aboutsummaryrefslogtreecommitdiff
path: root/src/lib/crypt_ops/crypto_s2k.c
blob: ae781f24ef5385b5cd12e63e9d2900c196598b9e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
/* Copyright (c) 2001, Matej Pfajfar.
 * Copyright (c) 2001-2004, Roger Dingledine.
 * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
 * Copyright (c) 2007-2021, The Tor Project, Inc. */
/* See LICENSE for licensing information */

/**
 * \file crypto_s2k.c
 *
 * \brief Functions for deriving keys from human-readable passphrases.
 */

#define CRYPTO_S2K_PRIVATE

#include "lib/crypt_ops/crypto_cipher.h"
#include "lib/crypt_ops/crypto_digest.h"
#include "lib/crypt_ops/crypto_hkdf.h"
#include "lib/crypt_ops/crypto_rand.h"
#include "lib/crypt_ops/crypto_s2k.h"
#include "lib/crypt_ops/crypto_util.h"
#include "lib/ctime/di_ops.h"
#include "lib/log/util_bug.h"
#include "lib/intmath/cmp.h"

#ifdef ENABLE_OPENSSL
#include <openssl/evp.h>
#endif
#ifdef ENABLE_NSS
DISABLE_GCC_WARNING("-Wstrict-prototypes")
#include <pk11pub.h>
ENABLE_GCC_WARNING("-Wstrict-prototypes")
#endif

#if defined(HAVE_LIBSCRYPT_H) && defined(HAVE_LIBSCRYPT_SCRYPT)
#define HAVE_SCRYPT
#include <libscrypt.h>
#endif

#include <string.h>

/* Encoded secrets take the form:

     u8 type;
     u8 salt_and_parameters[depends on type];
     u8 key[depends on type];

   As a special case, if the encoded secret is exactly 29 bytes long,
   type 0 is understood.

   Recognized types are:
       00 -- RFC2440. salt_and_parameters is 9 bytes. key is 20 bytes.
                salt_and_parameters is 8 bytes random salt,
                1 byte iteration info.
       01 -- PKBDF2_SHA1. salt_and_parameters is 17 bytes. key is 20 bytes.
                salt_and_parameters is 16 bytes random salt,
                1 byte iteration info.
       02 -- SCRYPT_SALSA208_SHA256. salt_and_parameters is 18 bytes. key is
             32 bytes.
                salt_and_parameters is 18 bytes random salt, 2 bytes iteration
                info.
*/

#define S2K_TYPE_RFC2440 0
#define S2K_TYPE_PBKDF2  1
#define S2K_TYPE_SCRYPT  2

#define PBKDF2_SPEC_LEN 17
#define PBKDF2_KEY_LEN 20

#define SCRYPT_SPEC_LEN 18
#define SCRYPT_KEY_LEN 32

/** Given an algorithm ID (one of S2K_TYPE_*), return the length of the
 * specifier part of it, without the prefix type byte.  Return -1 if it is not
 * a valid algorithm ID. */
static int
secret_to_key_spec_len(uint8_t type)
{
  switch (type) {
    case S2K_TYPE_RFC2440:
      return S2K_RFC2440_SPECIFIER_LEN;
    case S2K_TYPE_PBKDF2:
      return PBKDF2_SPEC_LEN;
    case S2K_TYPE_SCRYPT:
      return SCRYPT_SPEC_LEN;
    default:
      return -1;
  }
}

/** Given an algorithm ID (one of S2K_TYPE_*), return the length of the
 * its preferred output. */
static int
secret_to_key_key_len(uint8_t type)
{
  switch (type) {
    case S2K_TYPE_RFC2440:
      return DIGEST_LEN;
    case S2K_TYPE_PBKDF2:
      return DIGEST_LEN;
    case S2K_TYPE_SCRYPT:
      return DIGEST256_LEN;
    // LCOV_EXCL_START
    default:
      tor_fragile_assert();
      return -1;
    // LCOV_EXCL_STOP
  }
}

/** Given a specifier in <b>spec_and_key</b> of length
 * <b>spec_and_key_len</b>, along with its prefix algorithm ID byte, and along
 * with a key if <b>key_included</b> is true, check whether the whole
 * specifier-and-key is of valid length, and return the algorithm type if it
 * is.  Set *<b>legacy_out</b> to 1 iff this is a legacy password hash or
 * legacy specifier.  Return an error code on failure.
 */
static int
secret_to_key_get_type(const uint8_t *spec_and_key, size_t spec_and_key_len,
                       int key_included, int *legacy_out)
{
  size_t legacy_len = S2K_RFC2440_SPECIFIER_LEN;
  uint8_t type;
  int total_len;

  if (key_included)
    legacy_len += DIGEST_LEN;

  if (spec_and_key_len == legacy_len) {
    *legacy_out = 1;
    return S2K_TYPE_RFC2440;
  }

