blob: 98dbb2255503bafa4e943c6029969cc8444f153c (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
|
/* Copyright (c) 2016, The Tor Project, Inc. */
/* See LICENSE for licensing information */
/**
* \file hs_descriptor.h
* \brief Header file for hs_descriptor.c
**/
#ifndef TOR_HS_DESCRIPTOR_H
#define TOR_HS_DESCRIPTOR_H
#include <stdint.h>
#include "address.h"
#include "container.h"
#include "crypto.h"
#include "crypto_ed25519.h"
#include "torcert.h"
/* The earliest descriptor format version we support. */
#define HS_DESC_SUPPORTED_FORMAT_VERSION_MIN 3
/* The latest descriptor format version we support. */
#define HS_DESC_SUPPORTED_FORMAT_VERSION_MAX 3
/* Lifetime of certificate in the descriptor. This defines the lifetime of the
* descriptor signing key and the cross certification cert of that key. */
#define HS_DESC_CERT_LIFETIME (24 * 60 * 60)
/* Length of the salt needed for the encrypted section of a descriptor. */
#define HS_DESC_ENCRYPTED_SALT_LEN 16
/* Length of the secret input needed for the KDF construction which derives
* the encryption key for the encrypted data section of the descriptor. This
* adds up to 68 bytes being the blinded key, hashed subcredential and
* revision counter. */
#define HS_DESC_ENCRYPTED_SECRET_INPUT_LEN \
ED25519_PUBKEY_LEN + DIGEST256_LEN + sizeof(uint64_t)
/* Length of the KDF output value which is the length of the secret key,
* the secret IV and MAC key length which is the length of H() output. */
#define HS_DESC_ENCRYPTED_KDF_OUTPUT_LEN \
CIPHER_KEY_LEN + CIPHER_IV_LEN + DIGEST256_LEN
/* We need to pad the plaintext version of the encrypted data section before
* encryption and it has to be a multiple of this value. */
#define HS_DESC_PLAINTEXT_PADDING_MULTIPLE 128
/* XXX: Let's make sure this makes sense as an upper limit for the padded
* plaintext section. Then we should enforce it as now only an assert will be
* triggered if we are above it. */
/* Once padded, this is the maximum length in bytes for the plaintext. */
#define HS_DESC_PADDED_PLAINTEXT_MAX_LEN 8192
/* Type of encryption key in the descriptor. */
typedef enum {
HS_DESC_KEY_TYPE_LEGACY = 1,
HS_DESC_KEY_TYPE_CURVE25519 = 2,
} hs_desc_key_type_t;
/* Link specifier object that contains information on how to extend to the
* relay that is the address, port and handshake type. */
typedef struct hs_desc_link_specifier_t {
/* Indicate the type of link specifier. See trunnel ed25519_cert
* specification. */
uint8_t type;
/* It's either an address/port or a legacy identity fingerprint. */
union {
/* IP address and port of the relay use to extend. */
tor_addr_port_t ap;
/* Legacy identity. A 20-byte SHA1 identity fingerprint. */
uint8_t legacy_id[DIGEST_LEN];
} u;
} hs_desc_link_specifier_t;
/* Introduction point information located in a descriptor. */
typedef struct hs_desc_intro_point_t {
/* Link specifier(s) which details how to extend to the relay. This list
* contains hs_desc_link_specifier_t object. It MUST have at least one. */
smartlist_t *link_specifiers;
/* Authentication key used to establish the introduction point circuit and
* cross-certifies the blinded public key for the replica thus signed by
* the blinded key and in turn signs it. */
tor_cert_t *auth_key_cert;
/* Encryption key type so we know which one to use in the union below. */
hs_desc_key_type_t enc_key_type;
/* Keys are mutually exclusive thus the union. */
union {
/* Encryption key used to encrypt request to hidden service. */
curve25519_keypair_t curve25519;
/* Backward compat: RSA 1024 encryption key for legacy purposes.
* Mutually exclusive with enc_key. */
crypto_pk_t *legacy;
} enc_key;
} hs_desc_intro_point_t;
/* The encrypted data section of a descriptor. Obviously the data in this is
* in plaintext but encrypted once encoded. */
typedef struct hs_desc_encrypted_data_t {
/* Bitfield of CREATE2 cell supported formats. The only currently supported
* format is ntor. */
unsigned int create2_ntor : 1;
/* A list of authentication types that a client must at least support one
* in order to contact the service. Contains NULL terminated strings. */
smartlist_t *auth_types;
/* A list of intro points. Contains hs_desc_intro_point_t objects. */
smartlist_t *intro_points;
} hs_desc_encrypted_data_t;
/* Plaintext data that is unencrypted information of the descriptor. */
typedef struct hs_desc_plaintext_data_t {
/* Version of the descriptor format. Spec specifies this field as a
* positive integer. */
uint32_t version;
/* The lifetime of the descriptor in seconds. */
uint32_t lifetime_sec;
/* Certificate with the short-term ed22519 descriptor signing key for the
* replica which is signed by the blinded public key for that replica. */
tor_cert_t *signing_key_cert;
/* Signing keypair which is used to sign the descriptor. Same public key
* as in the signing key certificate. */
ed25519_keypair_t signing_kp;
/* Blinded keypair used for this descriptor derived from the master
* identity key and generated for a specific replica number. */
ed25519_keypair_t blinded_kp;
/* Revision counter is incremented at each upload, regardless of whether
* the descriptor has changed. This avoids leaking whether the descriptor
* has changed. Spec specifies this as a 8 bytes positive integer. */
uint64_t revision_counter;
} hs_desc_plaintext_data_t;
/* Service descriptor in its decoded form. */
typedef struct hs_descriptor_t {
/* Contains the plaintext part of the descriptor. */
hs_desc_plaintext_data_t plaintext_data;
/* The following contains what's in the encrypted part of the descriptor.
* It's only encrypted in the encoded version of the descriptor thus the
* data contained in that object is in plaintext. */
hs_desc_encrypted_data_t encrypted_data;
/* Subcredentials of a service, used by the client and service to decrypt
* the encrypted data. */
uint8_t subcredential[DIGEST256_LEN];
} hs_descriptor_t;
/* Return true iff the given descriptor format version is supported. */
static inline int
hs_desc_is_supported_version(uint32_t version)
{
if (version < HS_DESC_SUPPORTED_FORMAT_VERSION_MIN ||
version > HS_DESC_SUPPORTED_FORMAT_VERSION_MAX) {
return 0;
}
return 1;
}
/* Public API. */
int hs_desc_encode_descriptor(const hs_descriptor_t *desc,
char **encoded_out);
#endif /* TOR_HS_DESCRIPTOR_H */
|