summaryrefslogtreecommitdiff
path: root/src/test/ntor_ref.py
blob: 2a5f9846090a71836cbc2b82b8b8d0dcf19e608b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
#!/usr/bin/python
# Copyright 2012-2013, The Tor Project, Inc
# See LICENSE for licensing information

"""
ntor_ref.py


This module is a reference implementation for the "ntor" protocol
s proposed by Goldberg, Stebila, and Ustaoglu and as instantiated in
Tor Proposal 216.

It's meant to be used to validate Tor's ntor implementation.  It
requirs the curve25519 python module from the curve25519-donna
package.

                *** DO NOT USE THIS IN PRODUCTION. ***

commands:

   gen_kdf_vectors: Print out some test vectors for the RFC5869 KDF.
   timing: Print a little timing information about this implementation's
      handshake.
   self-test: Try handshaking with ourself; make sure we can.
   test-tor: Handshake with tor's ntor implementation via the program
      src/test/test-ntor-cl; make sure we can.

"""

import binascii
try:
    import curve25519
except ImportError:
    curve25519 = None
    print "SKIPPING: No Python curve25519 module installed"
    import sys
    sys.exit(0)
import hashlib
import hmac
import subprocess

# **********************************************************************
# Helpers and constants

def HMAC(key,msg):
    "Return the HMAC-SHA256 of 'msg' using the key 'key'."
    H = hmac.new(key, "", hashlib.sha256)
    H.update(msg)
    return H.digest()

def H(msg,tweak):
    """Return the hash of 'msg' using tweak 'tweak'.  (In this version of ntor,
       the tweaked hash is just HMAC with the tweak as the key.)"""
    return HMAC(key=tweak,
                msg=msg)

def keyid(k):
    """Return the 32-byte key ID of a public key 'k'. (Since we're
       using curve25519, we let k be its own keyid.)
    """
    return k.serialize()

NODE_ID_LENGTH = 20
KEYID_LENGTH = 32
G_LENGTH = 32
H_LENGTH = 32

PROTOID = b"ntor-curve25519-sha256-1"
M_EXPAND = PROTOID + ":key_expand"
T_MAC    = PROTOID + ":mac"
T_KEY    = PROTOID + ":key_extract"
T_VERIFY = PROTOID + ":verify"

def H_mac(msg): return H(msg, tweak=T_MAC)
def H_verify(msg): return H(msg, tweak=T_VERIFY)

class PrivateKey(curve25519.keys.Private):
    """As curve25519.keys.Private, but doesn't regenerate its public key
       every time you ask for it.
    """
    def __init__(self):
        curve25519.keys.Private.__init__(self)
        self._memo_public = None

    def get_public(self):
        if self._memo_public is None:
            self._memo_public = curve25519.keys.Private.get_public(self)

        return self._memo_public

# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

def kdf_rfc5869(key, salt, info, n):

    prk = HMAC(key=salt, msg=key)

    out = b""
    last = b""
    i = 1
    while len(out) < n:
        m = last + info + chr(i)
        last = h = HMAC(key=prk, msg=m)
        out += h
        i = i + 1
    return out[:n]

def kdf_ntor(key, n):
    return kdf_rfc5869(key, T_KEY, M_EXPAND, n)

# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

def client_part1(node_id, pubkey_B):
    """Initial handshake, client side.

       From the specification:

         <<To send a create cell, the client generates a keypair x,X =
           KEYGEN(), and sends a CREATE cell with contents:

           NODEID:     ID             -- ID_LENGTH bytes
           KEYID:      KEYID(B)       -- H_LENGTH bytes
           CLIENT_PK:  X              -- G_LENGTH bytes
         >>

       Takes node_id -- a digest of the server's identity key,
             pubkey_B -- a public key for the server.
       Returns a tuple of (client secret key x, client->server message)"""

    assert len(node_id) == NODE_ID_LENGTH

    key_id = keyid(pubkey_B)
    seckey_x = PrivateKey()
    pubkey_X = seckey_x.get_public().serialize()

    message = node_id + key_id + pubkey_X

    assert len(message) == NODE_ID_LENGTH + H_LENGTH + H_LENGTH
    return seckey_x , message

def hash_nil(x):
    """Identity function: if we don't pass a hash function that does nothing,
       the curve25519 python lib will try to sha256 it for us."""
    return x

def bad_result(r):
    """Helper: given a result of multiplying a public key by a private key,
       return True iff one of the inputs was broken"""
    assert len(r) == 32
    return r == '\x00'*32

def server(seckey_b, my_node_id, message, keyBytes=72):
    """Handshake step 2, server side.