  *legacy_out = 0;
  if (spec_and_key_len == 0)
    return S2K_BAD_LEN;

  type = spec_and_key[0];
  total_len = secret_to_key_spec_len(type);
  if (total_len < 0)
    return S2K_BAD_ALGORITHM;
  if (key_included) {
    int keylen = secret_to_key_key_len(type);
    if (keylen < 0)
      return S2K_BAD_ALGORITHM;
    total_len += keylen;
  }

  if ((size_t)total_len + 1 == spec_and_key_len)
    return type;
  else
    return S2K_BAD_LEN;
}

/**
 * Write a new random s2k specifier of type <b>type</b>, without prefixing
 * type byte, to <b>spec_out</b>, which must have enough room.  May adjust
 * parameter choice based on <b>flags</b>.
 */
static int
make_specifier(uint8_t *spec_out, uint8_t type, unsigned flags)
{
  int speclen = secret_to_key_spec_len(type);
  if (speclen < 0)
      return S2K_BAD_ALGORITHM;

  crypto_rand((char*)spec_out, speclen);
  switch (type) {
    case S2K_TYPE_RFC2440:
      /* Hash 64 k of data. */
      spec_out[S2K_RFC2440_SPECIFIER_LEN-1] = 96;
      break;
    case S2K_TYPE_PBKDF2:
      /* 131 K iterations */
      spec_out[PBKDF2_SPEC_LEN-1] = 17;
      break;
    case S2K_TYPE_SCRYPT:
      if (flags & S2K_FLAG_LOW_MEM) {
        /* N = 1<<12 */
        spec_out[SCRYPT_SPEC_LEN-2] = 12;
      } else {
        /* N = 1<<15 */
        spec_out[SCRYPT_SPEC_LEN-2] = 15;
      }
      /* r = 8; p = 2. */
      spec_out[SCRYPT_SPEC_LEN-1] = (3u << 4) | (1u << 0);
      break;
    // LCOV_EXCL_START - we should have returned above.
    default:
      tor_fragile_assert();
      return S2K_BAD_ALGORITHM;
    // LCOV_EXCL_STOP
  }

  return speclen;
}

/** Implement RFC2440-style iterated-salted S2K conversion: convert the
 * <b>secret_len</b>-byte <b>secret</b> into a <b>key_out_len</b> byte
 * <b>key_out</b>.  As in RFC2440, the first 8 bytes of s2k_specifier
 * are a salt; the 9th byte describes how much iteration to do.
 * If <b>key_out_len</b> &gt; DIGEST_LEN, use HDKF to expand the result.
 */
void
secret_to_key_rfc2440(char *key_out, size_t key_out_len, const char *secret,
              size_t secret_len, const char *s2k_specifier)
{
  crypto_digest_t *d;
  uint8_t c;
  size_t count, tmplen;
  char *tmp;
  uint8_t buf[DIGEST_LEN];
  tor_assert(key_out_len < SIZE_T_CEILING);

#define EXPBIAS 6
  c = s2k_specifier[8];
  count = ((uint32_t)16 + (c & 15)) << ((c >> 4) + EXPBIAS);
#undef EXPBIAS

  d = crypto_digest_new();
  tmplen = 8+secret_len;
  tmp = tor_malloc(tmplen);
  memcpy(tmp,s2k_specifier,8);
  memcpy(tmp+8,secret,secret_len);
  secret_len += 8;
  while (count) {
    if (count >= secret_len) {
      crypto_digest_add_bytes(d, tmp, secret_len);
      count -= secret_len;
    } else {
      crypto_digest_add_bytes(d, tmp, count);
      count = 0;
    }
  }
  crypto_digest_get_digest(d, (char*)buf, sizeof(buf));

  if (key_out_len <= sizeof(buf)) {
    memcpy(key_out, buf, key_out_len);
  } else {
    crypto_expand_key_material_rfc5869_sha256(buf, DIGEST_LEN,
                                           (const uint8_t*)s2k_specifier, 8,
                                           (const uint8_t*)"EXPAND", 6,
                                           (uint8_t*)key_out, key_out_len);
  }
  memwipe(tmp, 0, tmplen);
  memwipe(buf, 0, sizeof(buf));
  tor_free(tmp);
  crypto_digest_free(d);
}

