aboutsummaryrefslogtreecommitdiff
path: root/src/or/hs_cell.c
blob: 40ec4ba9e73e62dde739399b9b4b6e1a75ca0396 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
/* Copyright (c) 2017-2018, The Tor Project, Inc. */
/* See LICENSE for licensing information */

/**
 * \file hs_cell.c
 * \brief Hidden service API for cell creation and handling.
 **/

#include "or/or.h"
#include "or/config.h"
#include "common/crypto_util.h"
#include "or/rendservice.h"
#include "or/replaycache.h"
#include "common/util.h"

#include "or/hs_cell.h"
#include "or/hs_ntor.h"

#include "or/origin_circuit_st.h"

/* Trunnel. */
#include "trunnel/ed25519_cert.h"
#include "trunnel/hs/cell_common.h"
#include "trunnel/hs/cell_establish_intro.h"
#include "trunnel/hs/cell_introduce1.h"
#include "trunnel/hs/cell_rendezvous.h"

/* Compute the MAC of an INTRODUCE cell in mac_out. The encoded_cell param is
 * the cell content up to the ENCRYPTED section of length encoded_cell_len.
 * The encrypted param is the start of the ENCRYPTED section of length
 * encrypted_len. The mac_key is the key needed for the computation of the MAC
 * derived from the ntor handshake of length mac_key_len.
 *
 * The length mac_out_len must be at least DIGEST256_LEN. */
static void
compute_introduce_mac(const uint8_t *encoded_cell, size_t encoded_cell_len,
                      const uint8_t *encrypted, size_t encrypted_len,
                      const uint8_t *mac_key, size_t mac_key_len,
                      uint8_t *mac_out, size_t mac_out_len)
{
  size_t offset = 0;
  size_t mac_msg_len;
  uint8_t mac_msg[RELAY_PAYLOAD_SIZE] = {0};

  tor_assert(encoded_cell);
  tor_assert(encrypted);
  tor_assert(mac_key);
  tor_assert(mac_out);
  tor_assert(mac_out_len >= DIGEST256_LEN);

  /* Compute the size of the message which is basically the entire cell until
   * the MAC field of course. */
  mac_msg_len = encoded_cell_len + (encrypted_len - DIGEST256_LEN);
  tor_assert(mac_msg_len <= sizeof(mac_msg));

  /* First, put the encoded cell in the msg. */
  memcpy(mac_msg, encoded_cell, encoded_cell_len);
  offset += encoded_cell_len;
  /* Second, put the CLIENT_PK + ENCRYPTED_DATA but ommit the MAC field (which
   * is junk at this point). */
  memcpy(mac_msg + offset, encrypted, (encrypted_len - DIGEST256_LEN));
  offset += (encrypted_len - DIGEST256_LEN);
  tor_assert(offset == mac_msg_len);

  crypto_mac_sha3_256(mac_out, mac_out_len,
                      mac_key, mac_key_len,
                      mac_msg, mac_msg_len);
  memwipe(mac_msg, 0, sizeof(mac_msg));
}

/* From a set of keys, subcredential and the ENCRYPTED section of an
 * INTRODUCE2 cell, return a newly allocated intro cell keys structure.
 * Finally, the client public key is copied in client_pk. On error, return
 * NULL. */
static hs_ntor_intro_cell_keys_t *
get_introduce2_key_material(const ed25519_public_key_t *auth_key,
                            const curve25519_keypair_t *enc_key,
                            const uint8_t *subcredential,
                            const uint8_t *encrypted_section,
                            curve25519_public_key_t *client_pk)
{
  hs_ntor_intro_cell_keys_t *keys;

  tor_assert(auth_key);
  tor_assert(enc_key);
  tor_assert(subcredential);
  tor_assert(encrypted_section);
  tor_assert(client_pk);

  keys = tor_malloc_zero(sizeof(*keys));

  /* First bytes of the ENCRYPTED section are the client public key. */
  memcpy(client_pk->public_key, encrypted_section, CURVE25519_PUBKEY_LEN);

  if (hs_ntor_service_get_introduce1_keys(auth_key, enc_key, client_pk,
                                          subcredential, keys) < 0) {
    /* Don't rely on the caller to wipe this on error. */
    memwipe(client_pk, 0, sizeof(curve25519_public_key_t));
    tor_free(keys);
    keys = NULL;
  }
  return keys;
}

/* Using the given encryption key, decrypt the encrypted_section of length
 * encrypted_section_len of an INTRODUCE2 cell and return a newly allocated
 * buffer containing the decrypted data. On decryption failure, NULL is
 * returned. */
static uint8_t *
decrypt_introduce2(const uint8_t *enc_key, const uint8_t *encrypted_section,
                   size_t encrypted_section_len)
{
  uint8_t *decrypted = NULL;
  crypto_cipher_t *cipher = NULL;

  tor_assert(enc_key);
  tor_assert(encrypted_section);

  /* Decrypt ENCRYPTED section. */
  cipher = crypto_cipher_new_with_bits((char *) enc_key,
                                       CURVE25519_PUBKEY_LEN * 8);
  tor_assert(cipher);

