summaryrefslogtreecommitdiff
path: root/src/or/hibernate.c
blob: 40b30aa2ff803f550a9f0ba66f7463e5e4cc3c61 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
/* Copyright 2004 Roger Dingledine, Nick Mathewson. */
/* See LICENSE for licensing information */
/* $Id$ */

/**
 * \file hibernate.c
 * \brief Functions to close listeners, stop allowing new circuits,
 * etc in preparation for closing down or going dormant; and to track
 * bandwidth and time intervals to know when to hibernate and when to
 * stop hibernating.
 **/

/*
hibernating, phase 1:
  - send destroy in response to create cells
  - send end (policy failed) in response to begin cells
  - close an OR conn when it has no circuits

hibernating, phase 2:
  (entered when bandwidth hard limit reached)
  - close all OR/AP/exit conns)
*/

#include "or.h"

#define HIBERNATE_STATE_LIVE 1
#define HIBERNATE_STATE_EXITING 2
#define HIBERNATE_STATE_LOWBANDWIDTH 3
#define HIBERNATE_STATE_DORMANT 4

#define SHUTDOWN_WAIT_LENGTH 30 /* seconds */

static int hibernate_state = HIBERNATE_STATE_LIVE;
/** If are hibernating, when do we plan to wake up? Set to 0 if we
 * aren't hibernating. */
static time_t hibernate_end_time = 0;

/* Fields for accounting logic.  Accounting overview:
 *
 * Accounting is designed to ensure that no more than N bytes are sent
 * in either direction over a given interval (currently, one month,
 * starting at 0:00 GMT an arbitrary day within the month).  We could
 * try to do this by choking our bandwidth to a trickle, but that
 * would make our streams useless.  Instead, we estimate what our
 * bandwidth usage will be, and guess how long we'll be able to
 * provide that much bandwidth before hitting our limit.  We then
 * choose a random time within the accounting interval to come up (so
 * that we don't get 50 Tors running on the 1st of the month and none
 * on the 30th).
 *
 * Each interval runs as follows:
 *
 * 1. We guess our bandwidth usage, based on how much we used
 *     last time.  We choose a "wakeup time" within the interval to come up.
 * 2. Until the chosen wakeup time, we hibernate.
 * 3. We come up at the wakeup time, and provide bandwidth until we are
 *    "very close" to running out.
 * 4. Then we go into low-bandwidth mode, and stop accepting new
 *    connections, but provide bandwidth until we run out.
 * 5. Then we hibernate until the end of the interval.
 *
 * If the interval ends before we run out of bandwdith, we go back to
 * step one.
 */

/** How many bytes have we read/written in this accounting interval? */
static uint64_t n_bytes_read_in_interval = 0;
static uint64_t n_bytes_written_in_interval = 0;
/** How many seconds have we been running this interval? */
static uint32_t n_seconds_active_in_interval = 0;
/** When did this accounting interval start? */
static time_t interval_start_time = 0;
/** When will this accounting interval end? */
static time_t interval_end_time = 0;
/** How far into the accounting interval should we hibernate? */
static time_t interval_wakeup_time = 0;
/** How much bandwidth do we 'expect' to use per minute? */
static uint32_t expected_bandwidth_usage = 0;

static void reset_accounting(time_t now);
static int read_bandwidth_usage(void);
static int record_bandwidth_usage(time_t now);
static time_t start_of_accounting_period_after(time_t now);
static time_t start_of_accounting_period_containing(time_t now);
static void accounting_set_wakeup_time(void);

/* ************
 * Functions for bandwidth accounting.
 * ************/

/** Called from main.c to tell us that <b>seconds</b> seconds have
 * passed, <b>n_read</b> bytes have been read, and <b>n_written</b>
 * bytes have been written. */
void
accounting_add_bytes(size_t n_read, size_t n_written, int seconds)
{
  n_bytes_read_in_interval += n_read;
  n_bytes_written_in_interval += n_written;
  /* If we haven't been called in 10 seconds, we're probably jumping
   * around in time. */
  n_seconds_active_in_interval += (seconds < 10) ? seconds : 0;
}

/** Increment the month field of <b>tm</b> by <b>delta</b> months. */
static INLINE void
incr_month(struct tm *tm, unsigned int delta)
{
  tm->tm_mon += delta;
  /* officially, we don't have to do this, but some platforms are rumored
   * to have broken implementations. */
  while (tm->tm_mon > 11) {
    ++tm->tm_year;
    tm->tm_mon -= 12;
  }
}