       From the spec:

       <<
         The server generates a keypair of y,Y = KEYGEN(), and computes

           secret_input = EXP(X,y) | EXP(X,b) | ID | B | X | Y | PROTOID
           KEY_SEED = H(secret_input, t_key)
           verify = H(secret_input, t_verify)
           auth_input = verify | ID | B | Y | X | PROTOID | "Server"

         The server sends a CREATED cell containing:

           SERVER_PK:  Y                     -- G_LENGTH bytes
           AUTH:       H(auth_input, t_mac)  -- H_LENGTH byets
        >>

       Takes seckey_b -- the server's secret key
             my_node_id -- the servers's public key digest,
             message -- a message from a client
             keybytes -- amount of key material to generate

       Returns a tuple of (key material, sever->client reply), or None on
       error.
    """

    assert len(message) == NODE_ID_LENGTH + H_LENGTH + H_LENGTH

    if my_node_id != message[:NODE_ID_LENGTH]:
        return None

    badness = (keyid(seckey_b.get_public()) !=
               message[NODE_ID_LENGTH:NODE_ID_LENGTH+H_LENGTH])

    pubkey_X = curve25519.keys.Public(message[NODE_ID_LENGTH+H_LENGTH:])
    seckey_y = PrivateKey()
    pubkey_Y = seckey_y.get_public()
    pubkey_B = seckey_b.get_public()
    xy = seckey_y.get_shared_key(pubkey_X, hash_nil)
    xb = seckey_b.get_shared_key(pubkey_X, hash_nil)

    # secret_input = EXP(X,y) | EXP(X,b) | ID | B | X | Y | PROTOID
    secret_input = (xy + xb + my_node_id +
                    pubkey_B.serialize() +
                    pubkey_X.serialize() +
                    pubkey_Y.serialize() +
                    PROTOID)

    verify = H_verify(secret_input)

    # auth_input = verify | ID | B | Y | X | PROTOID | "Server"
    auth_input = (verify +
                  my_node_id +
                  pubkey_B.serialize() +
                  pubkey_Y.serialize() +
                  pubkey_X.serialize() +
                  PROTOID +
                  "Server")

    msg = pubkey_Y.serialize() + H_mac(auth_input)

    badness += bad_result(xb)
    badness += bad_result(xy)

    if badness:
        return None

    keys = kdf_ntor(secret_input, keyBytes)

    return keys, msg

def client_part2(seckey_x, msg, node_id, pubkey_B, keyBytes=72):
    """Handshake step 3: client side again.

       From the spec:

       <<
         The client then checks Y is in G^* [see NOTE below], and computes

         secret_input = EXP(Y,x) | EXP(B,x) | ID | B | X | Y | PROTOID
         KEY_SEED = H(secret_input, t_key)
         verify = H(secret_input, t_verify)
         auth_input = verify | ID | B | Y | X | PROTOID | "Server"

         The client verifies that AUTH == H(auth_input, t_mac).
       >>

       Takes seckey_x -- the secret key we generated in step 1.
             msg -- the message from the server.
             node_id -- the node_id we used in step 1.
             server_key -- the same public key we used in step 1.
             keyBytes -- the number of bytes we want to generate
       Returns key material, or None on error

    """
    assert len(msg) == G_LENGTH + H_LENGTH

    pubkey_Y = curve25519.keys.Public(msg[:G_LENGTH])
    their_auth = msg[G_LENGTH:]

    pubkey_X = seckey_x.get_public()

    yx = seckey_x.get_shared_key(pubkey_Y, hash_nil)
    bx = seckey_x.get_shared_key(pubkey_B, hash_nil)


    # secret_input = EXP(Y,x) | EXP(B,x) | ID | B | X | Y | PROTOID
    secret_input = (yx + bx + node_id +
                    pubkey_B.serialize() +
                    pubkey_X.serialize() +
                    pubkey_Y.serialize() + PROTOID)

    verify = H_verify(secret_input)