  /* This is symmetric encryption so can't be bigger than the encrypted
   * section length. */
  decrypted = tor_malloc_zero(encrypted_section_len);
  if (crypto_cipher_decrypt(cipher, (char *) decrypted,
                            (const char *) encrypted_section,
                            encrypted_section_len) < 0) {
    tor_free(decrypted);
    decrypted = NULL;
    goto done;
  }

 done:
  crypto_cipher_free(cipher);
  return decrypted;
}

/* Given a pointer to the decrypted data of the ENCRYPTED section of an
 * INTRODUCE2 cell of length decrypted_len, parse and validate the cell
 * content. Return a newly allocated cell structure or NULL on error. The
 * circuit and service object are only used for logging purposes. */
static trn_cell_introduce_encrypted_t *
parse_introduce2_encrypted(const uint8_t *decrypted_data,
                           size_t decrypted_len, const origin_circuit_t *circ,
                           const hs_service_t *service)
{
  trn_cell_introduce_encrypted_t *enc_cell = NULL;

  tor_assert(decrypted_data);
  tor_assert(circ);
  tor_assert(service);

  if (trn_cell_introduce_encrypted_parse(&enc_cell, decrypted_data,
                                         decrypted_len) < 0) {
    log_info(LD_REND, "Unable to parse the decrypted ENCRYPTED section of "
                      "the INTRODUCE2 cell on circuit %u for service %s",
             TO_CIRCUIT(circ)->n_circ_id,
             safe_str_client(service->onion_address));
    goto err;
  }

  if (trn_cell_introduce_encrypted_get_onion_key_type(enc_cell) !=
      HS_CELL_ONION_KEY_TYPE_NTOR) {
    log_info(LD_REND, "INTRODUCE2 onion key type is invalid. Got %u but "
                      "expected %u on circuit %u for service %s",
             trn_cell_introduce_encrypted_get_onion_key_type(enc_cell),
             HS_CELL_ONION_KEY_TYPE_NTOR, TO_CIRCUIT(circ)->n_circ_id,
             safe_str_client(service->onion_address));
    goto err;
  }

  if (trn_cell_introduce_encrypted_getlen_onion_key(enc_cell) !=
      CURVE25519_PUBKEY_LEN) {
    log_info(LD_REND, "INTRODUCE2 onion key length is invalid. Got %u but "
                      "expected %d on circuit %u for service %s",
             (unsigned)trn_cell_introduce_encrypted_getlen_onion_key(enc_cell),
             CURVE25519_PUBKEY_LEN, TO_CIRCUIT(circ)->n_circ_id,
             safe_str_client(service->onion_address));
    goto err;
  }
  /* XXX: Validate NSPEC field as well. */

  return enc_cell;
 err:
  trn_cell_introduce_encrypted_free(enc_cell);
  return NULL;
}

/* Build a legacy ESTABLISH_INTRO cell with the given circuit nonce and RSA
 * encryption key. The encoded cell is put in cell_out that MUST at least be
 * of the size of RELAY_PAYLOAD_SIZE. Return the encoded cell length on
 * success else a negative value and cell_out is untouched. */
static ssize_t
build_legacy_establish_intro(const char *circ_nonce, crypto_pk_t *enc_key,
                             uint8_t *cell_out)
{
  ssize_t cell_len;

  tor_assert(circ_nonce);
  tor_assert(enc_key);
  tor_assert(cell_out);

  memwipe(cell_out, 0, RELAY_PAYLOAD_SIZE);

  cell_len = rend_service_encode_establish_intro_cell((char*)cell_out,
                                                      RELAY_PAYLOAD_SIZE,
                                                      enc_key, circ_nonce);
  return cell_len;
}

/* Parse an INTRODUCE2 cell from payload of size payload_len for the given
 * service and circuit which are used only for logging purposes. The resulting
 * parsed cell is put in cell_ptr_out.
 *
 * This function only parses prop224 INTRODUCE2 cells even when the intro point
 * is a legacy intro point. That's because intro points don't actually care
 * about the contents of the introduce cell. Legacy INTRODUCE cells are only
 * used by the legacy system now.
 *
 * Return 0 on success else a negative value and cell_ptr_out is untouched. */
static int
parse_introduce2_cell(const hs_service_t *service,
                      const origin_circuit_t *circ, const uint8_t *payload,
                      size_t payload_len,
                      trn_cell_introduce1_t **cell_ptr_out)
{
  trn_cell_introduce1_t *cell = NULL;

  tor_assert(service);
  tor_assert(circ);
  tor_assert(payload);
  tor_assert(cell_ptr_out);

  /* Parse the cell so we can start cell validation. */
  if (trn_cell_introduce1_parse(&cell, payload, payload_len) < 0) {
    log_info(LD_PROTOCOL, "Unable to parse INTRODUCE2 cell on circuit %u "
                          "for service %s",
             TO_CIRCUIT(circ)->n_circ_id,
             safe_str_client(service->onion_address));
    goto err;
  }