/** Decrement the month field of <b>tm</b> by <b>delta</b> months. */
static INLINE void
decr_month(struct tm *tm, unsigned int delta)
{
  tm->tm_mon -= delta;
  while (tm->tm_mon < 0) {
    --tm->tm_year;
    tm->tm_mon += 12;
  }
}

/** Return the start of the accounting period that contains the time
 * <b>now</b> */
static time_t
start_of_accounting_period_containing(time_t now)
{
  struct tm *tm;
  /* Only months are supported. */
  tm = gmtime(&now);
  /* If this is before the Nth, we want the Nth of last month. */
  if (tm->tm_mday < get_options()->AccountingStart) {
    decr_month(tm, 1);
  }
  /* Otherwise, the month and year are correct.*/

  tm->tm_mday = get_options()->AccountingStart;
  tm->tm_hour = 0;
  tm->tm_min = 0;
  tm->tm_sec = 0;
  return tor_timegm(tm);
}

/** Return the start of the accounting period that comes after the one
 * containing the time <b>now</b>. */
static time_t
start_of_accounting_period_after(time_t now)
{
  time_t start;
  struct tm *tm;
  start = start_of_accounting_period_containing(now);

  tm = gmtime(&start);
  incr_month(tm, 1);
  return tor_timegm(tm);
}

/** Initialize the accounting subsystem. */
void
configure_accounting(time_t now)
{
  /* Try to remember our recorded usage. */
  if (!interval_start_time)
    read_bandwidth_usage(); /* If we fail, we'll leave values at zero, and
                             * reset below.*/
  if (!interval_start_time ||
      start_of_accounting_period_after(interval_start_time) <= now) {
    /* We didn't have recorded usage, or we don't have recorded usage
     * for this interval. Start a new interval. */
    log_fn(LOG_INFO, "Starting new accounting interval.");
    reset_accounting(now);
  } if (interval_start_time ==
        start_of_accounting_period_containing(interval_start_time)) {
    log_fn(LOG_INFO, "Continuing accounting interval.");
    /* We are in the interval we thought we were in. Do nothing.*/
  } else {
    log_fn(LOG_WARN, "Mismatched accounting interval; starting a fresh one.");
    reset_accounting(now);
  }
  accounting_set_wakeup_time();
}

/** Set expected_bandwidth_usage based on how much we sent/received
 * per minute last interval (if we were up for at least 30 minutes),
 * or based on our declared bandwidth otherwise. */
static void
update_expected_bandwidth(void)
{
  uint64_t used;
  uint32_t max_configured = (get_options()->BandwidthRateBytes * 60);
  /* XXX max_configured will be false if it exceeds
   * get_options()->AccountingMaxKB*1000, right? -RD
   */

  if (n_seconds_active_in_interval < 1800) {
    expected_bandwidth_usage = max_configured;
  } else {
    used = n_bytes_written_in_interval < n_bytes_read_in_interval ?
      n_bytes_read_in_interval : n_bytes_written_in_interval;
    expected_bandwidth_usage = (uint32_t)
      (used / (n_seconds_active_in_interval / 60));
    if (expected_bandwidth_usage > max_configured)
      expected_bandwidth_usage = max_configured;
  }
}

/** Called at the start of a new accounting interval: reset our
 * expected bandwidth usage based on what happened last time, set up
 * the start and end of the interval, and clear byte/time totals.
 */
static void
reset_accounting(time_t now) {
  log_fn(LOG_INFO, "Starting new accounting interval.");
  update_expected_bandwidth();
  interval_start_time = start_of_accounting_period_containing(now);
  interval_end_time = start_of_accounting_period_after(interval_start_time);
  n_bytes_read_in_interval = 0;
  n_bytes_written_in_interval = 0;
  n_seconds_active_in_interval = 0;
}

