summaryrefslogtreecommitdiff
path: root/src/or/hs_descriptor.c
blob: 2393eac2526a034ab4688b0aea6d0268a1109772 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
/* Copyright (c) 2016-2017, The Tor Project, Inc. */
/* See LICENSE for licensing information */

/**
 * \file hs_descriptor.c
 * \brief Handle hidden service descriptor encoding/decoding.
 *
 * \details
 * Here is a graphical depiction of an HS descriptor and its layers:
 *
 *      +------------------------------------------------------+
 *      |DESCRIPTOR HEADER:                                    |
 *      |  hs-descriptor 3                                     |
 *      |  descriptor-lifetime 180                             |
 *      |  ...                                                 |
 *      |  superencrypted                                      |
 *      |+---------------------------------------------------+ |
 *      ||SUPERENCRYPTED LAYER (aka OUTER ENCRYPTED LAYER):  | |
 *      ||  desc-auth-type x25519                            | |
 *      ||  desc-auth-ephemeral-key                          | |
 *      ||  auth-client                                      | |
 *      ||  auth-client                                      | |
 *      ||  ...                                              | |
 *      ||  encrypted                                        | |
 *      ||+-------------------------------------------------+| |
 *      |||ENCRYPTED LAYER (aka INNER ENCRYPTED LAYER):     || |
 *      |||  create2-formats                                || |
 *      |||  intro-auth-required                            || |
 *      |||  introduction-point                             || |
 *      |||  introduction-point                             || |
 *      |||  ...                                            || |
 *      ||+-------------------------------------------------+| |
 *      |+---------------------------------------------------+ |
 *      +------------------------------------------------------+
 *
 * The DESCRIPTOR HEADER section is completely unencrypted and contains generic
 * descriptor metadata.
 *
 * The SUPERENCRYPTED LAYER section is the first layer of encryption, and it's
 * encrypted using the blinded public key of the hidden service to protect
 * against entities who don't know its onion address. The clients of the hidden
 * service know its onion address and blinded public key, whereas third-parties
 * (like HSDirs) don't know it (except if it's a public hidden service).
 *
 * The ENCRYPTED LAYER section is the second layer of encryption, and it's
 * encrypted using the client authorization key material (if those exist). When
 * client authorization is enabled, this second layer of encryption protects
 * the descriptor content from unauthorized entities. If client authorization
 * is disabled, this second layer of encryption does not provide any extra
 * security but is still present. The plaintext of this layer contains all the
 * information required to connect to the hidden service like its list of
 * introduction points.
 **/

/* For unit tests.*/
#define HS_DESCRIPTOR_PRIVATE

#include "hs_descriptor.h"

#include "or.h"
#include "ed25519_cert.h" /* Trunnel interface. */
#include "parsecommon.h"
#include "rendcache.h"
#include "hs_cache.h"
#include "hs_config.h"
#include "torcert.h" /* tor_cert_encode_ed22519() */

/* Constant string value used for the descriptor format. */
#define str_hs_desc "hs-descriptor"
#define str_desc_cert "descriptor-signing-key-cert"
#define str_rev_counter "revision-counter"
#define str_superencrypted "superencrypted"
#define str_encrypted "encrypted"
#define str_signature "signature"
#define str_lifetime "descriptor-lifetime"
/* Constant string value for the encrypted part of the descriptor. */
#define str_create2_formats "create2-formats"
#define str_intro_auth_required "intro-auth-required"
#define str_single_onion "single-onion-service"
#define str_intro_point "introduction-point"
#define str_ip_auth_key "auth-key"
#define str_ip_enc_key "enc-key"
#define str_ip_enc_key_cert "enc-key-cert"
#define str_ip_legacy_key "legacy-key"
#define str_ip_legacy_key_cert "legacy-key-cert"
#define str_intro_point_start "\n" str_intro_point " "
/* Constant string value for the construction to encrypt the encrypted data
 * section. */
#define str_enc_const_superencryption "hsdir-superencrypted-data"
#define str_enc_const_encryption "hsdir-encrypted-data"
/* Prefix required to compute/verify HS desc signatures */
#define str_desc_sig_prefix "Tor onion service descriptor sig v3"
#define str_desc_auth_type "desc-auth-type"
#define str_desc_auth_key "desc-auth-ephemeral-key"
#define str_desc_auth_client "auth-client"
#define str_encrypted "encrypted"

/* Authentication supported types. */
static const struct {
  hs_desc_auth_type_t type;
  const char *identifier;
} intro_auth_types[] = {
  { HS_DESC_AUTH_ED25519, "ed25519" },
  /* Indicate end of array. */
  { 0, NULL }
};

/* Descriptor ruleset. */
static token_rule_t hs_desc_v3_token_table[] = {
  T1_START(str_hs_desc, R_HS_DESCRIPTOR, EQ(1), NO_OBJ),
  T1(str_lifetime, R3_DESC_LIFETIME, EQ(1), NO_OBJ),
  T1(str_desc_cert, R3_DESC_SIGNING_CERT, NO_ARGS, NEED_OBJ),
  T1(str_rev_counter, R3_REVISION_COUNTER, EQ(1), NO_OBJ),
  T1(str_superencrypted, R3_SUPERENCRYPTED, NO_ARGS, NEED_OBJ),
  T1_END(str_signature, R3_SIGNATURE, EQ(1), NO_OBJ),
  END_OF_TABLE
};

/* Descriptor ruleset for the superencrypted section. */
static token_rule_t hs_desc_superencrypted_v3_token_table[] = {
  T1_START(str_desc_auth_type, R3_DESC_AUTH_TYPE, GE(1), NO_OBJ),
  T1(str_desc_auth_key, R3_DESC_AUTH_KEY, GE(1), NO_OBJ),
  T1N(str_desc_auth_client, R3_DESC_AUTH_CLIENT, GE(3), NO_OBJ),
  T1(str_encrypted, R3_ENCRYPTED, NO_ARGS, NEED_OBJ),
  END_OF_TABLE
};

/* Descriptor ruleset for the encrypted section. */
static token_rule_t hs_desc_encrypted_v3_token_table[] = {
  T1_START(str_create2_formats, R3_CREATE2_FORMATS, CONCAT_ARGS, NO_OBJ),
  T01(str_intro_auth_required, R3_INTRO_AUTH_REQUIRED, ARGS, NO_OBJ),
  T01(str_single_onion, R3_SINGLE_ONION_SERVICE, ARGS, NO_OBJ),
  END_OF_TABLE
};

/* Descriptor ruleset for the introduction points section. */
static token_rule_t hs_desc_intro_point_v3_token_table[] = {
  T1_START(str_intro_point, R3_INTRODUCTION_POINT, EQ(1), NO_OBJ),
  T1(str_ip_auth_key, R3_INTRO_AUTH_KEY, NO_ARGS, NEED_OBJ),
  T1(str_ip_enc_key, R3_INTRO_ENC_KEY, GE(2), OBJ_OK),
  T1(str_ip_enc_key_cert, R3_INTRO_ENC_KEY_CERT, ARGS, OBJ_OK),
  T01(str_ip_legacy_key, R3_INTRO_LEGACY_KEY, ARGS, NEED_KEY_1024),
  T01(str_ip_legacy_key_cert, R3_INTRO_LEGACY_KEY_CERT, ARGS, OBJ_OK),
  END_OF_TABLE
};

/* Free a descriptor intro point object. */
STATIC void
desc_intro_point_free(hs_desc_intro_point_t *ip)
{
  if (!ip) {
    return;
  }
  if (ip->link_specifiers) {
    SMARTLIST_FOREACH(ip->link_specifiers, hs_desc_link_specifier_t *,
                      ls, tor_free(ls));
    smartlist_free(ip->link_specifiers);
  }
  tor_cert_free(ip->auth_key_cert);
  tor_cert_free(ip->enc_key_cert);
  if (ip->legacy.key) {
    crypto_pk_free(ip->legacy.key);
  }
  if (ip->legacy.cert.encoded) {
    tor_free(ip->legacy.cert.encoded);
  }
  tor_free(ip);
}

/* Free the content of the plaintext section of a descriptor. */
static void
desc_plaintext_data_free_contents(hs_desc_plaintext_data_t *desc)
{
  if (!desc) {
    return;
  }

  if (desc->superencrypted_blob) {
    tor_free(desc->superencrypted_blob);
  }
  tor_cert_free(desc->signing_key_cert);

  memwipe(desc, 0, sizeof(*desc));
}

/* Free the content of the encrypted section of a descriptor. */
static void
desc_encrypted_data_free_contents(hs_desc_encrypted_data_t *desc)
{
  if (!desc) {
    return;
  }

  if (desc->intro_auth_types) {
    SMARTLIST_FOREACH(desc->intro_auth_types, char *, a, tor_free(a));
    smartlist_free(desc->intro_auth_types);
  }
  if (desc->intro_points) {
    SMARTLIST_FOREACH(desc->intro_points, hs_desc_intro_point_t *, ip,
                      desc_intro_point_free(ip));
    smartlist_free(desc->intro_points);
  }
  memwipe(desc, 0, sizeof(*desc));
}

/* Using a key, salt and encrypted payload, build a MAC and put it in mac_out.
 * We use SHA3-256 for the MAC computation.
 * This function can't fail. */
static void
build_mac(const uint8_t *mac_key, size_t mac_key_len,
          const uint8_t *salt, size_t salt_len,
          const uint8_t *encrypted, size_t encrypted_len,
          uint8_t *mac_out, size_t mac_len)
{
  crypto_digest_t *digest;

  const uint64_t mac_len_netorder = tor_htonll(mac_key_len);
  const uint64_t salt_len_netorder = tor_htonll(salt_len);

  tor_assert(mac_key);
  tor_assert(salt);
  tor_assert(encrypted);
  tor_assert(mac_out);

  digest = crypto_digest256_new(DIGEST_SHA3_256);
  /* As specified in section 2.5 of proposal 224, first add the mac key
   * then add the salt first and then the encrypted section. */

  crypto_digest_add_bytes(digest, (const char *) &mac_len_netorder, 8);
  crypto_digest_add_bytes(digest, (const char *) mac_key, mac_key_len);
  crypto_digest_add_bytes(digest, (const char *) &salt_len_netorder, 8);
  crypto_digest_add_bytes(digest, (const char *) salt, salt_len);
  crypto_digest_add_bytes(digest, (const char *) encrypted, encrypted_len);
  crypto_digest_get_digest(digest, (char *) mac_out, mac_len);
  crypto_digest_free(digest);
}

/* Using a given decriptor object, build the secret input needed for the
 * KDF and put it in the dst pointer which is an already allocated buffer
 * of size dstlen. */
static void
build_secret_input(const hs_descriptor_t *desc, uint8_t *dst, size_t dstlen)
{
  size_t offset = 0;

  tor_assert(desc);
  tor_assert(dst);
  tor_assert(HS_DESC_ENCRYPTED_SECRET_INPUT_LEN <= dstlen);

