aboutsummaryrefslogtreecommitdiff
path: root/src/lib/crypt_ops/crypto_rsa_nss.c
blob: 7abf6716f0893dab12a18f764e120162ee59eee4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
/* Copyright (c) 2001, Matej Pfajfar.
 * Copyright (c) 2001-2004, Roger Dingledine.
 * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
 * Copyright (c) 2007-2019, The Tor Project, Inc. */
/* See LICENSE for licensing information */

/**
 * \file crypto_rsa.c
 * \brief NSS implementations of our RSA code.
 **/

#include "lib/crypt_ops/crypto_rsa.h"

#include "lib/crypt_ops/crypto_nss_mgt.h"
#include "lib/crypt_ops/crypto_util.h"
#include "lib/ctime/di_ops.h"
#include "lib/encoding/binascii.h"
#include "lib/fs/files.h"
#include "lib/intmath/cmp.h"
#include "lib/intmath/muldiv.h"
#include "lib/log/log.h"
#include "lib/log/util_bug.h"

#include <string.h>

#include <keyhi.h>
#include <pk11pub.h>
#include <secder.h>

#ifdef ENABLE_OPENSSL
#include <openssl/rsa.h>
#include <openssl/evp.h>
#endif

/** Declaration for crypto_pk_t structure. */
struct crypto_pk_t
{
  SECKEYPrivateKey *seckey;
  SECKEYPublicKey *pubkey;
};

/** Return true iff <b>key</b> contains the private-key portion of the RSA
 * key. */
int
crypto_pk_key_is_private(const crypto_pk_t *key)
{
  return key && key->seckey;
}

/** used by tortls.c: wrap a SecKEYPublicKey in a crypto_pk_t. Take ownership
 * of the RSA object. */
crypto_pk_t *
crypto_pk_new_from_nss_pubkey(struct SECKEYPublicKeyStr *pub)
{
  crypto_pk_t *result = tor_malloc_zero(sizeof(crypto_pk_t));
  result->pubkey = pub;
  return result;
}

/** Return the SECKEYPublicKey for the provided crypto_pk_t. */
const SECKEYPublicKey *
crypto_pk_get_nss_pubkey(const crypto_pk_t *key)
{
  tor_assert(key);
  return key->pubkey;
}

/** Return the SECKEYPrivateKey for the provided crypto_pk_t, or NULL if it
 * does not exist. */
const SECKEYPrivateKey *
crypto_pk_get_nss_privkey(const crypto_pk_t *key)
{
  tor_assert(key);
  return key->seckey;
}

#ifdef ENABLE_OPENSSL
/** used by tortls.c: wrap an RSA* in a crypto_pk_t. Take ownership of the
 * RSA object. */
crypto_pk_t *
crypto_new_pk_from_openssl_rsa_(RSA *rsa)
{
  crypto_pk_t *pk = NULL;
  unsigned char *buf = NULL;
  int len = i2d_RSAPublicKey(rsa, &buf);
  RSA_free(rsa);

  if (len < 0 || buf == NULL)
    goto end;

  pk = crypto_pk_asn1_decode((const char *)buf, len);

 end:
  if (buf)
    OPENSSL_free(buf);
  return pk;
}

/** Helper, used by tor-gencert.c.  Return the RSA from a
 * crypto_pk_t. */
struct rsa_st *
crypto_pk_get_openssl_rsa_(crypto_pk_t *pk)
{
  size_t buflen = crypto_pk_keysize(pk)*16;
  unsigned char *buf = tor_malloc_zero(buflen);
  const unsigned char *cp = buf;
  RSA *rsa = NULL;

  int used = crypto_pk_asn1_encode_private(pk, (char*)buf, buflen);
  if (used < 0)
    goto end;
  rsa = d2i_RSAPrivateKey(NULL, &cp, used);

