aboutsummaryrefslogtreecommitdiff
path: root/src/test/hs_test_helpers.c
blob: f2ae8398df9e8a0f4ce2288c0c6449a209ba7865 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
/* Copyright (c) 2017-2019, The Tor Project, Inc. */
/* See LICENSE for licensing information */

#include "core/or/or.h"
#include "lib/crypt_ops/crypto_ed25519.h"
#include "test/test.h"
#include "feature/nodelist/torcert.h"

#include "feature/hs/hs_common.h"
#include "test/hs_test_helpers.h"

hs_desc_intro_point_t *
hs_helper_build_intro_point(const ed25519_keypair_t *signing_kp, time_t now,
                            const char *addr, int legacy)
{
  int ret;
  ed25519_keypair_t auth_kp;
  hs_desc_intro_point_t *intro_point = NULL;
  hs_desc_intro_point_t *ip = hs_desc_intro_point_new();

  /* For a usable intro point we need at least two link specifiers: One legacy
   * keyid and one ipv4 */
  {
    hs_desc_link_specifier_t *ls_legacy = tor_malloc_zero(sizeof(*ls_legacy));
    hs_desc_link_specifier_t *ls_v4 = tor_malloc_zero(sizeof(*ls_v4));
    ls_legacy->type = LS_LEGACY_ID;
    memcpy(ls_legacy->u.legacy_id, "0299F268FCA9D55CD157976D39AE92B4B455B3A8",
           DIGEST_LEN);
    ls_v4->u.ap.port = 9001;
    int family = tor_addr_parse(&ls_v4->u.ap.addr, addr);
    switch (family) {
    case AF_INET:
          ls_v4->type = LS_IPV4;
          break;
        case AF_INET6:
          ls_v4->type = LS_IPV6;
          break;
        default:
          /* Stop the test, not suppose to have an error. */
          tt_int_op(family, OP_EQ, AF_INET);
    }
    smartlist_add(ip->link_specifiers, ls_legacy);
    smartlist_add(ip->link_specifiers, ls_v4);
  }

  ret = ed25519_keypair_generate(&auth_kp, 0);
  tt_int_op(ret, ==, 0);
  ip->auth_key_cert = tor_cert_create(signing_kp, CERT_TYPE_AUTH_HS_IP_KEY,
                                      &auth_kp.pubkey, now,
                                      HS_DESC_CERT_LIFETIME,
                                      CERT_FLAG_INCLUDE_SIGNING_KEY);
  tt_assert(ip->auth_key_cert);

  if (legacy) {
    ip->legacy.key = crypto_pk_new();
    tt_assert(ip->legacy.key);
    ret = crypto_pk_generate_key(ip->legacy.key);
    tt_int_op(ret, ==, 0);
    ssize_t cert_len = tor_make_rsa_ed25519_crosscert(
                                    &signing_kp->pubkey, ip->legacy.key,
                                    now + HS_DESC_CERT_LIFETIME,
                                    &ip->legacy.cert.encoded);
    tt_assert(ip->legacy.cert.encoded);
    tt_u64_op(cert_len, OP_GT, 0);
    ip->legacy.cert.len = cert_len;
  }

  /* Encryption key. */
  {
    int signbit;
    curve25519_keypair_t curve25519_kp;
    ed25519_keypair_t ed25519_kp;
    tor_cert_t *cross_cert;

    ret = curve25519_keypair_generate(&curve25519_kp, 0);
    tt_int_op(ret, ==, 0);
    ed25519_keypair_from_curve25519_keypair(&ed25519_kp, &signbit,
                                            &curve25519_kp);
    cross_cert = tor_cert_create(signing_kp, CERT_TYPE_CROSS_HS_IP_KEYS,
                                 &ed25519_kp.pubkey, time(NULL),
                                 HS_DESC_CERT_LIFETIME,
                                 CERT_FLAG_INCLUDE_SIGNING_KEY);
    tt_assert(cross_cert);
    ip->enc_key_cert = cross_cert;
  }

  intro_point = ip;
 done:
  if (intro_point == NULL)
    tor_free(ip);

  return intro_point;
}

/* Return a valid hs_descriptor_t object. If no_ip is set, no introduction
 * points are added. */
static hs_descriptor_t *
hs_helper_build_hs_desc_impl(unsigned int no_ip,
                             const ed25519_keypair_t *signing_kp)
{
  int ret;
  int i;
  time_t now = approx_time();
  ed25519_keypair_t blinded_kp;
  curve25519_keypair_t auth_ephemeral_kp;
  hs_descriptor_t *descp = NULL, *desc = tor_malloc_zero(sizeof(*desc));

  desc->plaintext_data.version = HS_DESC_SUPPORTED_FORMAT_VERSION_MAX;