  /* XXX use the destination length as the memcpy length */
  /* Copy blinded public key. */
  memcpy(dst, desc->plaintext_data.blinded_pubkey.pubkey,
         sizeof(desc->plaintext_data.blinded_pubkey.pubkey));
  offset += sizeof(desc->plaintext_data.blinded_pubkey.pubkey);
  /* Copy subcredential. */
  memcpy(dst + offset, desc->subcredential, sizeof(desc->subcredential));
  offset += sizeof(desc->subcredential);
  /* Copy revision counter value. */
  set_uint64(dst + offset, tor_ntohll(desc->plaintext_data.revision_counter));
  offset += sizeof(uint64_t);
  tor_assert(HS_DESC_ENCRYPTED_SECRET_INPUT_LEN == offset);
}

/* Do the KDF construction and put the resulting data in key_out which is of
 * key_out_len length. It uses SHAKE-256 as specified in the spec. */
static void
build_kdf_key(const hs_descriptor_t *desc,
              const uint8_t *salt, size_t salt_len,
              uint8_t *key_out, size_t key_out_len,
              int is_superencrypted_layer)
{
  uint8_t secret_input[HS_DESC_ENCRYPTED_SECRET_INPUT_LEN];
  crypto_xof_t *xof;

  tor_assert(desc);
  tor_assert(salt);
  tor_assert(key_out);

  /* Build the secret input for the KDF computation. */
  build_secret_input(desc, secret_input, sizeof(secret_input));

  xof = crypto_xof_new();
  /* Feed our KDF. [SHAKE it like a polaroid picture --Yawning]. */
  crypto_xof_add_bytes(xof, secret_input, sizeof(secret_input));
  crypto_xof_add_bytes(xof, salt, salt_len);

  /* Feed in the right string constant based on the desc layer */
  if (is_superencrypted_layer) {
    crypto_xof_add_bytes(xof, (const uint8_t *) str_enc_const_superencryption,
                         strlen(str_enc_const_superencryption));
  } else {
    crypto_xof_add_bytes(xof, (const uint8_t *) str_enc_const_encryption,
                         strlen(str_enc_const_encryption));
  }

  /* Eat from our KDF. */
  crypto_xof_squeeze_bytes(xof, key_out, key_out_len);
  crypto_xof_free(xof);
  memwipe(secret_input,  0, sizeof(secret_input));
}

/* Using the given descriptor and salt, run it through our KDF function and
 * then extract a secret key in key_out, the IV in iv_out and MAC in mac_out.
 * This function can't fail. */
static void
build_secret_key_iv_mac(const hs_descriptor_t *desc,
                        const uint8_t *salt, size_t salt_len,
                        uint8_t *key_out, size_t key_len,
                        uint8_t *iv_out, size_t iv_len,
                        uint8_t *mac_out, size_t mac_len,
                        int is_superencrypted_layer)
{
  size_t offset = 0;
  uint8_t kdf_key[HS_DESC_ENCRYPTED_KDF_OUTPUT_LEN];

  tor_assert(desc);
  tor_assert(salt);
  tor_assert(key_out);
  tor_assert(iv_out);
  tor_assert(mac_out);

  build_kdf_key(desc, salt, salt_len, kdf_key, sizeof(kdf_key),
                is_superencrypted_layer);
  /* Copy the bytes we need for both the secret key and IV. */
  memcpy(key_out, kdf_key, key_len);
  offset += key_len;
  memcpy(iv_out, kdf_key + offset, iv_len);
  offset += iv_len;
  memcpy(mac_out, kdf_key + offset, mac_len);
  /* Extra precaution to make sure we are not out of bound. */
  tor_assert((offset + mac_len) == sizeof(kdf_key));
  memwipe(kdf_key, 0, sizeof(kdf_key));
}

/* === ENCODING === */

/* Encode the given link specifier objects into a newly allocated string.
 * This can't fail so caller can always assume a valid string being
 * returned. */
STATIC char *
encode_link_specifiers(const smartlist_t *specs)
{
  char *encoded_b64 = NULL;
  link_specifier_list_t *lslist = link_specifier_list_new();

  tor_assert(specs);
  /* No link specifiers is a code flow error, can't happen. */
  tor_assert(smartlist_len(specs) > 0);
  tor_assert(smartlist_len(specs) <= UINT8_MAX);

  link_specifier_list_set_n_spec(lslist, smartlist_len(specs));

  SMARTLIST_FOREACH_BEGIN(specs, const hs_desc_link_specifier_t *,
                          spec) {
    link_specifier_t *ls = link_specifier_new();
    link_specifier_set_ls_type(ls, spec->type);

    switch (spec->type) {
    case LS_IPV4:
      link_specifier_set_un_ipv4_addr(ls,
                                      tor_addr_to_ipv4h(&spec->u.ap.addr));
      link_specifier_set_un_ipv4_port(ls, spec->u.ap.port);
      /* Four bytes IPv4 and two bytes port. */
      link_specifier_set_ls_len(ls, sizeof(spec->u.ap.addr.addr.in_addr) +
                                    sizeof(spec->u.ap.port));
      break;
    case LS_IPV6:
    {
      size_t addr_len = link_specifier_getlen_un_ipv6_addr(ls);
      const uint8_t *in6_addr = tor_addr_to_in6_addr8(&spec->u.ap.addr);
      uint8_t *ipv6_array = link_specifier_getarray_un_ipv6_addr(ls);
      memcpy(ipv6_array, in6_addr, addr_len);
      link_specifier_set_un_ipv6_port(ls, spec->u.ap.port);
      /* Sixteen bytes IPv6 and two bytes port. */
      link_specifier_set_ls_len(ls, addr_len + sizeof(spec->u.ap.port));
      break;
    }
    case LS_LEGACY_ID:
    {
      size_t legacy_id_len = link_specifier_getlen_un_legacy_id(ls);
      uint8_t *legacy_id_array = link_specifier_getarray_un_legacy_id(ls);
      memcpy(legacy_id_array, spec->u.legacy_id, legacy_id_len);
      link_specifier_set_ls_len(ls, legacy_id_len);
      break;
    }
    default:
      tor_assert(0);
    }

    link_specifier_list_add_spec(lslist, ls);
  } SMARTLIST_FOREACH_END(spec);

  {
    uint8_t *encoded;
    ssize_t encoded_len, encoded_b64_len, ret;

    encoded_len = link_specifier_list_encoded_len(lslist);
    tor_assert(encoded_len > 0);
    encoded = tor_malloc_zero(encoded_len);
    ret = link_specifier_list_encode(encoded, encoded_len, lslist);
    tor_assert(ret == encoded_len);

    /* Base64 encode our binary format. Add extra NUL byte for the base64
     * encoded value. */
    encoded_b64_len = base64_encode_size(encoded_len, 0) + 1;
    encoded_b64 = tor_malloc_zero(encoded_b64_len);
    ret = base64_encode(encoded_b64, encoded_b64_len, (const char *) encoded,
                        encoded_len, 0);
    tor_assert(ret == (encoded_b64_len - 1));
    tor_free(encoded);
  }

  link_specifier_list_free(lslist);
  return encoded_b64;
}

/* Encode an introduction point legacy key and certificate. Return a newly
 * allocated string with it. On failure, return NULL. */
static char *
encode_legacy_key(const hs_desc_intro_point_t *ip)
{
  char *key_str, b64_cert[256], *encoded = NULL;
  size_t key_str_len;

  tor_assert(ip);

  /* Encode cross cert. */
  if (base64_encode(b64_cert, sizeof(b64_cert),
                    (const char *) ip->legacy.cert.encoded,
                    ip->legacy.cert.len, BASE64_ENCODE_MULTILINE) < 0) {
    log_warn(LD_REND, "Unable to encode legacy crosscert.");
    goto done;
  }
  /* Convert the encryption key to PEM format NUL terminated. */
  if (crypto_pk_write_public_key_to_string(ip->legacy.key, &key_str,
                                           &key_str_len) < 0) {
    log_warn(LD_REND, "Unable to encode legacy encryption key.");
    goto done;
  }
  tor_asprintf(&encoded,
               "%s \n%s"  /* Newline is added by the call above. */
               "%s\n"
               "-----BEGIN CROSSCERT-----\n"
               "%s"
               "-----END CROSSCERT-----",
               str_ip_legacy_key, key_str,
               str_ip_legacy_key_cert, b64_cert);
  tor_free(key_str);

 done:
  return encoded;
}

/* Encode an introduction point encryption key and certificate. Return a newly
 * allocated string with it. On failure, return NULL. */
static char *
encode_enc_key(const hs_desc_intro_point_t *ip)
{
  char *encoded = NULL, *encoded_cert;
  char key_b64[CURVE25519_BASE64_PADDED_LEN + 1];

  tor_assert(ip);

  /* Base64 encode the encryption key for the "enc-key" field. */
  if (curve25519_public_to_base64(key_b64, &ip->enc_key) < 0) {
    goto done;
  }
  if (tor_cert_encode_ed22519(ip->enc_key_cert, &encoded_cert) < 0) {
    goto done;
  }
  tor_asprintf(&encoded,
               "%s ntor %s\n"
               "%s\n%s",
               str_ip_enc_key, key_b64,
               str_ip_enc_key_cert, encoded_cert);
  tor_free(encoded_cert);

 done:
  return encoded;
}

/* Encode an introduction point object and return a newly allocated string
 * with it. On failure, return NULL. */
static char *
encode_intro_point(const ed25519_public_key_t *sig_key,
                   const hs_desc_intro_point_t *ip)
{
  char *encoded_ip = NULL;
  smartlist_t *lines = smartlist_new();

  tor_assert(ip);
  tor_assert(sig_key);

  /* Encode link specifier. */
  {
    char *ls_str = encode_link_specifiers(ip->link_specifiers);
    smartlist_add_asprintf(lines, "%s %s", str_intro_point, ls_str);
    tor_free(ls_str);
  }

  /* Authentication key encoding. */
  {
    char *encoded_cert;
    if (tor_cert_encode_ed22519(ip->auth_key_cert, &encoded_cert) < 0) {
      goto err;
    }
    smartlist_add_asprintf(lines, "%s\n%s", str_ip_auth_key, encoded_cert);
    tor_free(encoded_cert);
  }

  /* Encryption key encoding. */
  {
    char *encoded_enc_key = encode_enc_key(ip);
    if (encoded_enc_key == NULL) {
      goto err;
    }
    smartlist_add_asprintf(lines, "%s", encoded_enc_key);
    tor_free(encoded_enc_key);
  }

  /* Legacy key if any. */
  if (ip->legacy.key != NULL) {
    /* Strong requirement else the IP creation was badly done. */
    tor_assert(ip->legacy.cert.encoded);
    char *encoded_legacy_key = encode_legacy_key(ip);
    if (encoded_legacy_key == NULL) {
      goto err;
    }
    smartlist_add_asprintf(lines, "%s", encoded_legacy_key);
    tor_free(encoded_legacy_key);
  }

  /* Join them all in one blob of text. */
  encoded_ip = smartlist_join_strings(lines, "\n", 1, NULL);

 err:
  SMARTLIST_FOREACH(lines, char *, l, tor_free(l));
  smartlist_free(lines);
  return encoded_ip;
}