 end:
  memwipe(buf, 0, buflen);
  tor_free(buf);
  return rsa;
}

/** used by tortls.c: get an equivalent EVP_PKEY* for a crypto_pk_t.  Iff
 * private is set, include the private-key portion of the key. Return a valid
 * pointer on success, and NULL on failure. */
MOCK_IMPL(struct evp_pkey_st *,
crypto_pk_get_openssl_evp_pkey_,(crypto_pk_t *pk, int private))
{
  size_t buflen = crypto_pk_keysize(pk)*16;
  unsigned char *buf = tor_malloc_zero(buflen);
  const unsigned char *cp = buf;
  RSA *rsa = NULL;
  EVP_PKEY *result = NULL;

  if (private) {
    int len = crypto_pk_asn1_encode_private(pk, (char*)buf, buflen);
    if (len < 0)
      goto end;
    rsa = d2i_RSAPrivateKey(NULL, &cp, len);
  } else {
    int len = crypto_pk_asn1_encode(pk, (char*)buf, buflen);
    if (len < 0)
      goto end;
    rsa = d2i_RSAPublicKey(NULL, &cp, len);
  }
  if (!rsa)
    goto end;

  if (!(result = EVP_PKEY_new()))
    goto end;
  if (!(EVP_PKEY_assign_RSA(result, rsa))) {
    EVP_PKEY_free(result);
    RSA_free(rsa);
    result = NULL;
  }

 end:
  memwipe(buf, 0, buflen);
  tor_free(buf);
  return result;
}
#endif

/** Allocate and return storage for a public key.  The key itself will not yet
 * be set.
 */
MOCK_IMPL(crypto_pk_t *,
crypto_pk_new,(void))
{
  crypto_pk_t *result = tor_malloc_zero(sizeof(crypto_pk_t));
  return result;
}

/** Release the NSS objects held in <b>key</b> */
static void
crypto_pk_clear(crypto_pk_t *key)
{
  if (key->pubkey)
    SECKEY_DestroyPublicKey(key->pubkey);
  if (key->seckey)
    SECKEY_DestroyPrivateKey(key->seckey);
  memset(key, 0, sizeof(crypto_pk_t));
}

/** Release a reference to an asymmetric key; when all the references
 * are released, free the key.
 */
void
crypto_pk_free_(crypto_pk_t *key)
{
  if (!key)
    return;

  crypto_pk_clear(key);

  tor_free(key);
}

/** Generate a <b>bits</b>-bit new public/private keypair in <b>env</b>.
 * Return 0 on success, -1 on failure.
 */
MOCK_IMPL(int,
crypto_pk_generate_key_with_bits,(crypto_pk_t *key, int bits))
{
  tor_assert(key);

  PK11RSAGenParams params = {
    .keySizeInBits = bits,
    .pe = TOR_RSA_EXPONENT
  };

  int result = -1;
  PK11SlotInfo *slot = PK11_GetBestSlot(CKM_RSA_PKCS_KEY_PAIR_GEN, NULL);
  SECKEYPrivateKey *seckey = NULL;
  SECKEYPublicKey *pubkey = NULL;

  if (!slot) {
    crypto_nss_log_errors(LOG_WARN, "getting slot for RSA keygen");
    goto done;
  }

  seckey = PK11_GenerateKeyPair(slot, CKM_RSA_PKCS_KEY_PAIR_GEN, &params,
                                &pubkey,
                                PR_FALSE /*isPerm */,
                                PR_FALSE /*isSensitive*/,
                                NULL);
  if (seckey == NULL || pubkey == NULL) {
    crypto_nss_log_errors(LOG_WARN, "generating an RSA key");
    goto done;
  }

  crypto_pk_clear(key);
  key->seckey = seckey;
  key->pubkey = pubkey;
  seckey = NULL;
  pubkey = NULL;

  result = 0;
 done:
  if (slot)
    PK11_FreeSlot(slot);
  if (pubkey)
    SECKEY_DestroyPublicKey(pubkey);
  if (seckey)
    SECKEY_DestroyPrivateKey(seckey);

  return result;
}

/** Return true iff <b>env</b> is a valid private key.
 */
int
crypto_pk_is_valid_private_key(const crypto_pk_t *key)
{
  /* We don't need to do validation here, since unlike OpenSSL, NSS won't let
   * us load private keys without validating them. */
  return key && key->seckey;
}