  /* Success. */
  *cell_ptr_out = cell;
  return 0;
 err:
  return -1;
}

/* Set the onion public key onion_pk in cell, the encrypted section of an
 * INTRODUCE1 cell. */
static void
introduce1_set_encrypted_onion_key(trn_cell_introduce_encrypted_t *cell,
                                   const uint8_t *onion_pk)
{
  tor_assert(cell);
  tor_assert(onion_pk);
  /* There is only one possible key type for a non legacy cell. */
  trn_cell_introduce_encrypted_set_onion_key_type(cell,
                                                  HS_CELL_ONION_KEY_TYPE_NTOR);
  trn_cell_introduce_encrypted_set_onion_key_len(cell, CURVE25519_PUBKEY_LEN);
  trn_cell_introduce_encrypted_setlen_onion_key(cell, CURVE25519_PUBKEY_LEN);
  memcpy(trn_cell_introduce_encrypted_getarray_onion_key(cell), onion_pk,
         trn_cell_introduce_encrypted_getlen_onion_key(cell));
}

/* Set the link specifiers in lspecs in cell, the encrypted section of an
 * INTRODUCE1 cell. */
static void
introduce1_set_encrypted_link_spec(trn_cell_introduce_encrypted_t *cell,
                                   const smartlist_t *lspecs)
{
  tor_assert(cell);
  tor_assert(lspecs);
  tor_assert(smartlist_len(lspecs) > 0);
  tor_assert(smartlist_len(lspecs) <= UINT8_MAX);

  uint8_t lspecs_num = (uint8_t) smartlist_len(lspecs);
  trn_cell_introduce_encrypted_set_nspec(cell, lspecs_num);
  /* We aren't duplicating the link specifiers object here which means that
   * the ownership goes to the trn_cell_introduce_encrypted_t cell and those
   * object will be freed when the cell is. */
  SMARTLIST_FOREACH(lspecs, link_specifier_t *, ls,
                    trn_cell_introduce_encrypted_add_nspecs(cell, ls));
}

/* Set padding in the enc_cell only if needed that is the total length of both
 * sections are below the mininum required for an INTRODUCE1 cell. */
static void
introduce1_set_encrypted_padding(const trn_cell_introduce1_t *cell,
                                 trn_cell_introduce_encrypted_t *enc_cell)
{
  tor_assert(cell);
  tor_assert(enc_cell);
  /* This is the length we expect to have once encoded of the whole cell. */
  ssize_t full_len = trn_cell_introduce1_encoded_len(cell) +
                     trn_cell_introduce_encrypted_encoded_len(enc_cell);
  tor_assert(full_len > 0);
  if (full_len < HS_CELL_INTRODUCE1_MIN_SIZE) {
    size_t padding = HS_CELL_INTRODUCE1_MIN_SIZE - full_len;
    trn_cell_introduce_encrypted_setlen_pad(enc_cell, padding);
    memset(trn_cell_introduce_encrypted_getarray_pad(enc_cell), 0,
           trn_cell_introduce_encrypted_getlen_pad(enc_cell));
  }
}

/* Encrypt the ENCRYPTED payload and encode it in the cell using the enc_cell
 * and the INTRODUCE1 data.
 *
 * This can't fail but it is very important that the caller sets every field
 * in data so the computation of the INTRODUCE1 keys doesn't fail. */
static void
introduce1_encrypt_and_encode(trn_cell_introduce1_t *cell,
                              const trn_cell_introduce_encrypted_t *enc_cell,
                              const hs_cell_introduce1_data_t *data)
{
  size_t offset = 0;
  ssize_t encrypted_len;
  ssize_t encoded_cell_len, encoded_enc_cell_len;
  uint8_t encoded_cell[RELAY_PAYLOAD_SIZE] = {0};
  uint8_t encoded_enc_cell[RELAY_PAYLOAD_SIZE] = {0};
  uint8_t *encrypted = NULL;
  uint8_t mac[DIGEST256_LEN];
  crypto_cipher_t *cipher = NULL;
  hs_ntor_intro_cell_keys_t keys;

  tor_assert(cell);
  tor_assert(enc_cell);
  tor_assert(data);

  /* Encode the cells up to now of what we have to we can perform the MAC
   * computation on it. */
  encoded_cell_len = trn_cell_introduce1_encode(encoded_cell,
                                                sizeof(encoded_cell), cell);
  /* We have a much more serious issue if this isn't true. */
  tor_assert(encoded_cell_len > 0);

  encoded_enc_cell_len =
    trn_cell_introduce_encrypted_encode(encoded_enc_cell,
                                        sizeof(encoded_enc_cell), enc_cell);
  /* We have a much more serious issue if this isn't true. */
  tor_assert(encoded_enc_cell_len > 0);

  /* Get the key material for the encryption. */
  if (hs_ntor_client_get_introduce1_keys(data->auth_pk, data->enc_pk,
                                         data->client_kp,
                                         data->subcredential, &keys) < 0) {
    tor_assert_unreached();
  }