/* Given a source length, return the new size including padding for the
 * plaintext encryption. */
static size_t
compute_padded_plaintext_length(size_t plaintext_len)
{
  size_t plaintext_padded_len;
  const int padding_block_length = HS_DESC_SUPERENC_PLAINTEXT_PAD_MULTIPLE;

  /* Make sure we won't overflow. */
  tor_assert(plaintext_len <= (SIZE_T_CEILING - padding_block_length));

  /* Get the extra length we need to add. For example, if srclen is 10200
   * bytes, this will expand to (2 * 10k) == 20k thus an extra 9800 bytes. */
  plaintext_padded_len = CEIL_DIV(plaintext_len, padding_block_length) *
                         padding_block_length;
  /* Can never be extra careful. Make sure we are _really_ padded. */
  tor_assert(!(plaintext_padded_len % padding_block_length));
  return plaintext_padded_len;
}

/* Given a buffer, pad it up to the encrypted section padding requirement. Set
 * the newly allocated string in padded_out and return the length of the
 * padded buffer. */
STATIC size_t
build_plaintext_padding(const char *plaintext, size_t plaintext_len,
                        uint8_t **padded_out)
{
  size_t padded_len;
  uint8_t *padded;

  tor_assert(plaintext);
  tor_assert(padded_out);

  /* Allocate the final length including padding. */
  padded_len = compute_padded_plaintext_length(plaintext_len);
  tor_assert(padded_len >= plaintext_len);
  padded = tor_malloc_zero(padded_len);

  memcpy(padded, plaintext, plaintext_len);
  *padded_out = padded;
  return padded_len;
}

/* Using a key, IV and plaintext data of length plaintext_len, create the
 * encrypted section by encrypting it and setting encrypted_out with the
 * data. Return size of the encrypted data buffer. */
static size_t
build_encrypted(const uint8_t *key, const uint8_t *iv, const char *plaintext,
                size_t plaintext_len, uint8_t **encrypted_out,
                int is_superencrypted_layer)
{
  size_t encrypted_len;
  uint8_t *padded_plaintext, *encrypted;
  crypto_cipher_t *cipher;

  tor_assert(key);
  tor_assert(iv);
  tor_assert(plaintext);
  tor_assert(encrypted_out);

  /* If we are encrypting the middle layer of the descriptor, we need to first
     pad the plaintext */
  if (is_superencrypted_layer) {
    encrypted_len = build_plaintext_padding(plaintext, plaintext_len,
                                            &padded_plaintext);
    /* Extra precautions that we have a valid padding length. */
    tor_assert(!(encrypted_len % HS_DESC_SUPERENC_PLAINTEXT_PAD_MULTIPLE));
  } else { /* No padding required for inner layers */
    padded_plaintext = tor_memdup(plaintext, plaintext_len);
    encrypted_len = plaintext_len;
  }

  /* This creates a cipher for AES. It can't fail. */
  cipher = crypto_cipher_new_with_iv_and_bits(key, iv,
                                              HS_DESC_ENCRYPTED_BIT_SIZE);
  /* We use a stream cipher so the encrypted length will be the same as the
   * plaintext padded length. */
  encrypted = tor_malloc_zero(encrypted_len);
  /* This can't fail. */
  crypto_cipher_encrypt(cipher, (char *) encrypted,
                        (const char *) padded_plaintext, encrypted_len);
  *encrypted_out = encrypted;
  /* Cleanup. */
  crypto_cipher_free(cipher);
  tor_free(padded_plaintext);
  return encrypted_len;
}

/* Encrypt the given <b>plaintext</b> buffer using <b>desc</b> to get the
 * keys. Set encrypted_out with the encrypted data and return the length of
 * it. <b>is_superencrypted_layer</b> is set if this is the outer encrypted
 * layer of the descriptor. */
static size_t
encrypt_descriptor_data(const hs_descriptor_t *desc, const char *plaintext,
                        char **encrypted_out, int is_superencrypted_layer)
{
  char *final_blob;
  size_t encrypted_len, final_blob_len, offset = 0;
  uint8_t *encrypted;
  uint8_t salt[HS_DESC_ENCRYPTED_SALT_LEN];
  uint8_t secret_key[HS_DESC_ENCRYPTED_KEY_LEN], secret_iv[CIPHER_IV_LEN];
  uint8_t mac_key[DIGEST256_LEN], mac[DIGEST256_LEN];

  tor_assert(desc);
  tor_assert(plaintext);
  tor_assert(encrypted_out);

  /* Get our salt. The returned bytes are already hashed. */
  crypto_strongest_rand(salt, sizeof(salt));

  /* KDF construction resulting in a key from which the secret key, IV and MAC
   * key are extracted which is what we need for the encryption. */
  build_secret_key_iv_mac(desc, salt, sizeof(salt),
                          secret_key, sizeof(secret_key),
                          secret_iv, sizeof(secret_iv),
                          mac_key, sizeof(mac_key),
                          is_superencrypted_layer);

  /* Build the encrypted part that is do the actual encryption. */
  encrypted_len = build_encrypted(secret_key, secret_iv, plaintext,
                                  strlen(plaintext), &encrypted,
                                  is_superencrypted_layer);
  memwipe(secret_key, 0, sizeof(secret_key));
  memwipe(secret_iv, 0, sizeof(secret_iv));
  /* This construction is specified in section 2.5 of proposal 224. */
  final_blob_len = sizeof(salt) + encrypted_len + DIGEST256_LEN;
  final_blob = tor_malloc_zero(final_blob_len);

  /* Build the MAC. */
  build_mac(mac_key, sizeof(mac_key), salt, sizeof(salt),
            encrypted, encrypted_len, mac, sizeof(mac));
  memwipe(mac_key, 0, sizeof(mac_key));

  /* The salt is the first value. */
  memcpy(final_blob, salt, sizeof(salt));
  offset = sizeof(salt);
  /* Second value is the encrypted data. */
  memcpy(final_blob + offset, encrypted, encrypted_len);
  offset += encrypted_len;
  /* Third value is the MAC. */
  memcpy(final_blob + offset, mac, sizeof(mac));
  offset += sizeof(mac);
  /* Cleanup the buffers. */
  memwipe(salt, 0, sizeof(salt));
  memwipe(encrypted, 0, encrypted_len);
  tor_free(encrypted);
  /* Extra precaution. */
  tor_assert(offset == final_blob_len);

  *encrypted_out = final_blob;
  return final_blob_len;
}

/* Create and return a string containing a fake client-auth entry. It's the
 * responsibility of the caller to free the returned string. This function will
 * never fail. */
static char *
get_fake_auth_client_str(void)
{
  char *auth_client_str = NULL;
  /* We are gonna fill these arrays with fake base64 data. They are all double
   * the size of their binary representation to fit the base64 overhead. */
  char client_id_b64[8*2];
  char iv_b64[16*2];
  char encrypted_cookie_b64[16*2];
  int retval;

  /* This is a macro to fill a field with random data and then base64 it. */
#define FILL_WITH_FAKE_DATA_AND_BASE64(field) STMT_BEGIN         \
  crypto_rand((char *)field, sizeof(field));                     \
  retval = base64_encode_nopad(field##_b64, sizeof(field##_b64), \
                               field, sizeof(field));            \
  tor_assert(retval > 0);                                        \
  STMT_END

  { /* Get those fakes! */
    uint8_t client_id[8]; /* fake client-id */
    uint8_t iv[16]; /* fake IV (initialization vector) */
    uint8_t encrypted_cookie[16]; /* fake encrypted cookie */

    FILL_WITH_FAKE_DATA_AND_BASE64(client_id);
    FILL_WITH_FAKE_DATA_AND_BASE64(iv);
    FILL_WITH_FAKE_DATA_AND_BASE64(encrypted_cookie);
  }

  /* Build the final string */
  tor_asprintf(&auth_client_str, "%s %s %s %s", str_desc_auth_client,
               client_id_b64, iv_b64, encrypted_cookie_b64);

#undef FILL_WITH_FAKE_DATA_AND_BASE64

  return auth_client_str;
}

/** How many lines of "client-auth" we want in our descriptors; fake or not. */
#define CLIENT_AUTH_ENTRIES_BLOCK_SIZE 16

/** Create the "client-auth" part of the descriptor and return a
 *  newly-allocated string with it. It's the responsibility of the caller to
 *  free the returned string. */
static char *
get_fake_auth_client_lines(void)
{
  /* XXX: Client authorization is still not implemented, so all this function
     does is make fake clients */
  int i = 0;
  smartlist_t *auth_client_lines = smartlist_new();
  char *auth_client_lines_str = NULL;

  /* Make a line for each fake client */
  const int num_fake_clients = CLIENT_AUTH_ENTRIES_BLOCK_SIZE;
  for (i = 0; i < num_fake_clients; i++) {
    char *auth_client_str = get_fake_auth_client_str();
    tor_assert(auth_client_str);
    smartlist_add(auth_client_lines, auth_client_str);
  }

  /* Join all lines together to form final string */
  auth_client_lines_str = smartlist_join_strings(auth_client_lines,
                                                 "\n", 1, NULL);
  /* Cleanup the mess */
  SMARTLIST_FOREACH(auth_client_lines, char *, a, tor_free(a));
  smartlist_free(auth_client_lines);

  return auth_client_lines_str;
}

/* Create the inner layer of the descriptor (which includes the intro points,
 * etc.). Return a newly-allocated string with the layer plaintext, or NULL if
 * an error occured. It's the responsibility of the caller to free the returned
 * string. */
static char *
get_inner_encrypted_layer_plaintext(const hs_descriptor_t *desc)
{
  char *encoded_str = NULL;
  smartlist_t *lines = smartlist_new();

  /* Build the start of the section prior to the introduction points. */
  {
    if (!desc->encrypted_data.create2_ntor) {
      log_err(LD_BUG, "HS desc doesn't have recognized handshake type.");
      goto err;
    }
    smartlist_add_asprintf(lines, "%s %d\n", str_create2_formats,
                           ONION_HANDSHAKE_TYPE_NTOR);

    if (desc->encrypted_data.intro_auth_types &&
        smartlist_len(desc->encrypted_data.intro_auth_types)) {
      /* Put the authentication-required line. */
      char *buf = smartlist_join_strings(desc->encrypted_data.intro_auth_types,
                                         " ", 0, NULL);
      smartlist_add_asprintf(lines, "%s %s\n", str_intro_auth_required, buf);
      tor_free(buf);
    }

    if (desc->encrypted_data.single_onion_service) {
      smartlist_add_asprintf(lines, "%s\n", str_single_onion);
    }
  }

  /* Build the introduction point(s) section. */
  SMARTLIST_FOREACH_BEGIN(desc->encrypted_data.intro_points,
                          const hs_desc_intro_point_t *, ip) {
    char *encoded_ip = encode_intro_point(&desc->plaintext_data.signing_pubkey,
                                          ip);
    if (encoded_ip == NULL) {
      log_err(LD_BUG, "HS desc intro point is malformed.");
      goto err;
    }
    smartlist_add(lines, encoded_ip);
  } SMARTLIST_FOREACH_END(ip);