/** Return true iff <b>env</b> contains a public key whose public exponent
 * equals 65537.
 */
int
crypto_pk_public_exponent_ok(const crypto_pk_t *key)
{
  return key &&
    key->pubkey &&
    key->pubkey->keyType == rsaKey &&
    DER_GetUInteger(&key->pubkey->u.rsa.publicExponent) == TOR_RSA_EXPONENT;
}

/** Compare two big-endian integers stored in a and b; return a tristate.
 */
STATIC int
secitem_uint_cmp(const SECItem *a, const SECItem *b)
{
  const unsigned abits = SECKEY_BigIntegerBitLength(a);
  const unsigned bbits = SECKEY_BigIntegerBitLength(b);

  if (abits < bbits)
    return -1;
  else if (abits > bbits)
    return 1;

  /* okay, they have the same number of bits set. Get a pair of aligned
   * pointers to their bytes that are set... */
  const unsigned nbytes = CEIL_DIV(abits, 8);
  tor_assert(nbytes <= a->len);
  tor_assert(nbytes <= b->len);

  const unsigned char *aptr = a->data + (a->len - nbytes);
  const unsigned char *bptr = b->data + (b->len - nbytes);

  /* And compare them. */
  return fast_memcmp(aptr, bptr, nbytes);
}

/** Compare the public-key components of a and b.  Return less than 0
 * if a\<b, 0 if a==b, and greater than 0 if a\>b.  A NULL key is
 * considered to be less than all non-NULL keys, and equal to itself.
 *
 * Note that this may leak information about the keys through timing.
 */
int
crypto_pk_cmp_keys(const crypto_pk_t *a, const crypto_pk_t *b)
{
  int result;
  char a_is_non_null = (a != NULL) && (a->pubkey != NULL);
  char b_is_non_null = (b != NULL) && (b->pubkey != NULL);
  char an_argument_is_null = !a_is_non_null | !b_is_non_null;

  result = tor_memcmp(&a_is_non_null, &b_is_non_null, sizeof(a_is_non_null));
  if (an_argument_is_null)
    return result;

  // This is all Tor uses with this structure.
  tor_assert(a->pubkey->keyType == rsaKey);
  tor_assert(b->pubkey->keyType == rsaKey);

  const SECItem *a_n, *a_e, *b_n, *b_e;
  a_n = &a->pubkey->u.rsa.modulus;
  b_n = &b->pubkey->u.rsa.modulus;
  a_e = &a->pubkey->u.rsa.publicExponent;
  b_e = &b->pubkey->u.rsa.publicExponent;

  result = secitem_uint_cmp(a_n, b_n);
  if (result)
    return result;
  return secitem_uint_cmp(a_e, b_e);
}

/** Return the size of the public key modulus in <b>env</b>, in bytes. */
size_t
crypto_pk_keysize(const crypto_pk_t *key)
{
  tor_assert(key);
  tor_assert(key->pubkey);
  return SECKEY_PublicKeyStrength(key->pubkey);
}

/** Return the size of the public key modulus of <b>env</b>, in bits. */
int
crypto_pk_num_bits(crypto_pk_t *key)
{
  tor_assert(key);
  tor_assert(key->pubkey);
  return SECKEY_PublicKeyStrengthInBits(key->pubkey);
}

/**
 * Make a copy of <b>key</b> and return it.
 */
crypto_pk_t *
crypto_pk_dup_key(crypto_pk_t *key)
{
  crypto_pk_t *result = crypto_pk_new();
  if (key->pubkey)
    result->pubkey = SECKEY_CopyPublicKey(key->pubkey);
  if (key->seckey)
    result->seckey = SECKEY_CopyPrivateKey(key->seckey);
  return result;
}

/** For testing: replace dest with src.  (Dest must have a refcount
 * of 1) */
void
crypto_pk_assign_public(crypto_pk_t *dest, const crypto_pk_t *src)
{
  crypto_pk_clear(dest);
  if (src->pubkey)
    dest->pubkey = SECKEY_CopyPublicKey(src->pubkey);
}

