucket_rw_init(&b, 16*KB, 64*KB, START_TS);
// full-to-not-full.
tt_int_op(0, OP_EQ, token_bucket_rw_dec_read(&b, KB));
tt_int_op(b.read_bucket.bucket, OP_EQ, 63*KB);
// Full to almost-not-full
tt_int_op(0, OP_EQ, token_bucket_rw_dec_read(&b, 63*KB - 1));
tt_int_op(b.read_bucket.bucket, OP_EQ, 1);
// almost-not-full to empty.
tt_int_op(1, OP_EQ, token_bucket_rw_dec_read(&b, 1));
tt_int_op(b.read_bucket.bucket, OP_EQ, 0);
// reset bucket, try full-to-empty
token_bucket_rw_init(&b, 16*KB, 64*KB, START_TS);
tt_int_op(1, OP_EQ, token_bucket_rw_dec_read(&b, 64*KB));
tt_int_op(b.read_bucket.bucket, OP_EQ, 0);
// reset bucket, try underflow.
token_bucket_rw_init(&b, 16*KB, 64*KB, START_TS);
tt_int_op(1, OP_EQ, token_bucket_rw_dec_read(&b, 64*KB + 1));
tt_int_op(b.read_bucket.bucket, OP_EQ, -1);
// A second underflow does not make the bucket empty.
tt_int_op(0, OP_EQ, token_bucket_rw_dec_read(&b, 1000));
tt_int_op(b.read_bucket.bucket, OP_EQ, -1001);
done:
;
}
static void
test_bwmgt_token_buf_refill(void *arg)
{
(void)arg;
token_bucket_rw_t b;
const uint32_t SEC =
(uint32_t)monotime_msec_to_approx_coarse_stamp_units(1000);
token_bucket_rw_init(&b, 16*KB, 64*KB, START_TS);
/* Make the buffer much emptier, then let one second elapse. */
token_bucket_rw_dec_read(&b, 48*KB);
tt_int_op(b.read_bucket.bucket, OP_EQ, 16*KB);
tt_int_op(0, OP_EQ, token_bucket_rw_refill(&b, START_TS + SEC));
tt_int_op(b.read_bucket.bucket, OP_GT, 32*KB - 300);
tt_int_op(b.read_bucket.bucket, OP_LT, 32*KB + 300);
/* Another half second. */
tt_int_op(0, OP_EQ, token_bucket_rw_refill(&b, START_TS + SEC*3/2));
tt_int_op(b.read_bucket.bucket, OP_GT, 40*KB - 400);
tt_int_op(b.read_bucket.bucket, OP_LT, 40*KB + 400);
tt_uint_op(b.last_refilled_at_timestamp, OP_EQ, START_TS + SEC*3/2);
/* No time: nothing happens. */
{
const uint32_t bucket_orig = b.read_bucket.bucket;
tt_int_op(0, OP_EQ, token_bucket_rw_refill(&b, START_TS + SEC*3/2));
tt_int_op(b.read_bucket.bucket, OP_EQ, bucket_orig);
}
/* Another 30 seconds: fill the bucket. */
tt_int_op(0, OP_EQ, token_bucket_rw_refill(&b, START_TS + SEC*3/2 + SEC*30));
tt_int_op(b.read_bucket.bucket, OP_EQ, b.cfg.burst);
tt_uint_op(b.last_refilled_at_timestamp, OP_EQ, START_TS + SEC*3/2 + SEC*30);
/* Another 30 seconds: nothing happens. */
tt_int_op(0, OP_EQ, token_bucket_rw_refill(&b, START_TS + SEC*3/2 + SEC*60));
tt_int_op(b.read_bucket.bucket, OP_EQ, b.cfg.burst);
tt_uint_op(b.last_refilled_at_timestamp, OP_EQ, START_TS + SEC*3/2 + SEC*60);
/* Empty the bucket, let two seconds pass, and make sure that a refill is
* noticed. */
tt_int_op(1, OP_EQ, token_bucket_rw_dec_read(&b, b.cfg.burst));
tt_int_op(0, OP_EQ, b.read_bucket.bucket);
tt_int_op(1, OP_EQ, token_bucket_rw_refill(&b, START_TS + SEC*3/2 + SEC*61));
tt_int_op(0, OP_EQ, token_bucket_rw_refill(&b, START_TS + SEC*3/2 + SEC*62));
tt_int_op(b.read_bucket.bucket, OP_GT, 32*KB-400);
tt_int_op(b.read_bucket.bucket, OP_LT, 32*KB+400);
/* Underflow the bucket, make sure we detect when it has tokens again. */
tt_int_op(1, OP_EQ,
token_bucket_rw_dec_read(&b, b.read_bucket.bucket+16*KB));
tt_int_op(-16*KB, OP_EQ, b.read_bucket.bucket);
// half a second passes...
tt_int_op(0, OP_EQ, token_bucket_rw_refill(&b, START_TS + SEC*64));
tt_int_op(b.read_bucket.bucket, OP_GT, -8*KB-300);
tt_int_op(b.read_bucket.bucket, OP_LT, -8*KB+300);
// a second passes
tt_int_op(1, OP_EQ, token_bucket_rw_refill(&b, START_TS + SEC*65));
tt_int_op(b.read_bucket.bucket, OP_GT, 8*KB-400);
tt_int_op(b.read_bucket.bucket, OP_LT, 8*KB+400);
// We step a second backwards, and nothing happens.
tt_int_op(0, OP_EQ, token_bucket_rw_refill(&b, START_TS + SEC*64));
tt_int_op(b.read_bucket.bucket, OP_GT, 8*KB-400);
tt_int_op(b.read_bucket.bucket, OP_LT, 8*KB+400);
// A ridiculous amount of time passes.
tt_int_op(0, OP_EQ, token_bucket_rw_refill(&b, INT32_MAX));
tt_int_op(b.read_bucket.bucket, OP_EQ, b.cfg.burst);
done:
;
}
/* Test some helper functions we use within the token bucket interface. */
static void
test_bwmgt_token_buf_helpers(void *arg)
{
uint32_t ret;
(void) arg;
/* The returned value will be OS specific but in any case, it should be
* greater than 1 since we are passing 1GB/sec rate. */
ret = rate_per_sec_to_rate_per_step(1 * GB);
tt_u64_op(ret, OP_GT, 1);
/* We default to 1 in case rate is 0. */
ret = rate_per_sec_to_rate_per_step(0);
tt_u64_op(ret, OP_EQ, 1);
done:
;
}
#define BWMGT(name) \
{ #name, test_bwmgt_ ## name , 0, NULL, NULL }
struct testcase_t bwmgt_tests[] = {
BWMGT(token_buf_init),
BWMGT(token_buf_adjust),
BWMGT(token_buf_dec),
BWMGT(token_buf_refill),
BWMGT(token_buf_helpers),
END_OF_TESTCASES
};
|