  /* Build the entire encrypted data section into one encoded plaintext and
   * then encrypt it. */
  encoded_str = smartlist_join_strings(lines, "", 0, NULL);

 err:
  SMARTLIST_FOREACH(lines, char *, l, tor_free(l));
  smartlist_free(lines);

  return encoded_str;
}

/* Create the middle layer of the descriptor, which includes the client auth
 * data and the encrypted inner layer (provided as a base64 string at
 * <b>layer2_b64_ciphertext</b>). Return a newly-allocated string with the
 * layer plaintext, or NULL if an error occured. It's the responsibility of the
 * caller to free the returned string. */
static char *
get_outer_encrypted_layer_plaintext(const hs_descriptor_t *desc,
                                    const char *layer2_b64_ciphertext)
{
  char *layer1_str = NULL;
  smartlist_t *lines = smartlist_new();

  /* XXX: Disclaimer: This function generates only _fake_ client auth
   * data. Real client auth is not yet implemented, but client auth data MUST
   * always be present in descriptors. In the future this function will be
   * refactored to use real client auth data if they exist (#20700). */
  (void) *desc;

  /* Specify auth type */
  smartlist_add_asprintf(lines, "%s %s\n", str_desc_auth_type, "x25519");

  {  /* Create fake ephemeral x25519 key */
    char fake_key_base64[CURVE25519_BASE64_PADDED_LEN + 1];
    curve25519_keypair_t fake_x25519_keypair;
    if (curve25519_keypair_generate(&fake_x25519_keypair, 0) < 0) {
      goto done;
    }
    if (curve25519_public_to_base64(fake_key_base64,
                                    &fake_x25519_keypair.pubkey) < 0) {
      goto done;
    }
    smartlist_add_asprintf(lines, "%s %s\n",
                           str_desc_auth_key, fake_key_base64);
    /* No need to memwipe any of these fake keys. They will go unused. */
  }

  {  /* Create fake auth-client lines. */
    char *auth_client_lines = get_fake_auth_client_lines();
    tor_assert(auth_client_lines);
    smartlist_add(lines, auth_client_lines);
  }

  /* create encrypted section */
  {
    smartlist_add_asprintf(lines,
                           "%s\n"
                           "-----BEGIN MESSAGE-----\n"
                           "%s"
                           "-----END MESSAGE-----",
                           str_encrypted, layer2_b64_ciphertext);
  }

  layer1_str = smartlist_join_strings(lines, "", 0, NULL);

 done:
  SMARTLIST_FOREACH(lines, char *, a, tor_free(a));
  smartlist_free(lines);

  return layer1_str;
}

/* Encrypt <b>encoded_str</b> into an encrypted blob and then base64 it before
 * returning it. <b>desc</b> is provided to derive the encryption
 * keys. <b>is_superencrypted_layer</b> is set if <b>encoded_str</b> is the
 * middle (superencrypted) layer of the descriptor. It's the responsibility of
 * the caller to free the returned string. */
static char *
encrypt_desc_data_and_base64(const hs_descriptor_t *desc,
                             const char *encoded_str,
                             int is_superencrypted_layer)
{
  char *enc_b64;
  ssize_t enc_b64_len, ret_len, enc_len;
  char *encrypted_blob = NULL;

  enc_len = encrypt_descriptor_data(desc, encoded_str, &encrypted_blob,
                                    is_superencrypted_layer);
  /* Get the encoded size plus a NUL terminating byte. */
  enc_b64_len = base64_encode_size(enc_len, BASE64_ENCODE_MULTILINE) + 1;
  enc_b64 = tor_malloc_zero(enc_b64_len);
  /* Base64 the encrypted blob before returning it. */
  ret_len = base64_encode(enc_b64, enc_b64_len, encrypted_blob, enc_len,
                          BASE64_ENCODE_MULTILINE);
  /* Return length doesn't count the NUL byte. */
  tor_assert(ret_len == (enc_b64_len - 1));
  tor_free(encrypted_blob);

  return enc_b64;
}

/* Generate and encode the superencrypted portion of <b>desc</b>. This also
 * involves generating the encrypted portion of the descriptor, and performing
 * the superencryption. A newly allocated NUL-terminated string pointer
 * containing the encrypted encoded blob is put in encrypted_blob_out. Return 0
 * on success else a negative value. */
static int
encode_superencrypted_data(const hs_descriptor_t *desc,
                           char **encrypted_blob_out)
{
  int ret = -1;
  char *layer2_str = NULL;
  char *layer2_b64_ciphertext = NULL;
  char *layer1_str = NULL;
  char *layer1_b64_ciphertext = NULL;

  tor_assert(desc);
  tor_assert(encrypted_blob_out);

  /* Func logic: We first create the inner layer of the descriptor (layer2).
   * We then encrypt it and use it to create the middle layer of the descriptor
   * (layer1).  Finally we superencrypt the middle layer and return it to our
   * caller. */

  /* Create inner descriptor layer */
  layer2_str = get_inner_encrypted_layer_plaintext(desc);
  if (!layer2_str) {
    goto err;
  }

  /* Encrypt and b64 the inner layer */
  layer2_b64_ciphertext = encrypt_desc_data_and_base64(desc, layer2_str, 0);
  if (!layer2_b64_ciphertext) {
    goto err;
  }

  /* Now create middle descriptor layer given the inner layer */
  layer1_str = get_outer_encrypted_layer_plaintext(desc,layer2_b64_ciphertext);
  if (!layer1_str) {
    goto err;
  }

  /* Encrypt and base64 the middle layer */
  layer1_b64_ciphertext = encrypt_desc_data_and_base64(desc, layer1_str, 1);
  if (!layer1_b64_ciphertext) {
    goto err;
  }

  /* Success! */
  ret = 0;

 err:
  tor_free(layer1_str);
  tor_free(layer2_str);
  tor_free(layer2_b64_ciphertext);

  *encrypted_blob_out = layer1_b64_ciphertext;
  return ret;
}

/* Encode a v3 HS descriptor. Return 0 on success and set encoded_out to the
 * newly allocated string of the encoded descriptor. On error, -1 is returned
 * and encoded_out is untouched. */
static int
desc_encode_v3(const hs_descriptor_t *desc,
               const ed25519_keypair_t *signing_kp, char **encoded_out)
{
  int ret = -1;
  char *encoded_str = NULL;
  size_t encoded_len;
  smartlist_t *lines = smartlist_new();

  tor_assert(desc);
  tor_assert(signing_kp);
  tor_assert(encoded_out);
  tor_assert(desc->plaintext_data.version == 3);

  /* Build the non-encrypted values. */
  {
    char *encoded_cert;
    /* Encode certificate then create the first line of the descriptor. */
    if (desc->plaintext_data.signing_key_cert->cert_type
        != CERT_TYPE_SIGNING_HS_DESC) {
      log_err(LD_BUG, "HS descriptor signing key has an unexpected cert type "
              "(%d)", (int) desc->plaintext_data.signing_key_cert->cert_type);
      goto err;
    }
    if (tor_cert_encode_ed22519(desc->plaintext_data.signing_key_cert,
                                &encoded_cert) < 0) {
      /* The function will print error logs. */
      goto err;
    }
    /* Create the hs descriptor line. */
    smartlist_add_asprintf(lines, "%s %" PRIu32, str_hs_desc,
                           desc->plaintext_data.version);
    /* Add the descriptor lifetime line (in minutes). */
    smartlist_add_asprintf(lines, "%s %" PRIu32, str_lifetime,
                           desc->plaintext_data.lifetime_sec / 60);
    /* Create the descriptor certificate line. */
    smartlist_add_asprintf(lines, "%s\n%s", str_desc_cert, encoded_cert);
    tor_free(encoded_cert);
    /* Create the revision counter line. */
    smartlist_add_asprintf(lines, "%s %" PRIu64, str_rev_counter,
                           desc->plaintext_data.revision_counter);
  }

  /* Build the superencrypted data section. */
  {
    char *enc_b64_blob=NULL;
    if (encode_superencrypted_data(desc, &enc_b64_blob) < 0) {
      goto err;
    }
    smartlist_add_asprintf(lines,
                           "%s\n"
                           "-----BEGIN MESSAGE-----\n"
                           "%s"
                           "-----END MESSAGE-----",
                           str_superencrypted, enc_b64_blob);
    tor_free(enc_b64_blob);
  }

  /* Join all lines in one string so we can generate a signature and append
   * it to the descriptor. */
  encoded_str = smartlist_join_strings(lines, "\n", 1, &encoded_len);

  /* Sign all fields of the descriptor with our short term signing key. */
  {
    ed25519_signature_t sig;
    char ed_sig_b64[ED25519_SIG_BASE64_LEN + 1];
    if (ed25519_sign_prefixed(&sig,
                              (const uint8_t *) encoded_str, encoded_len,
                              str_desc_sig_prefix, signing_kp) < 0) {
      log_warn(LD_BUG, "Can't sign encoded HS descriptor!");
      tor_free(encoded_str);
      goto err;
    }
    if (ed25519_signature_to_base64(ed_sig_b64, &sig) < 0) {
      log_warn(LD_BUG, "Can't base64 encode descriptor signature!");
      tor_free(encoded_str);
      goto err;
    }
    /* Create the signature line. */
    smartlist_add_asprintf(lines, "%s %s", str_signature, ed_sig_b64);
  }
  /* Free previous string that we used so compute the signature. */
  tor_free(encoded_str);
  encoded_str = smartlist_join_strings(lines, "\n", 1, NULL);
  *encoded_out = encoded_str;

  if (strlen(encoded_str) >= hs_cache_get_max_descriptor_size()) {
    log_warn(LD_GENERAL, "We just made an HS descriptor that's too big (%d)."
             "Failing.", (int)strlen(encoded_str));
    tor_free(encoded_str);
    goto err;
  }

  /* XXX: Trigger a control port event. */

  /* Success! */
  ret = 0;

 err:
  SMARTLIST_FOREACH(lines, char *, l, tor_free(l));
  smartlist_free(lines);
  return ret;
}