  /* Prepare cipher with the encryption key just computed. */
  cipher = crypto_cipher_new_with_bits((const char *) keys.enc_key,
                                       sizeof(keys.enc_key) * 8);
  tor_assert(cipher);

  /* Compute the length of the ENCRYPTED section which is the CLIENT_PK,
   * ENCRYPTED_DATA and MAC length. */
  encrypted_len = sizeof(data->client_kp->pubkey) + encoded_enc_cell_len +
                  sizeof(mac);
  tor_assert(encrypted_len < RELAY_PAYLOAD_SIZE);
  encrypted = tor_malloc_zero(encrypted_len);

  /* Put the CLIENT_PK first. */
  memcpy(encrypted, data->client_kp->pubkey.public_key,
         sizeof(data->client_kp->pubkey.public_key));
  offset += sizeof(data->client_kp->pubkey.public_key);
  /* Then encrypt and set the ENCRYPTED_DATA. This can't fail. */
  crypto_cipher_encrypt(cipher, (char *) encrypted + offset,
                        (const char *) encoded_enc_cell, encoded_enc_cell_len);
  crypto_cipher_free(cipher);
  offset += encoded_enc_cell_len;
  /* Compute MAC from the above and put it in the buffer. This function will
   * make the adjustment to the encrypted_len to omit the MAC length. */
  compute_introduce_mac(encoded_cell, encoded_cell_len,
                        encrypted, encrypted_len,
                        keys.mac_key, sizeof(keys.mac_key),
                        mac, sizeof(mac));
  memcpy(encrypted + offset, mac, sizeof(mac));
  offset += sizeof(mac);
  tor_assert(offset == (size_t) encrypted_len);

  /* Set the ENCRYPTED section in the cell. */
  trn_cell_introduce1_setlen_encrypted(cell, encrypted_len);
  memcpy(trn_cell_introduce1_getarray_encrypted(cell),
         encrypted, encrypted_len);

  /* Cleanup. */
  memwipe(&keys, 0, sizeof(keys));
  memwipe(mac, 0, sizeof(mac));
  memwipe(encrypted, 0, sizeof(encrypted_len));
  memwipe(encoded_enc_cell, 0, sizeof(encoded_enc_cell));
  tor_free(encrypted);
}

/* Using the INTRODUCE1 data, setup the ENCRYPTED section in cell. This means
 * set it, encrypt it and encode it. */
static void
introduce1_set_encrypted(trn_cell_introduce1_t *cell,
                         const hs_cell_introduce1_data_t *data)
{
  trn_cell_introduce_encrypted_t *enc_cell;
  trn_cell_extension_t *ext;

  tor_assert(cell);
  tor_assert(data);

  enc_cell = trn_cell_introduce_encrypted_new();
  tor_assert(enc_cell);

  /* Set extension data. None are used. */
  ext = trn_cell_extension_new();
  tor_assert(ext);
  trn_cell_extension_set_num(ext, 0);
  trn_cell_introduce_encrypted_set_extensions(enc_cell, ext);

  /* Set the rendezvous cookie. */
  memcpy(trn_cell_introduce_encrypted_getarray_rend_cookie(enc_cell),
         data->rendezvous_cookie, REND_COOKIE_LEN);

  /* Set the onion public key. */
  introduce1_set_encrypted_onion_key(enc_cell, data->onion_pk->public_key);

  /* Set the link specifiers. */
  introduce1_set_encrypted_link_spec(enc_cell, data->link_specifiers);

  /* Set padding. */
  introduce1_set_encrypted_padding(cell, enc_cell);

  /* Encrypt and encode it in the cell. */
  introduce1_encrypt_and_encode(cell, enc_cell, data);

  /* Cleanup. */
  trn_cell_introduce_encrypted_free(enc_cell);
}

/* Set the authentication key in the INTRODUCE1 cell from the given data. */
static void
introduce1_set_auth_key(trn_cell_introduce1_t *cell,
                        const hs_cell_introduce1_data_t *data)
{
  tor_assert(cell);
  tor_assert(data);
  /* There is only one possible type for a non legacy cell. */
  trn_cell_introduce1_set_auth_key_type(cell, HS_INTRO_AUTH_KEY_TYPE_ED25519);
  trn_cell_introduce1_set_auth_key_len(cell, ED25519_PUBKEY_LEN);
  trn_cell_introduce1_setlen_auth_key(cell, ED25519_PUBKEY_LEN);
  memcpy(trn_cell_introduce1_getarray_auth_key(cell),
         data->auth_pk->pubkey, trn_cell_introduce1_getlen_auth_key(cell));
}

/* Set the legacy ID field in the INTRODUCE1 cell from the given data. */
static void
introduce1_set_legacy_id(trn_cell_introduce1_t *cell,
                         const hs_cell_introduce1_data_t *data)
{
  tor_assert(cell);
  tor_assert(data);

  if (data->is_legacy) {
    uint8_t digest[DIGEST_LEN];
    if (BUG(crypto_pk_get_digest(data->legacy_key, (char *) digest) < 0)) {
      return;
    }
    memcpy(trn_cell_introduce1_getarray_legacy_key_id(cell),
           digest, trn_cell_introduce1_getlen_legacy_key_id(cell));
  } else {
    /* We have to zeroed the LEGACY_KEY_ID field. */
    memset(trn_cell_introduce1_getarray_legacy_key_id(cell), 0,
           trn_cell_introduce1_getlen_legacy_key_id(cell));
  }
}