  /* Copy only the public key into the descriptor. */
  memcpy(&desc->plaintext_data.signing_pubkey, &signing_kp->pubkey,
         sizeof(ed25519_public_key_t));

  uint64_t current_time_period = hs_get_time_period_num(0);
  hs_build_blinded_keypair(signing_kp, NULL, 0,
                           current_time_period, &blinded_kp);
  /* Copy only the public key into the descriptor. */
  memcpy(&desc->plaintext_data.blinded_pubkey, &blinded_kp.pubkey,
         sizeof(ed25519_public_key_t));

  desc->plaintext_data.signing_key_cert =
    tor_cert_create(&blinded_kp, CERT_TYPE_SIGNING_HS_DESC,
                    &signing_kp->pubkey, now, 3600,
                    CERT_FLAG_INCLUDE_SIGNING_KEY);
  tt_assert(desc->plaintext_data.signing_key_cert);
  desc->plaintext_data.revision_counter = 42;
  desc->plaintext_data.lifetime_sec = 3 * 60 * 60;

  hs_get_subcredential(&signing_kp->pubkey, &blinded_kp.pubkey,
                    desc->subcredential);

  /* Setup superencrypted data section. */
  ret = curve25519_keypair_generate(&auth_ephemeral_kp, 0);
  tt_int_op(ret, ==, 0);
  memcpy(&desc->superencrypted_data.auth_ephemeral_pubkey,
         &auth_ephemeral_kp.pubkey,
         sizeof(curve25519_public_key_t));

  desc->superencrypted_data.clients = smartlist_new();
  for (i = 0; i < HS_DESC_AUTH_CLIENT_MULTIPLE; i++) {
    hs_desc_authorized_client_t *desc_client =
      hs_desc_build_fake_authorized_client();
    smartlist_add(desc->superencrypted_data.clients, desc_client);
  }

  /* Setup encrypted data section. */
  desc->encrypted_data.create2_ntor = 1;
  desc->encrypted_data.intro_auth_types = smartlist_new();
  desc->encrypted_data.single_onion_service = 1;
  smartlist_add(desc->encrypted_data.intro_auth_types, tor_strdup("ed25519"));
  desc->encrypted_data.intro_points = smartlist_new();
  if (!no_ip) {
    /* Add four intro points. */
    smartlist_add(desc->encrypted_data.intro_points,
              hs_helper_build_intro_point(signing_kp, now, "1.2.3.4", 0));
    smartlist_add(desc->encrypted_data.intro_points,
              hs_helper_build_intro_point(signing_kp, now, "[2600::1]", 0));
    smartlist_add(desc->encrypted_data.intro_points,
              hs_helper_build_intro_point(signing_kp, now, "3.2.1.4", 1));
    smartlist_add(desc->encrypted_data.intro_points,
              hs_helper_build_intro_point(signing_kp, now, "5.6.7.8", 1));
  }

  descp = desc;
 done:
  if (descp == NULL)
    tor_free(desc);

  return descp;
}

/** Helper function to get the HS subcredential using the identity keypair of
 *  an HS. Used to decrypt descriptors in unittests. */
void
hs_helper_get_subcred_from_identity_keypair(ed25519_keypair_t *signing_kp,
                                            uint8_t *subcred_out)
{
  ed25519_keypair_t blinded_kp;
  uint64_t current_time_period = hs_get_time_period_num(approx_time());
  hs_build_blinded_keypair(signing_kp, NULL, 0,
                           current_time_period, &blinded_kp);

  hs_get_subcredential(&signing_kp->pubkey, &blinded_kp.pubkey,
                       subcred_out);
}

/* Build a descriptor with introduction points. */
hs_descriptor_t *
hs_helper_build_hs_desc_with_ip(const ed25519_keypair_t *signing_kp)
{
  return hs_helper_build_hs_desc_impl(0, signing_kp);
}

/* Build a descriptor without any introduction points. */
hs_descriptor_t *
hs_helper_build_hs_desc_no_ip(const ed25519_keypair_t *signing_kp)
{
  return hs_helper_build_hs_desc_impl(1, signing_kp);
}

void
hs_helper_desc_equal(const hs_descriptor_t *desc1,
                     const hs_descriptor_t *desc2)
{
  char *addr1 = NULL, *addr2 = NULL;
  /* Plaintext data section. */
  tt_int_op(desc1->plaintext_data.version, OP_EQ,
            desc2->plaintext_data.version);
  tt_uint_op(desc1->plaintext_data.lifetime_sec, OP_EQ,
             desc2->plaintext_data.lifetime_sec);
  tt_assert(tor_cert_eq(desc1->plaintext_data.signing_key_cert,
                        desc2->plaintext_data.signing_key_cert));
  tt_mem_op(desc1->plaintext_data.signing_pubkey.pubkey, OP_EQ,
            desc2->plaintext_data.signing_pubkey.pubkey,
            ED25519_PUBKEY_LEN);
  tt_mem_op(desc1->plaintext_data.blinded_pubkey.pubkey, OP_EQ,
            desc2->plaintext_data.blinded_pubkey.pubkey,
            ED25519_PUBKEY_LEN);
  tt_u64_op(desc1->plaintext_data.revision_counter, ==,
            desc2->plaintext_data.revision_counter);