/** For testing: replace dest with src.  (Dest must have a refcount
 * of 1) */
void
crypto_pk_assign_private(crypto_pk_t *dest, const crypto_pk_t *src)
{
  crypto_pk_clear(dest);
  if (src->pubkey)
    dest->pubkey = SECKEY_CopyPublicKey(src->pubkey);
  if (src->seckey)
    dest->seckey = SECKEY_CopyPrivateKey(src->seckey);
}

/** Make a real honest-to-goodness copy of <b>env</b>, and return it.
 * Returns NULL on failure. */
crypto_pk_t *
crypto_pk_copy_full(crypto_pk_t *key)
{
  // These aren't reference-counted is nss, so it's fine to just
  // use the same function.
  return crypto_pk_dup_key(key);
}

static const CK_RSA_PKCS_OAEP_PARAMS oaep_params = {
            .hashAlg = CKM_SHA_1,
            .mgf = CKG_MGF1_SHA1,
            .source = CKZ_DATA_SPECIFIED,
            .pSourceData = NULL,
            .ulSourceDataLen = 0
};
static const SECItem oaep_item = {
            .type = siBuffer,
            .data = (unsigned char *) &oaep_params,
            .len = sizeof(oaep_params)
};

/** Return the mechanism code and parameters for a given padding method when
 * used with RSA */
static CK_MECHANISM_TYPE
padding_to_mechanism(int padding, SECItem **item_out)
{
  switch (padding) {
    case PK_PKCS1_OAEP_PADDING:
      *item_out = (SECItem *)&oaep_item;
      return CKM_RSA_PKCS_OAEP;
    default:
      tor_assert_unreached();
      *item_out = NULL;
      return CKM_INVALID_MECHANISM;
  }
}

/** Encrypt <b>fromlen</b> bytes from <b>from</b> with the public key
 * in <b>env</b>, using the padding method <b>padding</b>.  On success,
 * write the result to <b>to</b>, and return the number of bytes
 * written.  On failure, return -1.
 *
 * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
 * at least the length of the modulus of <b>env</b>.
 */
int
crypto_pk_public_encrypt(crypto_pk_t *env, char *to, size_t tolen,
                         const char *from, size_t fromlen, int padding)
{
  tor_assert(env);
  tor_assert(to);
  tor_assert(from);
  tor_assert(tolen < INT_MAX);
  tor_assert(fromlen < INT_MAX);

  if (BUG(! env->pubkey))
    return -1;

  unsigned int result_len = 0;
  SECItem *item = NULL;
  CK_MECHANISM_TYPE m = padding_to_mechanism(padding, &item);

  SECStatus s = PK11_PubEncrypt(env->pubkey, m, item,
                                (unsigned char *)to, &result_len,
                                (unsigned int)tolen,
                                (const unsigned char *)from,
                                (unsigned int)fromlen,
                                NULL);
  if (s != SECSuccess) {
    crypto_nss_log_errors(LOG_WARN, "encrypting to an RSA key");
    return -1;
  }

  return (int)result_len;
}

/** Decrypt <b>fromlen</b> bytes from <b>from</b> with the private key
 * in <b>env</b>, using the padding method <b>padding</b>.  On success,
 * write the result to <b>to</b>, and return the number of bytes
 * written.  On failure, return -1.
 *
 * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
 * at least the length of the modulus of <b>key</b>.
 */
int
crypto_pk_private_decrypt(crypto_pk_t *key, char *to,
                          size_t tolen,
                          const char *from, size_t fromlen,
                          int padding, int warnOnFailure)
{
  tor_assert(key);
  tor_assert(to);
  tor_assert(from);
  tor_assert(tolen < INT_MAX);
  tor_assert(fromlen < INT_MAX);

  if (!crypto_pk_key_is_private(key))
    return -1; /* Not a private key. */

  unsigned int result_len = 0;
  SECItem *item = NULL;
  CK_MECHANISM_TYPE m = padding_to_mechanism(padding, &item);
  SECStatus s = PK11_PrivDecrypt(key->seckey, m, item,
                                 (unsigned char *)to, &result_len,
                                 (unsigned int)tolen,
                                 (const unsigned char *)from,
                                 (unsigned int)fromlen);