/* ========== */
/* Public API */
/* ========== */

/* Build an ESTABLISH_INTRO cell with the given circuit nonce and intro point
 * object. The encoded cell is put in cell_out that MUST at least be of the
 * size of RELAY_PAYLOAD_SIZE. Return the encoded cell length on success else
 * a negative value and cell_out is untouched. This function also supports
 * legacy cell creation. */
ssize_t
hs_cell_build_establish_intro(const char *circ_nonce,
                              const hs_service_intro_point_t *ip,
                              uint8_t *cell_out)
{
  ssize_t cell_len = -1;
  uint16_t sig_len = ED25519_SIG_LEN;
  trn_cell_extension_t *ext;
  trn_cell_establish_intro_t *cell = NULL;

  tor_assert(circ_nonce);
  tor_assert(ip);

  /* Quickly handle the legacy IP. */
  if (ip->base.is_only_legacy) {
    tor_assert(ip->legacy_key);
    cell_len = build_legacy_establish_intro(circ_nonce, ip->legacy_key,
                                            cell_out);
    tor_assert(cell_len <= RELAY_PAYLOAD_SIZE);
    /* Success or not we are done here. */
    goto done;
  }

  /* Set extension data. None used here. */
  ext = trn_cell_extension_new();
  trn_cell_extension_set_num(ext, 0);
  cell = trn_cell_establish_intro_new();
  trn_cell_establish_intro_set_extensions(cell, ext);
  /* Set signature size. Array is then allocated in the cell. We need to do
   * this early so we can use trunnel API to get the signature length. */
  trn_cell_establish_intro_set_sig_len(cell, sig_len);
  trn_cell_establish_intro_setlen_sig(cell, sig_len);

  /* Set AUTH_KEY_TYPE: 2 means ed25519 */
  trn_cell_establish_intro_set_auth_key_type(cell,
                                             HS_INTRO_AUTH_KEY_TYPE_ED25519);

  /* Set AUTH_KEY and AUTH_KEY_LEN field. Must also set byte-length of
   * AUTH_KEY to match */
  {
    uint16_t auth_key_len = ED25519_PUBKEY_LEN;
    trn_cell_establish_intro_set_auth_key_len(cell, auth_key_len);
    trn_cell_establish_intro_setlen_auth_key(cell, auth_key_len);
    /* We do this call _after_ setting the length because it's reallocated at
     * that point only. */
    uint8_t *auth_key_ptr = trn_cell_establish_intro_getarray_auth_key(cell);
    memcpy(auth_key_ptr, ip->auth_key_kp.pubkey.pubkey, auth_key_len);
  }

  /* Calculate HANDSHAKE_AUTH field (MAC). */
  {
    ssize_t tmp_cell_enc_len = 0;
    ssize_t tmp_cell_mac_offset =
      sig_len + sizeof(cell->sig_len) +
      trn_cell_establish_intro_getlen_handshake_mac(cell);
    uint8_t tmp_cell_enc[RELAY_PAYLOAD_SIZE] = {0};
    uint8_t mac[TRUNNEL_SHA3_256_LEN], *handshake_ptr;

    /* We first encode the current fields we have in the cell so we can
     * compute the MAC using the raw bytes. */
    tmp_cell_enc_len = trn_cell_establish_intro_encode(tmp_cell_enc,
                                                       sizeof(tmp_cell_enc),
                                                       cell);
    if (BUG(tmp_cell_enc_len < 0)) {
      goto done;
    }
    /* Sanity check. */
    tor_assert(tmp_cell_enc_len > tmp_cell_mac_offset);

    /* Circuit nonce is always DIGEST_LEN according to tor-spec.txt. */
    crypto_mac_sha3_256(mac, sizeof(mac),
                        (uint8_t *) circ_nonce, DIGEST_LEN,
                        tmp_cell_enc, tmp_cell_enc_len - tmp_cell_mac_offset);
    handshake_ptr = trn_cell_establish_intro_getarray_handshake_mac(cell);
    memcpy(handshake_ptr, mac, sizeof(mac));

    memwipe(mac, 0, sizeof(mac));
    memwipe(tmp_cell_enc, 0, sizeof(tmp_cell_enc));
  }

  /* Calculate the cell signature SIG. */
  {
    ssize_t tmp_cell_enc_len = 0;
    ssize_t tmp_cell_sig_offset = (sig_len + sizeof(cell->sig_len));
    uint8_t tmp_cell_enc[RELAY_PAYLOAD_SIZE] = {0}, *sig_ptr;
    ed25519_signature_t sig;