/* === DECODING === */

/* Given an encoded string of the link specifiers, return a newly allocated
 * list of decoded link specifiers. Return NULL on error. */
STATIC smartlist_t *
decode_link_specifiers(const char *encoded)
{
  int decoded_len;
  size_t encoded_len, i;
  uint8_t *decoded;
  smartlist_t *results = NULL;
  link_specifier_list_t *specs = NULL;

  tor_assert(encoded);

  encoded_len = strlen(encoded);
  decoded = tor_malloc(encoded_len);
  decoded_len = base64_decode((char *) decoded, encoded_len, encoded,
                              encoded_len);
  if (decoded_len < 0) {
    goto err;
  }

  if (link_specifier_list_parse(&specs, decoded,
                                (size_t) decoded_len) < decoded_len) {
    goto err;
  }
  tor_assert(specs);
  results = smartlist_new();

  for (i = 0; i < link_specifier_list_getlen_spec(specs); i++) {
    hs_desc_link_specifier_t *hs_spec;
    link_specifier_t *ls = link_specifier_list_get_spec(specs, i);
    tor_assert(ls);

    hs_spec = tor_malloc_zero(sizeof(*hs_spec));
    hs_spec->type = link_specifier_get_ls_type(ls);
    switch (hs_spec->type) {
    case LS_IPV4:
      tor_addr_from_ipv4h(&hs_spec->u.ap.addr,
                          link_specifier_get_un_ipv4_addr(ls));
      hs_spec->u.ap.port = link_specifier_get_un_ipv4_port(ls);
      break;
    case LS_IPV6:
      tor_addr_from_ipv6_bytes(&hs_spec->u.ap.addr, (const char *)
                               link_specifier_getarray_un_ipv6_addr(ls));
      hs_spec->u.ap.port = link_specifier_get_un_ipv6_port(ls);
      break;
    case LS_LEGACY_ID:
      /* Both are known at compile time so let's make sure they are the same
       * else we can copy memory out of bound. */
      tor_assert(link_specifier_getlen_un_legacy_id(ls) ==
                 sizeof(hs_spec->u.legacy_id));
      memcpy(hs_spec->u.legacy_id, link_specifier_getarray_un_legacy_id(ls),
             sizeof(hs_spec->u.legacy_id));
      break;
    default:
      goto err;
    }

    smartlist_add(results, hs_spec);
  }

  goto done;
 err:
  if (results) {
    SMARTLIST_FOREACH(results, hs_desc_link_specifier_t *, s, tor_free(s));
    smartlist_free(results);
    results = NULL;
  }
 done:
  link_specifier_list_free(specs);
  tor_free(decoded);
  return results;
}

/* Given a list of authentication types, decode it and put it in the encrypted
 * data section. Return 1 if we at least know one of the type or 0 if we know
 * none of them. */
static int
decode_auth_type(hs_desc_encrypted_data_t *desc, const char *list)
{
  int match = 0;

  tor_assert(desc);
  tor_assert(list);

  desc->intro_auth_types = smartlist_new();
  smartlist_split_string(desc->intro_auth_types, list, " ", 0, 0);

  /* Validate the types that we at least know about one. */
  SMARTLIST_FOREACH_BEGIN(desc->intro_auth_types, const char *, auth) {
    for (int idx = 0; intro_auth_types[idx].identifier; idx++) {
      if (!strncmp(auth, intro_auth_types[idx].identifier,
                   strlen(intro_auth_types[idx].identifier))) {
        match = 1;
        break;
      }
    }
  } SMARTLIST_FOREACH_END(auth);

  return match;
}

/* Parse a space-delimited list of integers representing CREATE2 formats into
 * the bitfield in hs_desc_encrypted_data_t. Ignore unrecognized values. */
static void
decode_create2_list(hs_desc_encrypted_data_t *desc, const char *list)
{
  smartlist_t *tokens;

  tor_assert(desc);
  tor_assert(list);

  tokens = smartlist_new();
  smartlist_split_string(tokens, list, " ", 0, 0);

  SMARTLIST_FOREACH_BEGIN(tokens, char *, s) {
    int ok;
    unsigned long type = tor_parse_ulong(s, 10, 1, UINT16_MAX, &ok, NULL);
    if (!ok) {
      log_warn(LD_REND, "Unparseable value %s in create2 list", escaped(s));
      continue;
    }
    switch (type) {
    case ONION_HANDSHAKE_TYPE_NTOR:
      desc->create2_ntor = 1;
      break;
    default:
      /* We deliberately ignore unsupported handshake types */
      continue;
    }
  } SMARTLIST_FOREACH_END(s);

  SMARTLIST_FOREACH(tokens, char *, s, tor_free(s));
  smartlist_free(tokens);
}

/* Given a certificate, validate the certificate for certain conditions which
 * are if the given type matches the cert's one, if the signing key is
 * included and if the that key was actually used to sign the certificate.
 *
 * Return 1 iff if all conditions pass or 0 if one of them fails. */
STATIC int
cert_is_valid(tor_cert_t *cert, uint8_t type, const char *log_obj_type)
{
  tor_assert(log_obj_type);

  if (cert == NULL) {
    log_warn(LD_REND, "Certificate for %s couldn't be parsed.", log_obj_type);
    goto err;
  }
  if (cert->cert_type != type) {
    log_warn(LD_REND, "Invalid cert type %02x for %s.", cert->cert_type,
             log_obj_type);
    goto err;
  }
  /* All certificate must have its signing key included. */
  if (!cert->signing_key_included) {
    log_warn(LD_REND, "Signing key is NOT included for %s.", log_obj_type);
    goto err;
  }
  /* The following will not only check if the signature matches but also the
   * expiration date and overall validity. */
  if (tor_cert_checksig(cert, &cert->signing_key, time(NULL)) < 0) {
    log_warn(LD_REND, "Invalid signature for %s.", log_obj_type);
    goto err;
  }

  return 1;
 err:
  return 0;
}

/* Given some binary data, try to parse it to get a certificate object. If we
 * have a valid cert, validate it using the given wanted type. On error, print
 * a log using the err_msg has the certificate identifier adding semantic to
 * the log and cert_out is set to NULL. On success, 0 is returned and cert_out
 * points to a newly allocated certificate object. */
static int
cert_parse_and_validate(tor_cert_t **cert_out, const char *data,
                        size_t data_len, unsigned int cert_type_wanted,
                        const char *err_msg)
{
  tor_cert_t *cert;

  tor_assert(cert_out);
  tor_assert(data);
  tor_assert(err_msg);

  /* Parse certificate. */
  cert = tor_cert_parse((const uint8_t *) data, data_len);
  if (!cert) {
    log_warn(LD_REND, "Certificate for %s couldn't be parsed.", err_msg);
    goto err;
  }

  /* Validate certificate. */
  if (!cert_is_valid(cert, cert_type_wanted, err_msg)) {
    goto err;
  }

  *cert_out = cert;
  return 0;

 err:
  tor_cert_free(cert);
  *cert_out = NULL;
  return -1;
}

/* Return true iff the given length of the encrypted data of a descriptor
 * passes validation. */
STATIC int
encrypted_data_length_is_valid(size_t len)
{
  /* Make sure there is enough data for the salt and the mac. The equality is
     there to ensure that there is at least one byte of encrypted data. */
  if (len <= HS_DESC_ENCRYPTED_SALT_LEN + DIGEST256_LEN) {
    log_warn(LD_REND, "Length of descriptor's encrypted data is too small. "
                      "Got %lu but minimum value is %d",
             (unsigned long)len, HS_DESC_ENCRYPTED_SALT_LEN + DIGEST256_LEN);
    goto err;
  }

  return 1;
 err:
  return 0;
}

/** Decrypt an encrypted descriptor layer at <b>encrypted_blob</b> of size
 *  <b>encrypted_blob_size</b>. Use the descriptor object <b>desc</b> to
 *  generate the right decryption keys; set <b>decrypted_out</b> to the
 *  plaintext. If <b>is_superencrypted_layer</b> is set, this is the outter
 *  encrypted layer of the descriptor. */
static size_t
decrypt_desc_layer(const hs_descriptor_t *desc,
                   const uint8_t *encrypted_blob,
                   size_t encrypted_blob_size,
                   int is_superencrypted_layer,
                   char **decrypted_out)
{
  uint8_t *decrypted = NULL;
  uint8_t secret_key[HS_DESC_ENCRYPTED_KEY_LEN], secret_iv[CIPHER_IV_LEN];
  uint8_t mac_key[DIGEST256_LEN], our_mac[DIGEST256_LEN];
  const uint8_t *salt, *encrypted, *desc_mac;
  size_t encrypted_len, result_len = 0;

  tor_assert(decrypted_out);
  tor_assert(desc);
  tor_assert(encrypted_blob);

  /* Construction is as follow: SALT | ENCRYPTED_DATA | MAC .
   * Make sure we have enough space for all these things. */
  if (!encrypted_data_length_is_valid(encrypted_blob_size)) {
    goto err;
  }

  /* Start of the blob thus the salt. */
  salt = encrypted_blob;

  /* Next is the encrypted data. */
  encrypted = encrypted_blob + HS_DESC_ENCRYPTED_SALT_LEN;
  encrypted_len = encrypted_blob_size -
    (HS_DESC_ENCRYPTED_SALT_LEN + DIGEST256_LEN);
  tor_assert(encrypted_len > 0); /* guaranteed by the check above */

  /* And last comes the MAC. */
  desc_mac = encrypted_blob + encrypted_blob_size - DIGEST256_LEN;

  /* KDF construction resulting in a key from which the secret key, IV and MAC
   * key are extracted which is what we need for the decryption. */
  build_secret_key_iv_mac(desc, salt, HS_DESC_ENCRYPTED_SALT_LEN,
                          secret_key, sizeof(secret_key),
                          secret_iv, sizeof(secret_iv),
                          mac_key, sizeof(mac_key),
                          is_superencrypted_layer);

  /* Build MAC. */
  build_mac(mac_key, sizeof(mac_key), salt, HS_DESC_ENCRYPTED_SALT_LEN,
            encrypted, encrypted_len, our_mac, sizeof(our_mac));
  memwipe(mac_key, 0, sizeof(mac_key));
  /* Verify MAC; MAC is H(mac_key || salt || encrypted)
   *
   * This is a critical check that is making sure the computed MAC matches the
   * one in the descriptor. */
  if (!tor_memeq(our_mac, desc_mac, sizeof(our_mac))) {
    log_warn(LD_REND, "Encrypted service descriptor MAC check failed");
    goto err;
  }

  {
    /* Decrypt. Here we are assured that the encrypted length is valid for
     * decryption. */
    crypto_cipher_t *cipher;

    cipher = crypto_cipher_new_with_iv_and_bits(secret_key, secret_iv,
                                                HS_DESC_ENCRYPTED_BIT_SIZE);
    /* Extra byte for the NUL terminated byte. */
    decrypted = tor_malloc_zero(encrypted_len + 1);
    crypto_cipher_decrypt(cipher, (char *) decrypted,
                          (const char *) encrypted, encrypted_len);
    crypto_cipher_free(cipher);
  }

  {
    /* Adjust length to remove NUL padding bytes */
    uint8_t *end = memchr(decrypted, 0, encrypted_len);
    result_len = encrypted_len;
    if (end) {
      result_len = end - decrypted;
    }
  }

  /* Make sure to NUL terminate the string. */
  decrypted[encrypted_len] = '\0';
  *decrypted_out = (char *) decrypted;
  goto done;

 err:
  if (decrypted) {
    tor_free(decrypted);
  }
  *decrypted_out = NULL;
  result_len = 0;

 done:
  memwipe(secret_key, 0, sizeof(secret_key));
  memwipe(secret_iv, 0, sizeof(secret_iv));
  return result_len;
}