/** Return true iff we should save our bandwidth usage to disk. */
static INLINE int
time_to_record_bandwidth_usage(time_t now)
{
  /* Note every 5 minutes */
#define NOTE_INTERVAL (5*60)
  /* Or every 20 megabytes */
#define NOTE_BYTES 20*(1024*1024)
  static uint64_t last_read_bytes_noted = 0;
  static uint64_t last_written_bytes_noted = 0;
  static time_t last_time_noted = 0;

  if (last_time_noted + NOTE_INTERVAL <= now ||
      last_read_bytes_noted + NOTE_BYTES <= n_bytes_read_in_interval ||
      last_written_bytes_noted + NOTE_BYTES <= n_bytes_written_in_interval ||
      (interval_end_time && interval_end_time <= now)) {
    last_time_noted = now;
    last_read_bytes_noted = n_bytes_read_in_interval;
    last_written_bytes_noted = n_bytes_written_in_interval;
    return 1;
  }
  return 0;
}

void
accounting_run_housekeeping(time_t now)
{
  if (now >= interval_end_time) {
    configure_accounting(now);
  }
  if (time_to_record_bandwidth_usage(now)) {
    if (record_bandwidth_usage(now)) {
      log_fn(LOG_ERR, "Couldn't record bandwidth usage; exiting.");
      exit(1);
    }
  }
}

/** Based on our interval and our estimated bandwidth, choose a
 * deterministic (but random-ish) time to wake up. */
static void
accounting_set_wakeup_time(void)
{
  struct tm *tm;
  char buf[ISO_TIME_LEN+1];
  char digest[DIGEST_LEN];
  crypto_digest_env_t *d;
  int n_days_in_interval;
  int n_days_to_exhaust_bw;
  int n_days_to_consider;

  format_iso_time(buf, interval_start_time);
  crypto_pk_get_digest(get_identity_key(), digest);

  d = crypto_new_digest_env();
  crypto_digest_add_bytes(d, buf, ISO_TIME_LEN);
  crypto_digest_add_bytes(d, digest, DIGEST_LEN);
  crypto_digest_get_digest(d, digest, DIGEST_LEN);
  crypto_free_digest_env(d);

  n_days_to_exhaust_bw =
    (get_options()->AccountingMaxKB/expected_bandwidth_usage)/(24*60);

  tm = gmtime(&interval_start_time);
  if (++tm->tm_mon > 11) { tm->tm_mon = 0; ++tm->tm_year; }
  n_days_in_interval = (tor_timegm(tm)-interval_start_time+1)/(24*60*60);

  n_days_to_consider = n_days_in_interval - n_days_to_exhaust_bw;

  /* XXX can we simplify this just by picking a random (non-deterministic)
   * time to be up? If we go down and come up, then we pick a new one. Is
   * that good enough? -RD */
  while (((unsigned char)digest[0]) > n_days_to_consider)
    crypto_digest(digest, digest, DIGEST_LEN);

  interval_wakeup_time = interval_start_time +
    24*60*60 * (unsigned char)digest[0];
}

#define BW_ACCOUNTING_VERSION 1
/** Save all our bandwidth tracking information to disk. Return 0 on
 * success, -1 on failure*/
static int
record_bandwidth_usage(time_t now)
{
  char buf[128];
  char fname[512];
  char time1[ISO_TIME_LEN+1];
  char time2[ISO_TIME_LEN+1];
  char *cp = buf;
  /* Format is:
     Version\nTime\nTime\nRead\nWrite\nSeconds\nExpected-Rate\n */

  format_iso_time(time1, interval_start_time);
  format_iso_time(time2, now);
  tor_snprintf(cp, sizeof(buf),
               "%d\n%s\n%s\n"U64_FORMAT"\n"U64_FORMAT"\n%lu\n%lu\n",
               BW_ACCOUNTING_VERSION,
               time1,
               time2,
               U64_PRINTF_ARG(n_bytes_read_in_interval),
               U64_PRINTF_ARG(n_bytes_written_in_interval),
               (unsigned long)n_seconds_active_in_interval,
               (unsigned long)expected_bandwidth_usage);
  tor_snprintf(fname, sizeof(fname), "%s/bw_accounting",
               get_options()->DataDirectory);

  return write_str_to_file(fname, buf, 0);
}

/** Read stored accounting information from disk. Return 0 on success;
 * return -1 and change nothing on failure. */
static int
read_bandwidth_usage(void)
{
  char *s = NULL;
  char fname[512];
  time_t t1, t2;
  uint64_t n_read, n_written;
  uint32_t expected_bw, n_seconds;
  smartlist_t *elts;
  int ok;

  tor_snprintf(fname, sizeof(fname), "%s/bw_accounting",
               get_options()->DataDirectory);
  if (!(s = read_file_to_str(fname, 0))) {
    return 0;
  }
  elts = smartlist_create();
  smartlist_split_string(elts, s, "\n", SPLIT_SKIP_SPACE, SPLIT_IGNORE_BLANK);
  tor_free(s);