    /* We first encode the current fields we have in the cell so we can
     * compute the signature from the raw bytes of the cell. */
    tmp_cell_enc_len = trn_cell_establish_intro_encode(tmp_cell_enc,
                                                       sizeof(tmp_cell_enc),
                                                       cell);
    if (BUG(tmp_cell_enc_len < 0)) {
      goto done;
    }

    if (ed25519_sign_prefixed(&sig, tmp_cell_enc,
                              tmp_cell_enc_len - tmp_cell_sig_offset,
                              ESTABLISH_INTRO_SIG_PREFIX, &ip->auth_key_kp)) {
      log_warn(LD_BUG, "Unable to make signature for ESTABLISH_INTRO cell.");
      goto done;
    }
    /* Copy the signature into the cell. */
    sig_ptr = trn_cell_establish_intro_getarray_sig(cell);
    memcpy(sig_ptr, sig.sig, sig_len);

    memwipe(tmp_cell_enc, 0, sizeof(tmp_cell_enc));
  }

  /* Encode the cell. Can't be bigger than a standard cell. */
  cell_len = trn_cell_establish_intro_encode(cell_out, RELAY_PAYLOAD_SIZE,
                                             cell);

 done:
  trn_cell_establish_intro_free(cell);
  return cell_len;
}

/* Parse the INTRO_ESTABLISHED cell in the payload of size payload_len. If we
 * are successful at parsing it, return the length of the parsed cell else a
 * negative value on error. */
ssize_t
hs_cell_parse_intro_established(const uint8_t *payload, size_t payload_len)
{
  ssize_t ret;
  trn_cell_intro_established_t *cell = NULL;

  tor_assert(payload);

  /* Try to parse the payload into a cell making sure we do actually have a
   * valid cell. */
  ret = trn_cell_intro_established_parse(&cell, payload, payload_len);
  if (ret >= 0) {
    /* On success, we do not keep the cell, we just notify the caller that it
     * was successfully parsed. */
    trn_cell_intro_established_free(cell);
  }
  return ret;
}

/* Parsse the INTRODUCE2 cell using data which contains everything we need to
 * do so and contains the destination buffers of information we extract and
 * compute from the cell. Return 0 on success else a negative value. The
 * service and circ are only used for logging purposes. */
ssize_t
hs_cell_parse_introduce2(hs_cell_introduce2_data_t *data,
                         const origin_circuit_t *circ,
                         const hs_service_t *service)
{
  int ret = -1;
  time_t elapsed;
  uint8_t *decrypted = NULL;
  size_t encrypted_section_len;
  const uint8_t *encrypted_section;
  trn_cell_introduce1_t *cell = NULL;
  trn_cell_introduce_encrypted_t *enc_cell = NULL;
  hs_ntor_intro_cell_keys_t *intro_keys = NULL;

  tor_assert(data);
  tor_assert(circ);
  tor_assert(service);

  /* Parse the cell into a decoded data structure pointed by cell_ptr. */
  if (parse_introduce2_cell(service, circ, data->payload, data->payload_len,
                            &cell) < 0) {
    goto done;
  }

  log_info(LD_REND, "Received a decodable INTRODUCE2 cell on circuit %u "
                    "for service %s. Decoding encrypted section...",
           TO_CIRCUIT(circ)->n_circ_id,
           safe_str_client(service->onion_address));

  encrypted_section = trn_cell_introduce1_getconstarray_encrypted(cell);
  encrypted_section_len = trn_cell_introduce1_getlen_encrypted(cell);

  /* Encrypted section must at least contain the CLIENT_PK and MAC which is
   * defined in section 3.3.2 of the specification. */
  if (encrypted_section_len < (CURVE25519_PUBKEY_LEN + DIGEST256_LEN)) {
    log_info(LD_REND, "Invalid INTRODUCE2 encrypted section length "
                      "for service %s. Dropping cell.",
             safe_str_client(service->onion_address));
    goto done;
  }

  /* Check our replay cache for this introduction point. */
  if (replaycache_add_test_and_elapsed(data->replay_cache, encrypted_section,
                                       encrypted_section_len, &elapsed)) {
    log_warn(LD_REND, "Possible replay detected! An INTRODUCE2 cell with the"
                      "same ENCRYPTED section was seen %ld seconds ago. "
                      "Dropping cell.", (long int) elapsed);
    goto done;
  }

  /* Build the key material out of the key material found in the cell. */
  intro_keys = get_introduce2_key_material(data->auth_pk, data->enc_kp,
                                           data->subcredential,
                                           encrypted_section,
                                           &data->client_pk);
  if (intro_keys == NULL) {
    log_info(LD_REND, "Invalid INTRODUCE2 encrypted data. Unable to "
                      "compute key material on circuit %u for service %s",
             TO_CIRCUIT(circ)->n_circ_id,
             safe_str_client(service->onion_address));
    goto done;
  }

