aboutsummaryrefslogtreecommitdiff
path: root/src/test/ed25519_exts_ref.py
blob: dcc0a7c25aac85147f0aed171a940b5dc81f62a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
#!/usr/bin/python
# Copyright 2014-2019, The Tor Project, Inc
# See LICENSE for licensing information

"""
   Reference implementations for the ed25519 tweaks that Tor uses.

   Includes self-tester and test vector generator.
"""

# Future imports for Python 2.7, mandatory in 3.0
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import slow_ed25519
from slow_ed25519 import *

import os
import random
import slownacl_curve25519
import unittest
import binascii
import textwrap

#define a synonym that doesn't look like 1
ell = l

# This replaces expmod above and makes it go a lot faster.
slow_ed25519.expmod = pow

def curve25519ToEd25519(c, sign):
    u = decodeint(c)
    y = ((u - 1) * inv(u + 1)) % q
    x = xrecover(y)
    if x & 1 != sign: x = q-x
    return encodepoint([x,y])

def blindESK(esk, param):
    mult = 2**(b-2) + sum(2**i * bit(param,i) for i in range(3,b-2))
    s = decodeint(esk[:32])
    s_prime = (s * mult) % ell
    k = esk[32:]
    assert(len(k) == 32)
    k_prime = H("Derive temporary signing key hash input" + k)[:32]
    return encodeint(s_prime) + k_prime

def blindPK(pk, param):
    mult = 2**(b-2) + sum(2**i * bit(param,i) for i in range(3,b-2))
    P = decodepoint(pk)
    return encodepoint(scalarmult(P, mult))

def expandSK(sk):
    h = H(sk)
    a = 2**(b-2) + sum(2**i * bit(h,i) for i in range(3,b-2))
    k = bytes(h[i] for i in range(b//8,b//4))
    assert len(k) == 32
    return encodeint(a)+k

def publickeyFromESK(h):
    a = decodeint(h[:32])
    A = scalarmult(B,a)
    return encodepoint(A)

def signatureWithESK(m,h,pk):
    a = decodeint(h[:32])
    r = Hint(bytes([h[i] for i in range(b//8,b//4)]) + m)
    R = scalarmult(B,r)
    S = (r + Hint(encodepoint(R) + pk + m) * a) % l
    return encodepoint(R) + encodeint(S)

def newSK():
    return os.urandom(32)

def random_scalar(entropy_f): # 0..L-1 inclusive
    # reduce the bias to a safe level by generating 256 extra bits
    oversized = int(binascii.hexlify(entropy_f(32+32)), 16)
    return oversized % ell

# ------------------------------------------------------------

MSG = "This is extremely silly. But it is also incredibly serious business!"

class SelfTest(unittest.TestCase):

    def _testSignatures(self, esk, pk):
        sig = signatureWithESK(MSG, esk, pk)
        checkvalid(sig, MSG, pk)
        bad = False
        try:
            checkvalid(sig, MSG*2, pk)
            bad = True
        except Exception:
            pass

        self.failIf(bad)

    def testExpand(self):
        sk = newSK()
        pk = publickey(sk)
        esk = expandSK(sk)
        sig1 = signature(MSG, sk, pk)
        sig2 = signatureWithESK(MSG, esk, pk)
        self.assertEquals(sig1, sig2)

    def testSignatures(self):
        sk = newSK()
        esk = expandSK(sk)
        pk = publickeyFromESK(esk)
        pk2 = publickey(sk)
        self.assertEquals(pk, pk2)

        self._testSignatures(esk, pk)

    def testDerivation(self):
        priv = slownacl_curve25519.Private()
        pub = priv.get_public()

        ed_pub0 = publickeyFromESK(priv.private)
        sign = (ord(ed_pub0[31]) & 255) >> 7
        ed_pub1 = curve25519ToEd25519(pub.public, sign)

        self.assertEquals(ed_pub0, ed_pub1)

    def testBlinding(self):
        sk = newSK()
        esk = expandSK(sk)
        pk = publickeyFromESK(esk)
        param = os.urandom(32)
        besk = blindESK(esk, param)
        bpk = blindPK(pk, param)
        bpk2 = publickeyFromESK(besk)
        self.assertEquals(bpk, bpk2)

        self._testSignatures(besk, bpk)

    def testIdentity(self):
        # Base point:
        # B is the unique point (x, 4/5) \in E for which x is positive
        By = 4 * inv(5)
        Bx = xrecover(By)
        B = [Bx % q,By % q]

        # Get identity E by doing: E = l*B, where l is the group order
        identity = scalarmult(B, ell)

        # Get identity E by doing: E = l*A, where A is a random point
        sk = newSK()
        pk = decodepoint(publickey(sk))
        identity2 = scalarmult(pk, ell)

        # Check that identities match
        assert(identity == identity2)
        # Check that identity is the point (0,1)
        assert(identity == [0,1])

        # Check identity element: a*E = E, where a is a random scalar
        scalar = random_scalar(os.urandom)
        result = scalarmult(identity, scalar)
        assert(result == identity == identity2)