  if (smartlist_len(elts)<1 ||
      atoi(smartlist_get(elts,0)) != BW_ACCOUNTING_VERSION) {
    log_fn(LOG_WARN, "Unrecognized bw_accounting file version: %s",
           (const char*)smartlist_get(elts,0));
    goto err;
  }
  if (smartlist_len(elts) < 7) {
    log_fn(LOG_WARN, "Corrupted bw_accounting file: %d lines",
           smartlist_len(elts));
    goto err;
  }
  if (parse_iso_time(smartlist_get(elts,1), &t1)) {
    log_fn(LOG_WARN, "Error parsing bandwidth usage start time.");
    goto err;
  }
  if (parse_iso_time(smartlist_get(elts,2), &t2)) {
    log_fn(LOG_WARN, "Error parsing bandwidth usage last-written time");
    goto err;
  }
  n_read = tor_parse_uint64(smartlist_get(elts,3), 10, 0, UINT64_MAX,
                            &ok, NULL);
  if (!ok) {
    log_fn(LOG_WARN, "Error parsing number of bytes read");
    goto err;
  }
  n_written = tor_parse_uint64(smartlist_get(elts,4), 10, 0, UINT64_MAX,
                               &ok, NULL);
  if (!ok) {
    log_fn(LOG_WARN, "Error parsing number of bytes read");
    goto err;
  }
  n_seconds = (uint32_t)tor_parse_ulong(smartlist_get(elts,5), 10,0,ULONG_MAX,
                                        &ok, NULL);
  if (!ok) {
    log_fn(LOG_WARN, "Error parsing number of seconds live");
    goto err;
  }
  expected_bw =(uint32_t)tor_parse_ulong(smartlist_get(elts,6), 10,0,ULONG_MAX,
                                        &ok, NULL);
  if (!ok) {
    log_fn(LOG_WARN, "Error parsing expected bandwidth");
    goto err;
  }

  n_bytes_read_in_interval = n_read;
  n_bytes_written_in_interval = n_written;
  n_seconds_active_in_interval = n_seconds;
  interval_start_time = t1;
  expected_bandwidth_usage = expected_bw;

  accounting_set_wakeup_time();
  return 0;
 err:
  SMARTLIST_FOREACH(elts, char *, cp, tor_free(cp));
  smartlist_free(elts);
  return -1;
}

/** Return true iff we have sent/received all the bytes we are willing
 * to send/receive this interval. */
static int
hibernate_hard_limit_reached(void)
{
  uint64_t hard_limit = get_options()->AccountingMaxKB<<10;
  if (!hard_limit)
    return 0;
  return n_bytes_read_in_interval >= hard_limit
    || n_bytes_written_in_interval >= hard_limit;
}

/** Return true iff we have sent/received almost all the bytes we are willing
 * to send/receive this interval. */
static int hibernate_soft_limit_reached(void)
{
  uint64_t soft_limit = (uint64_t) ((get_options()->AccountingMaxKB<<10) * .99);
  if (!soft_limit)
    return 0;
  return n_bytes_read_in_interval >= soft_limit
    || n_bytes_written_in_interval >= soft_limit;
}

/** Called when we get a SIGINT, or when bandwidth soft limit is
 * reached. Puts us into "loose hibernation": we don't accept new
 * connections, but we continue handling old ones. */
static void hibernate_begin(int new_state, time_t now) {
  connection_t *conn;

  if(hibernate_state == HIBERNATE_STATE_EXITING) {
    /* we've been called twice now. close immediately. */
    log(LOG_NOTICE,"Second sigint received; exiting now.");
    tor_cleanup();
    exit(0);
  }

  /* close listeners. leave control listener(s). */
  while((conn = connection_get_by_type(CONN_TYPE_OR_LISTENER)) ||
        (conn = connection_get_by_type(CONN_TYPE_AP_LISTENER)) ||
        (conn = connection_get_by_type(CONN_TYPE_DIR_LISTENER))) {
    log_fn(LOG_INFO,"Closing listener type %d", conn->type);
    connection_mark_for_close(conn);
  }

  /* XXX kill intro point circs */
  /* XXX upload rendezvous service descriptors with no intro points */

  if(new_state == HIBERNATE_STATE_EXITING) {
    log(LOG_NOTICE,"Interrupt: will shut down in %d seconds. Interrupt again to exit now.", SHUTDOWN_WAIT_LENGTH);
    hibernate_end_time = time(NULL) + SHUTDOWN_WAIT_LENGTH;
  } else { /* soft limit reached */
    hibernate_end_time = interval_end_time;
  }

  hibernate_state = new_state;
}

/** Called when we've been hibernating and our timeout is reached. */
static void
hibernate_end(int new_state) {

  tor_assert(hibernate_state == HIBERNATE_STATE_LOWBANDWIDTH ||
             hibernate_state == HIBERNATE_STATE_DORMANT);