    # auth_input = verify | ID | B | Y | X | PROTOID | "Server"
    auth_input = (verify + node_id +
                  pubkey_B.serialize() +
                  pubkey_Y.serialize() +
                  pubkey_X.serialize() + PROTOID +
                  "Server")

    my_auth = H_mac(auth_input)

    badness = my_auth != their_auth
    badness = bad_result(yx) + bad_result(bx)

    if badness:
        return None

    return kdf_ntor(secret_input, keyBytes)

# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

def demo(node_id="iToldYouAboutStairs.", server_key=PrivateKey()):
    """
       Try to handshake with ourself.
    """
    x, create = client_part1(node_id, server_key.get_public())
    skeys, created = server(server_key, node_id, create)
    ckeys = client_part2(x, created, node_id, server_key.get_public())
    assert len(skeys) == 72
    assert len(ckeys) == 72
    assert skeys == ckeys
    print "OK"

# ======================================================================
def timing():
    """
       Use Python's timeit module to see how fast this nonsense is
    """
    import timeit
    t = timeit.Timer(stmt="ntor_ref.demo(N,SK)",
       setup="import ntor_ref,curve25519;N='ABCD'*5;SK=ntor_ref.PrivateKey()")
    print t.timeit(number=1000)

# ======================================================================

def kdf_vectors():
    """
       Generate some vectors to check our KDF.
    """
    import binascii
    def kdf_vec(inp):
        k = kdf(inp, T_KEY, M_EXPAND, 100)
        print repr(inp), "\n\""+ binascii.b2a_hex(k)+ "\""
    kdf_vec("")
    kdf_vec("Tor")
    kdf_vec("AN ALARMING ITEM TO FIND ON YOUR CREDIT-RATING STATEMENT")

# ======================================================================


def test_tor():
    """
       Call the test-ntor-cl command-line program to make sure we can
       interoperate with Tor's ntor program
    """
    enhex=binascii.b2a_hex
    dehex=lambda s: binascii.a2b_hex(s.strip())

    PROG = "./src/test/test-ntor-cl"
    def tor_client1(node_id, pubkey_B):
        " returns (msg, state) "
        p = subprocess.Popen([PROG, "client1", enhex(node_id),
                              enhex(pubkey_B.serialize())],
                             stdout=subprocess.PIPE)
        return map(dehex, p.stdout.readlines())
    def tor_server1(seckey_b, node_id, msg, n):
        " returns (msg, keys) "
        p = subprocess.Popen([PROG, "server1", enhex(seckey_b.serialize()),
                              enhex(node_id), enhex(msg), str(n)],
                             stdout=subprocess.PIPE)
        return map(dehex, p.stdout.readlines())
    def tor_client2(state, msg, n):
        " returns (keys,) "
        p = subprocess.Popen([PROG, "client2", enhex(state),
                              enhex(msg), str(n)],
                             stdout=subprocess.PIPE)
        return map(dehex, p.stdout.readlines())


    node_id = "thisisatornodeid$#%^"
    seckey_b = PrivateKey()
    pubkey_B = seckey_b.get_public()

    # Do a pure-Tor handshake
    c2s_msg, c_state = tor_client1(node_id, pubkey_B)
    s2c_msg, s_keys = tor_server1(seckey_b, node_id, c2s_msg, 90)
    c_keys, = tor_client2(c_state, s2c_msg, 90)
    assert c_keys == s_keys
    assert len(c_keys) == 90

    # Try a mixed handshake with Tor as the client
    c2s_msg, c_state = tor_client1(node_id, pubkey_B)
    s_keys, s2c_msg = server(seckey_b, node_id, c2s_msg, 90)
    c_keys, = tor_client2(c_state, s2c_msg, 90)
    assert c_keys == s_keys
    assert len(c_keys) == 90

    # Now do a mixed handshake with Tor as the server
    c_x, c2s_msg = client_part1(node_id, pubkey_B)
    s2c_msg, s_keys = tor_server1(seckey_b, node_id, c2s_msg, 90)
    c_keys = client_part2(c_x, s2c_msg, node_id, pubkey_B, 90)
    assert c_keys == s_keys
    assert len(c_keys) == 90

    print "OK"

# ======================================================================

if __name__ == '__main__':
    import sys
    if len(sys.argv) < 2:
        print __doc__
    elif sys.argv[1] == 'gen_kdf_vectors':
        kdf_vectors()
    elif sys.argv[1] == 'timing':
        timing()
    elif sys.argv[1] == 'self-test':
        demo()
    elif sys.argv[1] == 'test-tor':
        test_tor()

    else:
        print __doc__