/* Basic validation that the superencrypted client auth portion of the
 * descriptor is well-formed and recognized. Return True if so, otherwise
 * return False. */
static int
superencrypted_auth_data_is_valid(smartlist_t *tokens)
{
  /* XXX: This is just basic validation for now. When we implement client auth,
     we can refactor this function so that it actually parses and saves the
     data. */

  { /* verify desc auth type */
    const directory_token_t *tok;
    tok = find_by_keyword(tokens, R3_DESC_AUTH_TYPE);
    tor_assert(tok->n_args >= 1);
    if (strcmp(tok->args[0], "x25519")) {
      log_warn(LD_DIR, "Unrecognized desc auth type");
      return 0;
    }
  }

  { /* verify desc auth key */
    const directory_token_t *tok;
    curve25519_public_key_t k;
    tok = find_by_keyword(tokens, R3_DESC_AUTH_KEY);
    tor_assert(tok->n_args >= 1);
    if (curve25519_public_from_base64(&k, tok->args[0]) < 0) {
      log_warn(LD_DIR, "Bogus desc auth key in HS desc");
      return 0;
    }
  }

  /* verify desc auth client items */
  SMARTLIST_FOREACH_BEGIN(tokens, const directory_token_t *, tok) {
    if (tok->tp == R3_DESC_AUTH_CLIENT) {
      tor_assert(tok->n_args >= 3);
    }
  } SMARTLIST_FOREACH_END(tok);

  return 1;
}

/* Parse <b>message</b>, the plaintext of the superencrypted portion of an HS
 * descriptor. Set <b>encrypted_out</b> to the encrypted blob, and return its
 * size */
STATIC size_t
decode_superencrypted(const char *message, size_t message_len,
                     uint8_t **encrypted_out)
{
  int retval = 0;
  memarea_t *area = NULL;
  smartlist_t *tokens = NULL;

  area = memarea_new();
  tokens = smartlist_new();
  if (tokenize_string(area, message, message + message_len, tokens,
                      hs_desc_superencrypted_v3_token_table, 0) < 0) {
    log_warn(LD_REND, "Superencrypted portion is not parseable");
    goto err;
  }

  /* Do some rudimentary validation of the authentication data */
  if (!superencrypted_auth_data_is_valid(tokens)) {
    log_warn(LD_REND, "Invalid auth data");
    goto err;
  }

  /* Extract the encrypted data section. */
  {
    const directory_token_t *tok;
    tok = find_by_keyword(tokens, R3_ENCRYPTED);
    tor_assert(tok->object_body);
    if (strcmp(tok->object_type, "MESSAGE") != 0) {
      log_warn(LD_REND, "Desc superencrypted data section is invalid");
      goto err;
    }
    /* Make sure the length of the encrypted blob is valid. */
    if (!encrypted_data_length_is_valid(tok->object_size)) {
      goto err;
    }

    /* Copy the encrypted blob to the descriptor object so we can handle it
     * latter if needed. */
    tor_assert(tok->object_size <= INT_MAX);
    *encrypted_out = tor_memdup(tok->object_body, tok->object_size);
    retval = (int) tok->object_size;
  }

 err:
  SMARTLIST_FOREACH(tokens, directory_token_t *, t, token_clear(t));
  smartlist_free(tokens);
  if (area) {
    memarea_drop_all(area);
  }

  return retval;
}

/* Decrypt both the superencrypted and the encrypted section of the descriptor
 * using the given descriptor object <b>desc</b>. A newly allocated NUL
 * terminated string is put in decrypted_out which contains the inner encrypted
 * layer of the descriptor. Return the length of decrypted_out on success else
 * 0 is returned and decrypted_out is set to NULL. */
static size_t
desc_decrypt_all(const hs_descriptor_t *desc, char **decrypted_out)
{
  size_t  decrypted_len = 0;
  size_t encrypted_len = 0;
  size_t superencrypted_len = 0;
  char *superencrypted_plaintext = NULL;
  uint8_t *encrypted_blob = NULL;

  /** Function logic: This function takes us from the descriptor header to the
   *  inner encrypted layer, by decrypting and decoding the middle descriptor
   *  layer. In the end we return the contents of the inner encrypted layer to
   *  our caller. */

  /* 1. Decrypt middle layer of descriptor */
  superencrypted_len = decrypt_desc_layer(desc,
                                 desc->plaintext_data.superencrypted_blob,
                                 desc->plaintext_data.superencrypted_blob_size,
                                 1,
                                 &superencrypted_plaintext);
  if (!superencrypted_len) {
    log_warn(LD_REND, "Decrypting superencrypted desc failed.");
    goto err;
  }
  tor_assert(superencrypted_plaintext);

  /* 2. Parse "superencrypted" */
  encrypted_len = decode_superencrypted(superencrypted_plaintext,
                                        superencrypted_len,
                                        &encrypted_blob);
  if (!encrypted_len) {
    log_warn(LD_REND, "Decrypting encrypted desc failed.");
    goto err;
  }
  tor_assert(encrypted_blob);

  /* 3. Decrypt "encrypted" and set decrypted_out */
  char *decrypted_desc;
  decrypted_len = decrypt_desc_layer(desc,
                                     encrypted_blob, encrypted_len,
                                     0, &decrypted_desc);
  if (!decrypted_len) {
    log_warn(LD_REND, "Decrypting encrypted desc failed.");
    goto err;
  }
  tor_assert(decrypted_desc);

  *decrypted_out = decrypted_desc;

 err:
  tor_free(superencrypted_plaintext);
  tor_free(encrypted_blob);

  return decrypted_len;
}

/* Given the token tok for an intro point legacy key, the list of tokens, the
 * introduction point ip being decoded and the descriptor desc from which it
 * comes from, decode the legacy key and set the intro point object. Return 0
 * on success else -1 on failure. */
static int
decode_intro_legacy_key(const directory_token_t *tok,
                        smartlist_t *tokens,
                        hs_desc_intro_point_t *ip,
                        const hs_descriptor_t *desc)
{
  tor_assert(tok);
  tor_assert(tokens);
  tor_assert(ip);
  tor_assert(desc);

  if (!crypto_pk_public_exponent_ok(tok->key)) {
    log_warn(LD_REND, "Introduction point legacy key is invalid");
    goto err;
  }
  ip->legacy.key = crypto_pk_dup_key(tok->key);
  /* Extract the legacy cross certification cert which MUST be present if we
   * have a legacy key. */
  tok = find_opt_by_keyword(tokens, R3_INTRO_LEGACY_KEY_CERT);
  if (!tok) {
    log_warn(LD_REND, "Introduction point legacy key cert is missing");
    goto err;
  }
  tor_assert(tok->object_body);
  if (strcmp(tok->object_type, "CROSSCERT")) {
    /* Info level because this might be an unknown field that we should
     * ignore. */
    log_info(LD_REND, "Introduction point legacy encryption key "
                      "cross-certification has an unknown format.");
    goto err;
  }
  /* Keep a copy of the certificate. */
  ip->legacy.cert.encoded = tor_memdup(tok->object_body, tok->object_size);
  ip->legacy.cert.len = tok->object_size;
  /* The check on the expiration date is for the entire lifetime of a
   * certificate which is 24 hours. However, a descriptor has a maximum
   * lifetime of 12 hours meaning we have a 12h difference between the two
   * which ultimately accomodate the clock skewed client. */
  if (rsa_ed25519_crosscert_check(ip->legacy.cert.encoded,
                                  ip->legacy.cert.len, ip->legacy.key,
                                  &desc->plaintext_data.signing_pubkey,
                                  approx_time() - HS_DESC_CERT_LIFETIME)) {
    log_warn(LD_REND, "Unable to check cross-certification on the "
                      "introduction point legacy encryption key.");
    ip->cross_certified = 0;
    goto err;
  }

  /* Success. */
  return 0;
 err:
  return -1;
}

/* Given the start of a section and the end of it, decode a single
 * introduction point from that section. Return a newly allocated introduction
 * point object containing the decoded data. Return NULL if the section can't
 * be decoded. */
STATIC hs_desc_intro_point_t *
decode_introduction_point(const hs_descriptor_t *desc, const char *start)
{
  hs_desc_intro_point_t *ip = NULL;
  memarea_t *area = NULL;
  smartlist_t *tokens = NULL;
  const directory_token_t *tok;

  tor_assert(desc);
  tor_assert(start);

  area = memarea_new();
  tokens = smartlist_new();
  if (tokenize_string(area, start, start + strlen(start),
                      tokens, hs_desc_intro_point_v3_token_table, 0) < 0) {
    log_warn(LD_REND, "Introduction point is not parseable");
    goto err;
  }

  /* Ok we seem to have a well formed section containing enough tokens to
   * parse. Allocate our IP object and try to populate it. */
  ip = tor_malloc_zero(sizeof(hs_desc_intro_point_t));

  /* "introduction-point" SP link-specifiers NL */
  tok = find_by_keyword(tokens, R3_INTRODUCTION_POINT);
  tor_assert(tok->n_args == 1);
  ip->link_specifiers = decode_link_specifiers(tok->args[0]);
  if (!ip->link_specifiers) {
    log_warn(LD_REND, "Introduction point has invalid link specifiers");
    goto err;
  }

  /* "auth-key" NL certificate NL */
  tok = find_by_keyword(tokens, R3_INTRO_AUTH_KEY);
  tor_assert(tok->object_body);
  if (strcmp(tok->object_type, "ED25519 CERT")) {
    log_warn(LD_REND, "Unexpected object type for introduction auth key");
    goto err;
  }
  /* Parse cert and do some validation. */
  if (cert_parse_and_validate(&ip->auth_key_cert, tok->object_body,
                              tok->object_size, CERT_TYPE_AUTH_HS_IP_KEY,
                              "introduction point auth-key") < 0) {
    goto err;
  }
  /* Validate authentication certificate with descriptor signing key. */
  if (tor_cert_checksig(ip->auth_key_cert,
                        &desc->plaintext_data.signing_pubkey, 0) < 0) {
    log_warn(LD_REND, "Invalid authentication key signature");
    goto err;
  }

  /* Exactly one "enc-key" SP "ntor" SP key NL */
  tok = find_by_keyword(tokens, R3_INTRO_ENC_KEY);
  if (!strcmp(tok->args[0], "ntor")) {
    /* This field is using GE(2) so for possible forward compatibility, we
     * accept more fields but must be at least 2. */
    tor_assert(tok->n_args >= 2);

    if (curve25519_public_from_base64(&ip->enc_key, tok->args[1]) < 0) {
      log_warn(LD_REND, "Introduction point ntor enc-key is invalid");
      goto err;
    }
  } else {
    /* Unknown key type so we can't use that introduction point. */
    log_warn(LD_REND, "Introduction point encryption key is unrecognized.");
    goto err;
  }