  /* listeners will be relaunched in run_scheduled_events() in main.c */
  log_fn(LOG_NOTICE,"Hibernation period ended. Resuming normal activity.");

  hibernate_state = new_state;
  hibernate_end_time = 0; /* no longer hibernating */
}

/** A wrapper around hibernate_begin, for when we get SIGINT. */
void
hibernate_begin_shutdown(void) {
  hibernate_begin(HIBERNATE_STATE_EXITING, time(NULL));
}

/** Return true iff we are currently hibernating. */
int
we_are_hibernating(void) {
  return hibernate_state != HIBERNATE_STATE_LIVE;
}

/** If we aren't currently dormant, close all connections and become
 * dormant. */
static void
hibernate_go_dormant(void) {
  connection_t *conn;

  if (hibernate_state == HIBERNATE_STATE_DORMANT)
    return;

  hibernate_state = HIBERNATE_STATE_DORMANT;
  log_fn(LOG_NOTICE,"Going dormant. Blowing away remaining connections.");

  /* Close all OR/AP/exit conns. Leave dir conns because we still want
   * to be able to upload server descriptors so people know we're still
   * running, and download directories so we can detect if we're obsolete.
   * Leave control conns because we still want to be controllable.
   */
  while((conn = connection_get_by_type(CONN_TYPE_OR)) ||
        (conn = connection_get_by_type(CONN_TYPE_AP)) ||
        (conn = connection_get_by_type(CONN_TYPE_EXIT))) {
    log_fn(LOG_INFO,"Closing conn type %d", conn->type);
    connection_mark_for_close(conn);
  }
}

/** Called when hibernate_end_time has arrived. */
static void
hibernate_end_time_elapsed(time_t now)
{
  /* The interval has ended, or it is wakeup time.  Find out which. */
  accounting_run_housekeeping(now);
  if (interval_wakeup_time <= now) {
    /* The interval hasn't changed, but interval_wakeup_time has passed.
     * It's time to wake up and start being a server. */
    hibernate_end(HIBERNATE_STATE_LIVE);
    return;
  } else {
    /* The interval has changed, and it isn't time to wake up yet. */
    hibernate_end_time = interval_wakeup_time;
    if (hibernate_state != HIBERNATE_STATE_DORMANT)
      /* We weren't sleeping before; we should sleep now. */
      hibernate_go_dormant();
  }
}

/** The big function. Consider our environment and decide if it's time
 * to start/stop hibernating.
 */
void consider_hibernation(time_t now) {

  /* If we're in 'exiting' mode, then we just shut down after the interval
   * elapses. */
  if (hibernate_state == HIBERNATE_STATE_EXITING) {
    tor_assert(hibernate_end_time);
    if(hibernate_end_time <= now) {
      log(LOG_NOTICE,"Clean shutdown finished. Exiting.");
      tor_cleanup();
      exit(0);
    }
    return; /* if exiting soon, don't worry about bandwidth limits */
  }

  if(hibernate_state == HIBERNATE_STATE_DORMANT) {
    /* We've been hibernating because of bandwidth accounting. */
    tor_assert(hibernate_end_time);
    if (hibernate_end_time > now) {
      /* If we're hibernating, don't wake up until it's time, regardless of
       * whether we're in a new interval. */
      return ;
    } else {
      hibernate_end_time_elapsed(now);
    }
  }

  /* Else, we aren't hibernating. See if it's time to start hibernating, or to
   * go dormant. */
  if (hibernate_state == HIBERNATE_STATE_LIVE &&
      hibernate_soft_limit_reached()) {
    log_fn(LOG_NOTICE,"Bandwidth soft limit reached; commencing hibernation.");
    hibernate_begin(HIBERNATE_STATE_LOWBANDWIDTH, now);
  }

  if (hibernate_state == HIBERNATE_STATE_LOWBANDWIDTH) {
    if (hibernate_hard_limit_reached()) {
      hibernate_go_dormant();
    } else if (hibernate_end_time <= now) {
      /* The hibernation period ended while we were still in lowbandwidth.*/
      hibernate_end_time_elapsed(now);
    }
  }
}