/**
 * Helper: given a valid specifier without prefix type byte in <b>spec</b>,
 * whose length must be correct, and given a secret passphrase <b>secret</b>
 * of length <b>secret_len</b>, compute the key and store it into
 * <b>key_out</b>, which must have enough room for secret_to_key_key_len(type)
 * bytes.  Return the number of bytes written on success and an error code
 * on failure.
 */
STATIC int
secret_to_key_compute_key(uint8_t *key_out, size_t key_out_len,
                          const uint8_t *spec, size_t spec_len,
                          const char *secret, size_t secret_len,
                          int type)
{
  int rv;
  if (key_out_len > INT_MAX)
    return S2K_BAD_LEN;

  switch (type) {
    case S2K_TYPE_RFC2440:
      secret_to_key_rfc2440((char*)key_out, key_out_len, secret, secret_len,
                            (const char*)spec);
      return (int)key_out_len;

    case S2K_TYPE_PBKDF2: {
      uint8_t log_iters;
      if (spec_len < 1 || secret_len > INT_MAX || spec_len > INT_MAX)
        return S2K_BAD_LEN;
      log_iters = spec[spec_len-1];
      if (log_iters > 31)
        return S2K_BAD_PARAMS;
#ifdef ENABLE_OPENSSL
      rv = PKCS5_PBKDF2_HMAC_SHA1(secret, (int)secret_len,
                                  spec, (int)spec_len-1,
                                  (1<<log_iters),
                                  (int)key_out_len, key_out);
      if (rv < 0)
        return S2K_FAILED;
      return (int)key_out_len;
#else /* !defined(ENABLE_OPENSSL) */
      SECItem passItem = { .type = siBuffer,
                           .data = (unsigned char *) secret,
                           .len = (int)secret_len };
      SECItem saltItem = { .type = siBuffer,
                           .data = (unsigned char *) spec,
                           .len = (int)spec_len - 1 };
      SECAlgorithmID *alg = NULL;
      PK11SymKey *key = NULL;

      rv = S2K_FAILED;
      alg = PK11_CreatePBEV2AlgorithmID(
                  SEC_OID_PKCS5_PBKDF2, SEC_OID_HMAC_SHA1, SEC_OID_HMAC_SHA1,
                  (int)key_out_len, (1<<log_iters), &saltItem);
      if (alg == NULL)
        return S2K_FAILED;

      key = PK11_PBEKeyGen(NULL /* slot */,
                           alg,
                           &passItem,
                           false,
                           NULL);

      SECStatus st = PK11_ExtractKeyValue(key);
      if (st != SECSuccess)
        goto nss_pbkdf_err;

      const SECItem *iptr = PK11_GetKeyData(key);
      if (iptr == NULL)
        goto nss_pbkdf_err;

      rv = MIN((int)iptr->len, (int)key_out_len);
      memcpy(key_out, iptr->data, rv);

    nss_pbkdf_err:
      if (key)
        PK11_FreeSymKey(key);
      if (alg)
        SECOID_DestroyAlgorithmID(alg, PR_TRUE);
      return rv;
#endif /* defined(ENABLE_OPENSSL) */
    }

    case S2K_TYPE_SCRYPT: {
#ifdef HAVE_SCRYPT
      uint8_t log_N, log_r, log_p;
      uint64_t N;
      uint32_t r, p;
      if (spec_len < 2)
        return S2K_BAD_LEN;
      log_N = spec[spec_len-2];
      log_r = (spec[spec_len-1]) >> 4;
      log_p = (spec[spec_len-1]) & 15;
      if (log_N > 63)
        return S2K_BAD_PARAMS;
      N = ((uint64_t)1) << log_N;
      r = 1u << log_r;
      p = 1u << log_p;
      rv = libscrypt_scrypt((const uint8_t*)secret, secret_len,
                            spec, spec_len-2, N, r, p, key_out, key_out_len);
      if (rv != 0)
        return S2K_FAILED;
      return (int)key_out_len;
#else /* !defined(HAVE_SCRYPT) */
      return S2K_NO_SCRYPT_SUPPORT;
#endif /* defined(HAVE_SCRYPT) */
    }
    default:
      return S2K_BAD_ALGORITHM;
  }
}

/**
 * Given a specifier previously constructed with secret_to_key_make_specifier
 * in <b>spec</b> of length <b>spec_len</b>, and a secret password in
 * <b>secret</b> of length <b>secret_len</b>, generate <b>key_out_len</b>
 * bytes of cryptographic material in <b>key_out</b>.  The native output of
 * the secret-to-key function will be truncated if key_out_len is short, and
 * expanded with HKDF if key_out_len is long.  Returns S2K_OKAY on success,
 * and an error code on failure.
 */
int
secret_to_key_derivekey(uint8_t *key_out, size_t key_out_len,
                        const uint8_t *spec, size_t spec_len,
                        const char *secret, size_t secret_len)
{
  int legacy_format = 0;
  int type = secret_to_key_get_type(spec, spec_len, 0, &legacy_format);
  int r;

  if (type < 0)
    return type;
#ifndef HAVE_SCRYPT
  if (type == S2K_TYPE_SCRYPT)
    return S2K_NO_SCRYPT_SUPPORT;
#endif

  if (! legacy_format) {
    ++spec;
    --spec_len;
  }

  r = secret_to_key_compute_key(key_out, key_out_len, spec, spec_len,
                                secret, secret_len, type);
  if (r < 0)
    return r;
  else
    return S2K_OKAY;
}