  /* Exactly once "enc-key-cert" NL certificate NL */
  tok = find_by_keyword(tokens, R3_INTRO_ENC_KEY_CERT);
  tor_assert(tok->object_body);
  /* Do the cross certification. */
  if (strcmp(tok->object_type, "ED25519 CERT")) {
      log_warn(LD_REND, "Introduction point ntor encryption key "
                        "cross-certification has an unknown format.");
      goto err;
  }
  if (cert_parse_and_validate(&ip->enc_key_cert, tok->object_body,
                              tok->object_size, CERT_TYPE_CROSS_HS_IP_KEYS,
                              "introduction point enc-key-cert") < 0) {
    goto err;
  }
  if (tor_cert_checksig(ip->enc_key_cert,
                        &desc->plaintext_data.signing_pubkey, 0) < 0) {
    log_warn(LD_REND, "Invalid encryption key signature");
    goto err;
  }
  /* It is successfully cross certified. Flag the object. */
  ip->cross_certified = 1;

  /* Do we have a "legacy-key" SP key NL ?*/
  tok = find_opt_by_keyword(tokens, R3_INTRO_LEGACY_KEY);
  if (tok) {
    if (decode_intro_legacy_key(tok, tokens, ip, desc) < 0) {
      goto err;
    }
  }

  /* Introduction point has been parsed successfully. */
  goto done;

 err:
  desc_intro_point_free(ip);
  ip = NULL;

 done:
  SMARTLIST_FOREACH(tokens, directory_token_t *, t, token_clear(t));
  smartlist_free(tokens);
  if (area) {
    memarea_drop_all(area);
  }

  return ip;
}

/* Given a descriptor string at <b>data</b>, decode all possible introduction
 * points that we can find. Add the introduction point object to desc_enc as we
 * find them. This function can't fail and it is possible that zero
 * introduction points can be decoded. */
static void
decode_intro_points(const hs_descriptor_t *desc,
                    hs_desc_encrypted_data_t *desc_enc,
                    const char *data)
{
  smartlist_t *chunked_desc = smartlist_new();
  smartlist_t *intro_points = smartlist_new();

  tor_assert(desc);
  tor_assert(desc_enc);
  tor_assert(data);
  tor_assert(desc_enc->intro_points);

  /* Take the desc string, and extract the intro point substrings out of it */
  {
    /* Split the descriptor string using the intro point header as delimiter */
    smartlist_split_string(chunked_desc, data, str_intro_point_start, 0, 0);

    /* Check if there are actually any intro points included. The first chunk
     * should be other descriptor fields (e.g. create2-formats), so it's not an
     * intro point. */
    if (smartlist_len(chunked_desc) < 2) {
      goto done;
    }
  }

  /* Take the intro point substrings, and prepare them for parsing */
  {
    int i = 0;
    /* Prepend the introduction-point header to all the chunks, since
       smartlist_split_string() devoured it. */
    SMARTLIST_FOREACH_BEGIN(chunked_desc, char *, chunk) {
      /* Ignore first chunk. It's other descriptor fields. */
      if (i++ == 0) {
        continue;
      }

      smartlist_add_asprintf(intro_points, "%s %s", str_intro_point, chunk);
    } SMARTLIST_FOREACH_END(chunk);
  }

  /* Parse the intro points! */
  SMARTLIST_FOREACH_BEGIN(intro_points, const char *, intro_point) {
    hs_desc_intro_point_t *ip = decode_introduction_point(desc, intro_point);
    if (!ip) {
      /* Malformed introduction point section. We'll ignore this introduction
       * point and continue parsing. New or unknown fields are possible for
       * forward compatibility. */
      continue;
    }
    smartlist_add(desc_enc->intro_points, ip);
  } SMARTLIST_FOREACH_END(intro_point);

 done:
  SMARTLIST_FOREACH(chunked_desc, char *, a, tor_free(a));
  smartlist_free(chunked_desc);
  SMARTLIST_FOREACH(intro_points, char *, a, tor_free(a));
  smartlist_free(intro_points);
}
/* Return 1 iff the given base64 encoded signature in b64_sig from the encoded
 * descriptor in encoded_desc validates the descriptor content. */
STATIC int
desc_sig_is_valid(const char *b64_sig,
                  const ed25519_public_key_t *signing_pubkey,
                  const char *encoded_desc, size_t encoded_len)
{
  int ret = 0;
  ed25519_signature_t sig;
  const char *sig_start;

  tor_assert(b64_sig);
  tor_assert(signing_pubkey);
  tor_assert(encoded_desc);
  /* Verifying nothing won't end well :). */
  tor_assert(encoded_len > 0);

  /* Signature length check. */
  if (strlen(b64_sig) != ED25519_SIG_BASE64_LEN) {
    log_warn(LD_REND, "Service descriptor has an invalid signature length."
                      "Exptected %d but got %lu",
             ED25519_SIG_BASE64_LEN, (unsigned long) strlen(b64_sig));
    goto err;
  }

  /* First, convert base64 blob to an ed25519 signature. */
  if (ed25519_signature_from_base64(&sig, b64_sig) != 0) {
    log_warn(LD_REND, "Service descriptor does not contain a valid "
                      "signature");
    goto err;
  }

  /* Find the start of signature. */
  sig_start = tor_memstr(encoded_desc, encoded_len, "\n" str_signature);
  /* Getting here means the token parsing worked for the signature so if we
   * can't find the start of the signature, we have a code flow issue. */
  if (BUG(!sig_start)) {
    goto err;
  }
  /* Skip newline, it has to go in the signature check. */
  sig_start++;

  /* Validate signature with the full body of the descriptor. */
  if (ed25519_checksig_prefixed(&sig,
                                (const uint8_t *) encoded_desc,
                                sig_start - encoded_desc,
                                str_desc_sig_prefix,
                                signing_pubkey) != 0) {
    log_warn(LD_REND, "Invalid signature on service descriptor");
    goto err;
  }
  /* Valid signature! All is good. */
  ret = 1;

 err:
  return ret;
}

/* Decode descriptor plaintext data for version 3. Given a list of tokens, an
 * allocated plaintext object that will be populated and the encoded
 * descriptor with its length. The last one is needed for signature
 * verification. Unknown tokens are simply ignored so this won't error on
 * unknowns but requires that all v3 token be present and valid.
 *
 * Return 0 on success else a negative value. */
static int
desc_decode_plaintext_v3(smartlist_t *tokens,
                         hs_desc_plaintext_data_t *desc,
                         const char *encoded_desc, size_t encoded_len)
{
  int ok;
  directory_token_t *tok;

  tor_assert(tokens);
  tor_assert(desc);
  /* Version higher could still use this function to decode most of the
   * descriptor and then they decode the extra part. */
  tor_assert(desc->version >= 3);

  /* Descriptor lifetime parsing. */
  tok = find_by_keyword(tokens, R3_DESC_LIFETIME);
  tor_assert(tok->n_args == 1);
  desc->lifetime_sec = (uint32_t) tor_parse_ulong(tok->args[0], 10, 0,
                                                  UINT32_MAX, &ok, NULL);
  if (!ok) {
    log_warn(LD_REND, "Service descriptor lifetime value is invalid");
    goto err;
  }
  /* Put it from minute to second. */
  desc->lifetime_sec *= 60;
  if (desc->lifetime_sec > HS_DESC_MAX_LIFETIME) {
    log_warn(LD_REND, "Service descriptor lifetime is too big. "
                      "Got %" PRIu32 " but max is %d",
             desc->lifetime_sec, HS_DESC_MAX_LIFETIME);
    goto err;
  }

  /* Descriptor signing certificate. */
  tok = find_by_keyword(tokens, R3_DESC_SIGNING_CERT);
  tor_assert(tok->object_body);
  /* Expecting a prop220 cert with the signing key extension, which contains
   * the blinded public key. */
  if (strcmp(tok->object_type, "ED25519 CERT") != 0) {
    log_warn(LD_REND, "Service descriptor signing cert wrong type (%s)",
             escaped(tok->object_type));
    goto err;
  }
  if (cert_parse_and_validate(&desc->signing_key_cert, tok->object_body,
                              tok->object_size, CERT_TYPE_SIGNING_HS_DESC,
                              "service descriptor signing key") < 0) {
    goto err;
  }

  /* Copy the public keys into signing_pubkey and blinded_pubkey */
  memcpy(&desc->signing_pubkey, &desc->signing_key_cert->signed_key,
         sizeof(ed25519_public_key_t));
  memcpy(&desc->blinded_pubkey, &desc->signing_key_cert->signing_key,
         sizeof(ed25519_public_key_t));

  /* Extract revision counter value. */
  tok = find_by_keyword(tokens, R3_REVISION_COUNTER);
  tor_assert(tok->n_args == 1);
  desc->revision_counter = tor_parse_uint64(tok->args[0], 10, 0,
                                            UINT64_MAX, &ok, NULL);
  if (!ok) {
    log_warn(LD_REND, "Service descriptor revision-counter is invalid");
    goto err;
  }

  /* Extract the encrypted data section. */
  tok = find_by_keyword(tokens, R3_SUPERENCRYPTED);
  tor_assert(tok->object_body);
  if (strcmp(tok->object_type, "MESSAGE") != 0) {
    log_warn(LD_REND, "Service descriptor encrypted data section is invalid");
    goto err;
  }
  /* Make sure the length of the encrypted blob is valid. */
  if (!encrypted_data_length_is_valid(tok->object_size)) {
    goto err;
  }

  /* Copy the encrypted blob to the descriptor object so we can handle it
   * latter if needed. */
  desc->superencrypted_blob = tor_memdup(tok->object_body, tok->object_size);
  desc->superencrypted_blob_size = tok->object_size;

  /* Extract signature and verify it. */
  tok = find_by_keyword(tokens, R3_SIGNATURE);
  tor_assert(tok->n_args == 1);
  /* First arg here is the actual encoded signature. */
  if (!desc_sig_is_valid(tok->args[0], &desc->signing_pubkey,
                         encoded_desc, encoded_len)) {
    goto err;
  }

  return 0;

 err:
  return -1;
}

/* Decode the version 3 encrypted section of the given descriptor desc. The
 * desc_encrypted_out will be populated with the decoded data. Return 0 on
 * success else -1. */
static int
desc_decode_encrypted_v3(const hs_descriptor_t *desc,
                         hs_desc_encrypted_data_t *desc_encrypted_out)
{
  int result = -1;
  char *message = NULL;
  size_t message_len;
  memarea_t *area = NULL;
  directory_token_t *tok;
  smartlist_t *tokens = NULL;

  tor_assert(desc);
  tor_assert(desc_encrypted_out);

  /* Decrypt the superencrypted data that is located in the plaintext section
   * in the descriptor as a blob of bytes. */
  message_len = desc_decrypt_all(desc, &message);
  if (!message_len) {
    log_warn(LD_REND, "Service descriptor decryption failed.");
    goto err;
  }
  tor_assert(message);

  area = memarea_new();
  tokens = smartlist_new();
  if (tokenize_string(area, message, message + message_len,
                      tokens, hs_desc_encrypted_v3_token_table, 0) < 0) {
    log_warn(LD_REND, "Encrypted service descriptor is not parseable.");
    goto err;
  }

  /* CREATE2 supported cell format. It's mandatory. */
  tok = find_by_keyword(tokens, R3_CREATE2_FORMATS);
  tor_assert(tok);
  decode_create2_list(desc_encrypted_out, tok->args[0]);
  /* Must support ntor according to the specification */
  if (!desc_encrypted_out->create2_ntor) {
    log_warn(LD_REND, "Service create2-formats does not include ntor.");
    goto err;
  }