  /* Validate MAC from the cell and our computed key material. The MAC field
   * in the cell is at the end of the encrypted section. */
  {
    uint8_t mac[DIGEST256_LEN];
    /* The MAC field is at the very end of the ENCRYPTED section. */
    size_t mac_offset = encrypted_section_len - sizeof(mac);
    /* Compute the MAC. Use the entire encoded payload with a length up to the
     * ENCRYPTED section. */
    compute_introduce_mac(data->payload,
                          data->payload_len - encrypted_section_len,
                          encrypted_section, encrypted_section_len,
                          intro_keys->mac_key, sizeof(intro_keys->mac_key),
                          mac, sizeof(mac));
    if (tor_memcmp(mac, encrypted_section + mac_offset, sizeof(mac))) {
      log_info(LD_REND, "Invalid MAC validation for INTRODUCE2 cell on "
                        "circuit %u for service %s",
               TO_CIRCUIT(circ)->n_circ_id,
               safe_str_client(service->onion_address));
      goto done;
    }
  }

  {
    /* The ENCRYPTED_DATA section starts just after the CLIENT_PK. */
    const uint8_t *encrypted_data =
      encrypted_section + sizeof(data->client_pk);
    /* It's symmetric encryption so it's correct to use the ENCRYPTED length
     * for decryption. Computes the length of ENCRYPTED_DATA meaning removing
     * the CLIENT_PK and MAC length. */
    size_t encrypted_data_len =
      encrypted_section_len - (sizeof(data->client_pk) + DIGEST256_LEN);

    /* This decrypts the ENCRYPTED_DATA section of the cell. */
    decrypted = decrypt_introduce2(intro_keys->enc_key,
                                   encrypted_data, encrypted_data_len);
    if (decrypted == NULL) {
      log_info(LD_REND, "Unable to decrypt the ENCRYPTED section of an "
                        "INTRODUCE2 cell on circuit %u for service %s",
               TO_CIRCUIT(circ)->n_circ_id,
               safe_str_client(service->onion_address));
      goto done;
    }

    /* Parse this blob into an encrypted cell structure so we can then extract
     * the data we need out of it. */
    enc_cell = parse_introduce2_encrypted(decrypted, encrypted_data_len,
                                          circ, service);
    memwipe(decrypted, 0, encrypted_data_len);
    if (enc_cell == NULL) {
      goto done;
    }
  }

  /* XXX: Implement client authorization checks. */

  /* Extract onion key and rendezvous cookie from the cell used for the
   * rendezvous point circuit e2e encryption. */
  memcpy(data->onion_pk.public_key,
         trn_cell_introduce_encrypted_getconstarray_onion_key(enc_cell),
         CURVE25519_PUBKEY_LEN);
  memcpy(data->rendezvous_cookie,
         trn_cell_introduce_encrypted_getconstarray_rend_cookie(enc_cell),
         sizeof(data->rendezvous_cookie));

  /* Extract rendezvous link specifiers. */
  for (size_t idx = 0;
       idx < trn_cell_introduce_encrypted_get_nspec(enc_cell); idx++) {
    link_specifier_t *lspec =
      trn_cell_introduce_encrypted_get_nspecs(enc_cell, idx);
    smartlist_add(data->link_specifiers, hs_link_specifier_dup(lspec));
  }

  /* Success. */
  ret = 0;
  log_info(LD_REND, "Valid INTRODUCE2 cell. Launching rendezvous circuit.");

 done:
  if (intro_keys) {
    memwipe(intro_keys, 0, sizeof(hs_ntor_intro_cell_keys_t));
    tor_free(intro_keys);
  }
  tor_free(decrypted);
  trn_cell_introduce_encrypted_free(enc_cell);
  trn_cell_introduce1_free(cell);
  return ret;
}

/* Build a RENDEZVOUS1 cell with the given rendezvous cookie and handshake
 * info. The encoded cell is put in cell_out and the length of the data is
 * returned. This can't fail. */
ssize_t
hs_cell_build_rendezvous1(const uint8_t *rendezvous_cookie,
                          size_t rendezvous_cookie_len,
                          const uint8_t *rendezvous_handshake_info,
                          size_t rendezvous_handshake_info_len,
                          uint8_t *cell_out)
{
  ssize_t cell_len;
  trn_cell_rendezvous1_t *cell;

  tor_assert(rendezvous_cookie);
  tor_assert(rendezvous_handshake_info);
  tor_assert(cell_out);

  cell = trn_cell_rendezvous1_new();
  /* Set the RENDEZVOUS_COOKIE. */
  memcpy(trn_cell_rendezvous1_getarray_rendezvous_cookie(cell),
         rendezvous_cookie, rendezvous_cookie_len);
  /* Set the HANDSHAKE_INFO. */
  trn_cell_rendezvous1_setlen_handshake_info(cell,
                                            rendezvous_handshake_info_len);
  memcpy(trn_cell_rendezvous1_getarray_handshake_info(cell),
         rendezvous_handshake_info, rendezvous_handshake_info_len);
  /* Encoding. */
  cell_len = trn_cell_rendezvous1_encode(cell_out, RELAY_PAYLOAD_SIZE, cell);
  tor_assert(cell_len > 0);

  trn_cell_rendezvous1_free(cell);
  return cell_len;
}

/* Build an INTRODUCE1 cell from the given data. The encoded cell is put in
 * cell_out which must be of at least size RELAY_PAYLOAD_SIZE. On success, the
 * encoded length is returned else a negative value and the content of
 * cell_out should be ignored. */
ssize_t
hs_cell_build_introduce1(const hs_cell_introduce1_data_t *data,
                         uint8_t *cell_out)
{
  ssize_t cell_len;
  trn_cell_introduce1_t *cell;
  trn_cell_extension_t *ext;

  tor_assert(data);
  tor_assert(cell_out);

  cell = trn_cell_introduce1_new();
  tor_assert(cell);