/**
 * Construct a new s2k algorithm specifier and salt in <b>buf</b>, according
 * to the bitwise-or of some S2K_FLAG_* options in <b>flags</b>.  Up to
 * <b>buf_len</b> bytes of storage may be used in <b>buf</b>.  Return the
 * number of bytes used on success and an error code on failure.
 */
int
secret_to_key_make_specifier(uint8_t *buf, size_t buf_len, unsigned flags)
{
  int rv;
  int spec_len;
#ifdef HAVE_SCRYPT
  uint8_t type = S2K_TYPE_SCRYPT;
#else
  uint8_t type = S2K_TYPE_RFC2440;
#endif

  if (flags & S2K_FLAG_NO_SCRYPT)
    type = S2K_TYPE_RFC2440;
  if (flags & S2K_FLAG_USE_PBKDF2)
    type = S2K_TYPE_PBKDF2;

  spec_len = secret_to_key_spec_len(type);

  if ((int)buf_len < spec_len + 1)
    return S2K_TRUNCATED;

  buf[0] = type;
  rv = make_specifier(buf+1, type, flags);
  if (rv < 0)
    return rv;
  else
    return rv + 1;
}

/**
 * Hash a passphrase from <b>secret</b> of length <b>secret_len</b>, according
 * to the bitwise-or of some S2K_FLAG_* options in <b>flags</b>, and store the
 * hash along with salt and hashing parameters into <b>buf</b>.  Up to
 * <b>buf_len</b> bytes of storage may be used in <b>buf</b>.  Set
 * *<b>len_out</b> to the number of bytes used and return S2K_OKAY on success;
 * and return an error code on failure.
 */
int
secret_to_key_new(uint8_t *buf,
                  size_t buf_len,
                  size_t *len_out,
                  const char *secret, size_t secret_len,
                  unsigned flags)
{
  int key_len;
  int spec_len;
  int type;
  int rv;

  spec_len = secret_to_key_make_specifier(buf, buf_len, flags);

  if (spec_len < 0)
    return spec_len;

  type = buf[0];
  key_len = secret_to_key_key_len(type);

  if (key_len < 0)
    return key_len;

  if ((int)buf_len < key_len + spec_len)
    return S2K_TRUNCATED;

  rv = secret_to_key_compute_key(buf + spec_len, key_len,
                                 buf + 1, spec_len-1,
                                 secret, secret_len, type);
  if (rv < 0)
    return rv;

  *len_out = spec_len + key_len;

  return S2K_OKAY;
}

/**
 * Given a hashed passphrase in <b>spec_and_key</b> of length
 * <b>spec_and_key_len</b> as generated by secret_to_key_new(), verify whether
 * it is a hash of the passphrase <b>secret</b> of length <b>secret_len</b>.
 * Return S2K_OKAY on a match, S2K_BAD_SECRET on a well-formed hash that
 * doesn't match this secret, and another error code on other errors.
 */
int
secret_to_key_check(const uint8_t *spec_and_key, size_t spec_and_key_len,
                    const char *secret, size_t secret_len)
{
  int is_legacy = 0;
  int type = secret_to_key_get_type(spec_and_key, spec_and_key_len,
                                    1, &is_legacy);
  uint8_t buf[32];
  int spec_len;
  int key_len;
  int rv;

  if (type < 0)
    return type;

  if (! is_legacy) {
    spec_and_key++;
    spec_and_key_len--;
  }

  spec_len = secret_to_key_spec_len(type);
  key_len = secret_to_key_key_len(type);
  tor_assert(spec_len > 0);
  tor_assert(key_len > 0);
  tor_assert(key_len <= (int) sizeof(buf));
  tor_assert((int)spec_and_key_len == spec_len + key_len);
  rv = secret_to_key_compute_key(buf, key_len,
                                 spec_and_key, spec_len,
                                 secret, secret_len, type);
  if (rv < 0)
    goto done;

  if (tor_memeq(buf, spec_and_key + spec_len, key_len))
    rv = S2K_OKAY;
  else
    rv = S2K_BAD_SECRET;

 done:
  memwipe(buf, 0, sizeof(buf));
  return rv;
}