  if (s != SECSuccess) {
    const int severity = warnOnFailure ? LOG_WARN : LOG_INFO;
    crypto_nss_log_errors(severity, "decrypting with an RSA key");
    return -1;
  }

  return (int)result_len;
}

/** Check the signature in <b>from</b> (<b>fromlen</b> bytes long) with the
 * public key in <b>key</b>, using PKCS1 padding.  On success, write the
 * signed data to <b>to</b>, and return the number of bytes written.
 * On failure, return -1.
 *
 * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
 * at least the length of the modulus of <b>key</b>.
 */
MOCK_IMPL(int,
crypto_pk_public_checksig,(const crypto_pk_t *key, char *to,
                           size_t tolen,
                           const char *from, size_t fromlen))
{
  tor_assert(key);
  tor_assert(to);
  tor_assert(from);
  tor_assert(tolen < INT_MAX);
  tor_assert(fromlen < INT_MAX);
  tor_assert(key->pubkey);

  SECItem sig = {
                 .type = siBuffer,
                 .data = (unsigned char *) from,
                 .len = (unsigned int) fromlen,
  };
  SECItem dsig = {
                  .type = siBuffer,
                  .data = (unsigned char *) to,
                  .len = (unsigned int) tolen
  };
  SECStatus s;
  s = PK11_VerifyRecover(key->pubkey, &sig, &dsig, NULL);
  if (s != SECSuccess)
    return -1;

  return (int)dsig.len;
}

/** Sign <b>fromlen</b> bytes of data from <b>from</b> with the private key in
 * <b>env</b>, using PKCS1 padding.  On success, write the signature to
 * <b>to</b>, and return the number of bytes written.  On failure, return
 * -1.
 *
 * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
 * at least the length of the modulus of <b>env</b>.
 */
int
crypto_pk_private_sign(const crypto_pk_t *key, char *to, size_t tolen,
                       const char *from, size_t fromlen)
{
  tor_assert(key);
  tor_assert(to);
  tor_assert(from);
  tor_assert(tolen < INT_MAX);
  tor_assert(fromlen < INT_MAX);

  if (BUG(!crypto_pk_key_is_private(key)))
    return -1;

  SECItem sig = {
                 .type = siBuffer,
                 .data = (unsigned char *)to,
                 .len = (unsigned int) tolen
  };
  SECItem hash = {
                 .type = siBuffer,
                 .data = (unsigned char *)from,
                 .len = (unsigned int) fromlen
  };
  CK_MECHANISM_TYPE m = CKM_RSA_PKCS;
  SECStatus s = PK11_SignWithMechanism(key->seckey, m, NULL,
                                       &sig, &hash);

  if (s != SECSuccess) {
    crypto_nss_log_errors(LOG_WARN, "signing with an RSA key");
    return -1;
  }

  return (int)sig.len;
}

/* "This has lead to people trading hard-to-find object identifiers and ASN.1
 * definitions like baseball cards" - Peter Gutmann, "X.509 Style Guide". */
static const unsigned char RSA_OID[] = {
  /* RSADSI */ 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d,
  /* PKCS1 */ 0x01, 0x01,
  /* RSA */ 0x01
};

/** ASN.1-encode the public portion of <b>pk</b> into <b>dest</b>.
 * Return -1 on error, or the number of characters used on success.
 */
int
crypto_pk_asn1_encode(const crypto_pk_t *pk, char *dest, size_t dest_len)
{
  tor_assert(pk);
  if (pk->pubkey == NULL)
    return -1;

  CERTSubjectPublicKeyInfo *info;
  info = SECKEY_CreateSubjectPublicKeyInfo(pk->pubkey);
  if (! info)
    return -1;

  const SECItem *item = &info->subjectPublicKey;
  size_t actual_len = (item->len) >> 3; /* bits to bytes */
  size_t n_used = MIN(actual_len, dest_len);
  memcpy(dest, item->data, n_used);