  /* Set extension data. None are used. */
  ext = trn_cell_extension_new();
  tor_assert(ext);
  trn_cell_extension_set_num(ext, 0);
  trn_cell_introduce1_set_extensions(cell, ext);

  /* Set the legacy ID field. */
  introduce1_set_legacy_id(cell, data);

  /* Set the authentication key. */
  introduce1_set_auth_key(cell, data);

  /* Set the encrypted section. This will set, encrypt and encode the
   * ENCRYPTED section in the cell. After this, we'll be ready to encode. */
  introduce1_set_encrypted(cell, data);

  /* Final encoding. */
  cell_len = trn_cell_introduce1_encode(cell_out, RELAY_PAYLOAD_SIZE, cell);

  trn_cell_introduce1_free(cell);
  return cell_len;
}

/* Build an ESTABLISH_RENDEZVOUS cell from the given rendezvous_cookie. The
 * encoded cell is put in cell_out which must be of at least
 * RELAY_PAYLOAD_SIZE. On success, the encoded length is returned and the
 * caller should clear up the content of the cell.
 *
 * This function can't fail. */
ssize_t
hs_cell_build_establish_rendezvous(const uint8_t *rendezvous_cookie,
                                   uint8_t *cell_out)
{
  tor_assert(rendezvous_cookie);
  tor_assert(cell_out);

  memcpy(cell_out, rendezvous_cookie, HS_REND_COOKIE_LEN);
  return HS_REND_COOKIE_LEN;
}

/* Handle an INTRODUCE_ACK cell encoded in payload of length payload_len.
 * Return the status code on success else a negative value if the cell as not
 * decodable. */
int
hs_cell_parse_introduce_ack(const uint8_t *payload, size_t payload_len)
{
  int ret = -1;
  trn_cell_introduce_ack_t *cell = NULL;

  tor_assert(payload);

  /* If it is a legacy IP, rend-spec.txt specifies that a ACK is 0 byte and a
   * NACK is 1 byte. We can't use the legacy function for this so we have to
   * do a special case. */
  if (payload_len <= 1) {
    if (payload_len == 0) {
      ret = HS_CELL_INTRO_ACK_SUCCESS;
    } else {
      ret = HS_CELL_INTRO_ACK_FAILURE;
    }
    goto end;
  }

  if (trn_cell_introduce_ack_parse(&cell, payload, payload_len) < 0) {
    log_info(LD_REND, "Invalid INTRODUCE_ACK cell. Unable to parse it.");
    goto end;
  }

  ret = trn_cell_introduce_ack_get_status(cell);

 end:
  trn_cell_introduce_ack_free(cell);
  return ret;
}

/* Handle a RENDEZVOUS2 cell encoded in payload of length payload_len. On
 * success, handshake_info contains the data in the HANDSHAKE_INFO field, and
 * 0 is returned. On error, a negative value is returned. */
int
hs_cell_parse_rendezvous2(const uint8_t *payload, size_t payload_len,
                          uint8_t *handshake_info, size_t handshake_info_len)
{
  int ret = -1;
  trn_cell_rendezvous2_t *cell = NULL;

  tor_assert(payload);
  tor_assert(handshake_info);

  if (trn_cell_rendezvous2_parse(&cell, payload, payload_len) < 0) {
    log_info(LD_REND, "Invalid RENDEZVOUS2 cell. Unable to parse it.");
    goto end;
  }

  /* Static size, we should never have an issue with this else we messed up
   * our code flow. */
  tor_assert(trn_cell_rendezvous2_getlen_handshake_info(cell) ==
             handshake_info_len);
  memcpy(handshake_info,
         trn_cell_rendezvous2_getconstarray_handshake_info(cell),
         handshake_info_len);
  ret = 0;

 end:
  trn_cell_rendezvous2_free(cell);
  return ret;
}

/* Clear the given INTRODUCE1 data structure data. */
void
hs_cell_introduce1_data_clear(hs_cell_introduce1_data_t *data)
{
  if (data == NULL) {
    return;
  }
  /* Object in this list have been moved to the cell object when building it
   * so they've been freed earlier. We do that in order to avoid duplicating
   * them leading to more memory and CPU time being used for nothing. */
  smartlist_free(data->link_specifiers);
  /* The data object has no ownership of any members. */
  memwipe(data, 0, sizeof(hs_cell_introduce1_data_t));
}