  /* NOTE: We can't compare the encrypted blob because when encoding the
   * descriptor, the object is immutable thus we don't update it with the
   * encrypted blob. As contrast to the decoding process where we populate a
   * descriptor object. */

  /* Superencrypted data section. */
  tt_mem_op(desc1->superencrypted_data.auth_ephemeral_pubkey.public_key, OP_EQ,
            desc2->superencrypted_data.auth_ephemeral_pubkey.public_key,
            CURVE25519_PUBKEY_LEN);

  /* Auth clients. */
  {
    tt_assert(desc1->superencrypted_data.clients);
    tt_assert(desc2->superencrypted_data.clients);
    tt_int_op(smartlist_len(desc1->superencrypted_data.clients), ==,
              smartlist_len(desc2->superencrypted_data.clients));
    for (int i=0;
         i < smartlist_len(desc1->superencrypted_data.clients);
         i++) {
      hs_desc_authorized_client_t
        *client1 = smartlist_get(desc1->superencrypted_data.clients, i),
        *client2 = smartlist_get(desc2->superencrypted_data.clients, i);
      tt_mem_op(client1->client_id, OP_EQ, client2->client_id,
                sizeof(client1->client_id));
      tt_mem_op(client1->iv, OP_EQ, client2->iv,
                sizeof(client1->iv));
      tt_mem_op(client1->encrypted_cookie, OP_EQ, client2->encrypted_cookie,
                sizeof(client1->encrypted_cookie));
    }
  }

  /* Encrypted data section. */
  tt_uint_op(desc1->encrypted_data.create2_ntor, ==,
             desc2->encrypted_data.create2_ntor);

  /* Authentication type. */
  tt_int_op(!!desc1->encrypted_data.intro_auth_types, ==,
            !!desc2->encrypted_data.intro_auth_types);
  if (desc1->encrypted_data.intro_auth_types &&
      desc2->encrypted_data.intro_auth_types) {
    tt_int_op(smartlist_len(desc1->encrypted_data.intro_auth_types), ==,
              smartlist_len(desc2->encrypted_data.intro_auth_types));
    for (int i = 0;
         i < smartlist_len(desc1->encrypted_data.intro_auth_types);
         i++) {
      tt_str_op(smartlist_get(desc1->encrypted_data.intro_auth_types, i),OP_EQ,
                smartlist_get(desc2->encrypted_data.intro_auth_types, i));
    }
  }

  /* Introduction points. */
  {
    tt_assert(desc1->encrypted_data.intro_points);
    tt_assert(desc2->encrypted_data.intro_points);
    tt_int_op(smartlist_len(desc1->encrypted_data.intro_points), ==,
              smartlist_len(desc2->encrypted_data.intro_points));
    for (int i=0; i < smartlist_len(desc1->encrypted_data.intro_points); i++) {
      hs_desc_intro_point_t *ip1 = smartlist_get(desc1->encrypted_data
                                                 .intro_points, i),
                            *ip2 = smartlist_get(desc2->encrypted_data
                                                 .intro_points, i);
      tt_assert(tor_cert_eq(ip1->auth_key_cert, ip2->auth_key_cert));
      if (ip1->legacy.key) {
        tt_int_op(crypto_pk_cmp_keys(ip1->legacy.key, ip2->legacy.key),
                  OP_EQ, 0);
      } else {
        tt_mem_op(&ip1->enc_key, OP_EQ, &ip2->enc_key, CURVE25519_PUBKEY_LEN);
      }

      tt_int_op(smartlist_len(ip1->link_specifiers), ==,
                smartlist_len(ip2->link_specifiers));
      for (int j = 0; j < smartlist_len(ip1->link_specifiers); j++) {
        hs_desc_link_specifier_t *ls1 = smartlist_get(ip1->link_specifiers, j),
                                 *ls2 = smartlist_get(ip2->link_specifiers, j);
        tt_int_op(ls1->type, ==, ls2->type);
        switch (ls1->type) {
          case LS_IPV4:
          case LS_IPV6:
            {
              addr1 = tor_addr_to_str_dup(&ls1->u.ap.addr);
              addr2 = tor_addr_to_str_dup(&ls2->u.ap.addr);
              tt_str_op(addr1, OP_EQ, addr2);
              tor_free(addr1);
              tor_free(addr2);
              tt_int_op(ls1->u.ap.port, ==, ls2->u.ap.port);
            }
            break;
          case LS_LEGACY_ID:
            tt_mem_op(ls1->u.legacy_id, OP_EQ, ls2->u.legacy_id,
                      sizeof(ls1->u.legacy_id));
            break;
          default:
            /* Unknown type, caught it and print its value. */
            tt_int_op(ls1->type, OP_EQ, -1);
        }
      }
    }
  }

 done:
  tor_free(addr1);
  tor_free(addr2);
}