# ------------------------------------------------------------

# From pprint.pprint([ binascii.b2a_hex(os.urandom(32)) for _ in xrange(8) ])
RAND_INPUTS = [
  '26c76712d89d906e6672dafa614c42e5cb1caac8c6568e4d2493087db51f0d36',
  'fba7a5366b5cb98c2667a18783f5cf8f4f8d1a2ce939ad22a6e685edde85128d',
  '67e3aa7a14fac8445d15e45e38a523481a69ae35513c9e4143eb1c2196729a0e',
  'd51385942033a76dc17f089a59e6a5a7fe80d9c526ae8ddd8c3a506b99d3d0a6',
  '5c8eac469bb3f1b85bc7cd893f52dc42a9ab66f1b02b5ce6a68e9b175d3bb433',
  'eda433d483059b6d1ff8b7cfbd0fe406bfb23722c8f3c8252629284573b61b86',
  '4377c40431c30883c5fbd9bc92ae48d1ed8a47b81d13806beac5351739b5533d',
  'c6bbcce615839756aed2cc78b1de13884dd3618f48367a17597a16c1cd7a290b']

# From pprint.pprint([ binascii.b2a_hex(os.urandom(32)) for _ in xrange(8) ])
BLINDING_PARAMS = [
  '54a513898b471d1d448a2f3c55c1de2c0ef718c447b04497eeb999ed32027823',
  '831e9b5325b5d31b7ae6197e9c7a7baf2ec361e08248bce055908971047a2347',
  'ac78a1d46faf3bfbbdc5af5f053dc6dc9023ed78236bec1760dadfd0b2603760',
  'f9c84dc0ac31571507993df94da1b3d28684a12ad14e67d0a068aba5c53019fc',
  'b1fe79d1dec9bc108df69f6612c72812755751f21ecc5af99663b30be8b9081f',
  '81f1512b63ab5fb5c1711a4ec83d379c420574aedffa8c3368e1c3989a3a0084',
  '97f45142597c473a4b0e9a12d64561133ad9e1155fe5a9807fe6af8a93557818',
  '3f44f6a5a92cde816635dfc12ade70539871078d2ff097278be2a555c9859cd0']

PREFIX = "ED25519_"

def writeArray(name, array):
    print("static const char *{prefix}{name}[] = {{".format(
        prefix=PREFIX,name=name))
    for a in array:
        h = binascii.b2a_hex(a)
        if len(h) > 70:
            h1 = h[:70]
            h2 = h[70:]
            print('  "{0}"\n      "{1}",'.format(h1,h2))
        else:
            print('  "{0}",'.format(h))
    print("};\n")

def comment(text, initial="/**"):
    print(initial)
    print(textwrap.fill(text,initial_indent=" * ",subsequent_indent=" * "))
    print(" */")

def makeTestVectors():
    comment("""Test vectors for our ed25519 implementation and related
               functions. These were automatically generated by the
               ed25519_exts_ref.py script.""", initial="/*")


    comment("""Secret key seeds used as inputs for the ed25519 test vectors.
               Randomly generated. """)
    secretKeys = [ binascii.a2b_hex(r) for r in RAND_INPUTS ]
    writeArray("SECRET_KEYS", secretKeys)

    comment("""Secret ed25519 keys after expansion from seeds. This is how Tor
               represents them internally.""")
    expandedSecretKeys = [ expandSK(sk) for sk in secretKeys ]
    writeArray("EXPANDED_SECRET_KEYS", expandedSecretKeys)

    comment("""Public keys derived from the above secret keys""")
    publicKeys = [ publickey(sk) for sk in secretKeys ]
    writeArray("PUBLIC_KEYS", publicKeys)

    comment("""The curve25519 public keys from which the ed25519 keys can be
               derived.  Used to test our 'derive ed25519 from curve25519'
               code.""")
    writeArray("CURVE25519_PUBLIC_KEYS",
               (slownacl_curve25519.smult_curve25519_base(sk[:32])
                   for sk in expandedSecretKeys))

    comment("""Parameters used for key blinding tests. Randomly generated.""")
    blindingParams =  [ binascii.a2b_hex(r) for r in BLINDING_PARAMS ]
    writeArray("BLINDING_PARAMS", blindingParams)

    comment("""Blinded secret keys for testing key blinding.  The nth blinded
               key corresponds to the nth secret key blidned with the nth
               blinding parameter.""")
    writeArray("BLINDED_SECRET_KEYS",
               (blindESK(expandSK(sk), bp)
                for sk,bp in zip(secretKeys,blindingParams)))

    comment("""Blinded public keys for testing key blinding.  The nth blinded
               key corresponds to the nth public key blidned with the nth
               blinding parameter.""")
    writeArray("BLINDED_PUBLIC_KEYS",
               (blindPK(pk, bp) for pk,bp in zip(publicKeys,blindingParams)))

    comment("""Signatures of the public keys, made with their corresponding
               secret keys.""")
    writeArray("SELF_SIGNATURES",
               (signature(pk, sk, pk) for pk,sk in zip(publicKeys,secretKeys)))



if __name__ == '__main__':
    import sys
    if len(sys.argv) == 1 or sys.argv[1] not in ("SelfTest", "MakeVectors"):
        print("You should specify one of 'SelfTest' or 'MakeVectors'")
        sys.exit(1)
    if sys.argv[1] == 'SelfTest':
        unittest.main()
    else:
        makeTestVectors()