  /* Authentication type. It's optional but only once. */
  tok = find_opt_by_keyword(tokens, R3_INTRO_AUTH_REQUIRED);
  if (tok) {
    if (!decode_auth_type(desc_encrypted_out, tok->args[0])) {
      log_warn(LD_REND, "Service descriptor authentication type has "
                        "invalid entry(ies).");
      goto err;
    }
  }

  /* Is this service a single onion service? */
  tok = find_opt_by_keyword(tokens, R3_SINGLE_ONION_SERVICE);
  if (tok) {
    desc_encrypted_out->single_onion_service = 1;
  }

  /* Initialize the descriptor's introduction point list before we start
   * decoding. Having 0 intro point is valid. Then decode them all. */
  desc_encrypted_out->intro_points = smartlist_new();
  decode_intro_points(desc, desc_encrypted_out, message);

  /* Validation of maximum introduction points allowed. */
  if (smartlist_len(desc_encrypted_out->intro_points) >
      HS_CONFIG_V3_MAX_INTRO_POINTS) {
    log_warn(LD_REND, "Service descriptor contains too many introduction "
                      "points. Maximum allowed is %d but we have %d",
             HS_CONFIG_V3_MAX_INTRO_POINTS,
             smartlist_len(desc_encrypted_out->intro_points));
    goto err;
  }

  /* NOTE: Unknown fields are allowed because this function could be used to
   * decode other descriptor version. */

  result = 0;
  goto done;

 err:
  tor_assert(result < 0);
  desc_encrypted_data_free_contents(desc_encrypted_out);

 done:
  if (tokens) {
    SMARTLIST_FOREACH(tokens, directory_token_t *, t, token_clear(t));
    smartlist_free(tokens);
  }
  if (area) {
    memarea_drop_all(area);
  }
  if (message) {
    tor_free(message);
  }
  return result;
}

/* Table of encrypted decode function version specific. The function are
 * indexed by the version number so v3 callback is at index 3 in the array. */
static int
  (*decode_encrypted_handlers[])(
      const hs_descriptor_t *desc,
      hs_desc_encrypted_data_t *desc_encrypted) =
{
  /* v0 */ NULL, /* v1 */ NULL, /* v2 */ NULL,
  desc_decode_encrypted_v3,
};

/* Decode the encrypted data section of the given descriptor and store the
 * data in the given encrypted data object. Return 0 on success else a
 * negative value on error. */
int
hs_desc_decode_encrypted(const hs_descriptor_t *desc,
                         hs_desc_encrypted_data_t *desc_encrypted)
{
  int ret;
  uint32_t version;

  tor_assert(desc);
  /* Ease our life a bit. */
  version = desc->plaintext_data.version;
  tor_assert(desc_encrypted);
  /* Calling this function without an encrypted blob to parse is a code flow
   * error. The plaintext parsing should never succeed in the first place
   * without an encrypted section. */
  tor_assert(desc->plaintext_data.superencrypted_blob);
  /* Let's make sure we have a supported version as well. By correctly parsing
   * the plaintext, this should not fail. */
  if (BUG(!hs_desc_is_supported_version(version))) {
    ret = -1;
    goto err;
  }
  /* Extra precaution. Having no handler for the supported version should
   * never happened else we forgot to add it but we bumped the version. */
  tor_assert(ARRAY_LENGTH(decode_encrypted_handlers) >= version);
  tor_assert(decode_encrypted_handlers[version]);

  /* Run the version specific plaintext decoder. */
  ret = decode_encrypted_handlers[version](desc, desc_encrypted);
  if (ret < 0) {
    goto err;
  }

 err:
  return ret;
}

/* Table of plaintext decode function version specific. The function are
 * indexed by the version number so v3 callback is at index 3 in the array. */
static int
  (*decode_plaintext_handlers[])(
      smartlist_t *tokens,
      hs_desc_plaintext_data_t *desc,
      const char *encoded_desc,
      size_t encoded_len) =
{
  /* v0 */ NULL, /* v1 */ NULL, /* v2 */ NULL,
  desc_decode_plaintext_v3,
};

/* Fully decode the given descriptor plaintext and store the data in the
 * plaintext data object. Returns 0 on success else a negative value. */
int
hs_desc_decode_plaintext(const char *encoded,
                         hs_desc_plaintext_data_t *plaintext)
{
  int ok = 0, ret = -1;
  memarea_t *area = NULL;
  smartlist_t *tokens = NULL;
  size_t encoded_len;
  directory_token_t *tok;

  tor_assert(encoded);
  tor_assert(plaintext);

  /* Check that descriptor is within size limits. */
  encoded_len = strlen(encoded);
  if (encoded_len >= hs_cache_get_max_descriptor_size()) {
    log_warn(LD_REND, "Service descriptor is too big (%lu bytes)",
             (unsigned long) encoded_len);
    goto err;
  }

  area = memarea_new();
  tokens = smartlist_new();
  /* Tokenize the descriptor so we can start to parse it. */
  if (tokenize_string(area, encoded, encoded + encoded_len, tokens,
                      hs_desc_v3_token_table, 0) < 0) {
    log_warn(LD_REND, "Service descriptor is not parseable");
    goto err;
  }

  /* Get the version of the descriptor which is the first mandatory field of
   * the descriptor. From there, we'll decode the right descriptor version. */
  tok = find_by_keyword(tokens, R_HS_DESCRIPTOR);
  tor_assert(tok->n_args == 1);
  plaintext->version = (uint32_t) tor_parse_ulong(tok->args[0], 10, 0,
                                                  UINT32_MAX, &ok, NULL);
  if (!ok) {
    log_warn(LD_REND, "Service descriptor has unparseable version %s",
             escaped(tok->args[0]));
    goto err;
  }
  if (!hs_desc_is_supported_version(plaintext->version)) {
    log_warn(LD_REND, "Service descriptor has unsupported version %" PRIu32,
             plaintext->version);
    goto err;
  }
  /* Extra precaution. Having no handler for the supported version should
   * never happened else we forgot to add it but we bumped the version. */
  tor_assert(ARRAY_LENGTH(decode_plaintext_handlers) >= plaintext->version);
  tor_assert(decode_plaintext_handlers[plaintext->version]);

  /* Run the version specific plaintext decoder. */
  ret = decode_plaintext_handlers[plaintext->version](tokens, plaintext,
                                                      encoded, encoded_len);
  if (ret < 0) {
    goto err;
  }
  /* Success. Descriptor has been populated with the data. */
  ret = 0;

 err:
  if (tokens) {
    SMARTLIST_FOREACH(tokens, directory_token_t *, t, token_clear(t));
    smartlist_free(tokens);
  }
  if (area) {
    memarea_drop_all(area);
  }
  return ret;
}

/* Fully decode an encoded descriptor and set a newly allocated descriptor
 * object in desc_out. Subcredentials are used if not NULL else it's ignored.
 *
 * Return 0 on success. A negative value is returned on error and desc_out is
 * set to NULL. */
int
hs_desc_decode_descriptor(const char *encoded,
                          const uint8_t *subcredential,
                          hs_descriptor_t **desc_out)
{
  int ret;
  hs_descriptor_t *desc;

  tor_assert(encoded);

  desc = tor_malloc_zero(sizeof(hs_descriptor_t));

  /* Subcredentials are optional. */
  if (subcredential) {
    memcpy(desc->subcredential, subcredential, sizeof(desc->subcredential));
  }

  ret = hs_desc_decode_plaintext(encoded, &desc->plaintext_data);
  if (ret < 0) {
    goto err;
  }

  ret = hs_desc_decode_encrypted(desc, &desc->encrypted_data);
  if (ret < 0) {
    goto err;
  }

  if (desc_out) {
    *desc_out = desc;
  } else {
    hs_descriptor_free(desc);
  }
  return ret;

 err:
  hs_descriptor_free(desc);
  if (desc_out) {
    *desc_out = NULL;
  }

  tor_assert(ret < 0);
  return ret;
}

/* Table of encode function version specific. The functions are indexed by the
 * version number so v3 callback is at index 3 in the array. */
static int
  (*encode_handlers[])(
      const hs_descriptor_t *desc,
      const ed25519_keypair_t *signing_kp,
      char **encoded_out) =
{
  /* v0 */ NULL, /* v1 */ NULL, /* v2 */ NULL,
  desc_encode_v3,
};

/* Encode the given descriptor desc including signing with the given key pair
 * signing_kp. On success, encoded_out points to a newly allocated NUL
 * terminated string that contains the encoded descriptor as a string.
 *
 * Return 0 on success and encoded_out is a valid pointer. On error, -1 is
 * returned and encoded_out is set to NULL. */
int
hs_desc_encode_descriptor(const hs_descriptor_t *desc,
                          const ed25519_keypair_t *signing_kp,
                          char **encoded_out)
{
  int ret = -1;
  uint32_t version;

  tor_assert(desc);
  tor_assert(encoded_out);

  /* Make sure we support the version of the descriptor format. */
  version = desc->plaintext_data.version;
  if (!hs_desc_is_supported_version(version)) {
    goto err;
  }
  /* Extra precaution. Having no handler for the supported version should
   * never happened else we forgot to add it but we bumped the version. */
  tor_assert(ARRAY_LENGTH(encode_handlers) >= version);
  tor_assert(encode_handlers[version]);

  ret = encode_handlers[version](desc, signing_kp, encoded_out);
  if (ret < 0) {
    goto err;
  }

  /* Try to decode what we just encoded. Symmetry is nice! */
  ret = hs_desc_decode_descriptor(*encoded_out, desc->subcredential, NULL);
  if (BUG(ret < 0)) {
    goto err;
  }

  return 0;

 err:
  *encoded_out = NULL;
  return ret;
}

/* Free the descriptor plaintext data object. */
void
hs_desc_plaintext_data_free(hs_desc_plaintext_data_t *desc)
{
  desc_plaintext_data_free_contents(desc);
  tor_free(desc);
}

/* Free the descriptor encrypted data object. */
void
hs_desc_encrypted_data_free(hs_desc_encrypted_data_t *desc)
{
  desc_encrypted_data_free_contents(desc);
  tor_free(desc);
}

/* Free the given descriptor object. */
void
hs_descriptor_free(hs_descriptor_t *desc)
{
  if (!desc) {
    return;
  }

  desc_plaintext_data_free_contents(&desc->plaintext_data);
  desc_encrypted_data_free_contents(&desc->encrypted_data);
  tor_free(desc);
}

/* Return the size in bytes of the given plaintext data object. A sizeof() is
 * not enough because the object contains pointers and the encrypted blob.
 * This is particularly useful for our OOM subsystem that tracks the HSDir
 * cache size for instance. */
size_t
hs_desc_plaintext_obj_size(const hs_desc_plaintext_data_t *data)
{
  tor_assert(data);
  return (sizeof(*data) + sizeof(*data->signing_key_cert) +
          data->superencrypted_blob_size);
}