  SECKEY_DestroySubjectPublicKeyInfo(info);
  return (int) n_used;
}

/** Decode an ASN.1-encoded public key from <b>str</b>; return the result on
 * success and NULL on failure.
 */
crypto_pk_t *
crypto_pk_asn1_decode(const char *str, size_t len)
{
  tor_assert(str);
  if (len >= INT_MAX)
    return NULL;
  CERTSubjectPublicKeyInfo info = {
             .algorithm = {
                           .algorithm = {
                                         .type = siDEROID,
                                         .data = (unsigned char *)RSA_OID,
                                         .len = sizeof(RSA_OID)
                                           }
                           },
             .subjectPublicKey = {
                   .type = siBuffer,
                   .data = (unsigned char *)str,
                   .len = (unsigned int)(len << 3) /* bytes to bits */
                                  }
  };

  SECKEYPublicKey *pub = SECKEY_ExtractPublicKey(&info);
  if (pub == NULL)
    return NULL;

  crypto_pk_t *result = crypto_pk_new();
  result->pubkey = pub;
  return result;
}

DISABLE_GCC_WARNING(unused-parameter)

/** Given a crypto_pk_t <b>pk</b>, allocate a new buffer containing the Base64
 * encoding of the DER representation of the private key into the
 * <b>dest_len</b>-byte buffer in <b>dest</b>.
 * Return the number of bytes written on success, -1 on failure.
 */
int
crypto_pk_asn1_encode_private(const crypto_pk_t *pk,
                              char *dest, size_t destlen)
{
  tor_assert(destlen <= INT_MAX);
  if (!crypto_pk_key_is_private(pk))
    return -1;

  SECKEYPrivateKeyInfo *info = PK11_ExportPrivKeyInfo(pk->seckey, NULL);
  if (!info)
    return -1;
  SECItem *item = &info->privateKey;

  if (destlen < item->len) {
    SECKEY_DestroyPrivateKeyInfo(info, PR_TRUE);
    return -1;
  }
  int result = (int)item->len;
  memcpy(dest, item->data, item->len);
  SECKEY_DestroyPrivateKeyInfo(info, PR_TRUE);

  return result;
}

/** Given a buffer containing the DER representation of the
 * private key <b>str</b>, decode and return the result on success, or NULL
 * on failure.
 *
 * If <b>max_bits</b> is nonnegative, reject any key longer than max_bits
 * without performing any expensive validation on it.
 */
crypto_pk_t *
crypto_pk_asn1_decode_private(const char *str, size_t len, int max_bits)
{
  tor_assert(str);
  tor_assert(len < INT_MAX);
  PK11SlotInfo *slot = PK11_GetBestSlot(CKM_RSA_PKCS, NULL);
  if (!slot)
    return NULL;

  SECKEYPrivateKeyInfo info = {
             .algorithm = {
                           .algorithm = {
                                         .type = siBuffer,
                                         .data = (unsigned char *)RSA_OID,
                                         .len = sizeof(RSA_OID)
                                           }
                           },
             .privateKey = {
                            .type = siBuffer,
                            .data = (unsigned char *)str,
                            .len = (int)len,
                            }
  };

  SECStatus s;
  SECKEYPrivateKey *seckey = NULL;

  s = PK11_ImportPrivateKeyInfoAndReturnKey(slot, &info,
                                            NULL /* nickname */,
                                            NULL /* publicValue */,
                                            PR_FALSE /* isPerm */,
                                            PR_FALSE /* isPrivate */,
                                            KU_ALL /* keyUsage */,
                                            &seckey, NULL);

  crypto_pk_t *output = NULL;

  if (s == SECSuccess && seckey) {
    output = crypto_pk_new();
    output->seckey = seckey;
    output->pubkey = SECKEY_ConvertToPublicKey(seckey);
    tor_assert(output->pubkey);
  } else {
    crypto_nss_log_errors(LOG_WARN, "decoding an RSA private key");
  }

  if (! crypto_pk_is_valid_private_key(output)) {
    crypto_pk_free(output);
    output = NULL;
  }

  if (output) {
    const int bits = SECKEY_PublicKeyStrengthInBits(output->pubkey);
    if (max_bits >= 0 && bits > max_bits) {
      log_info(LD_CRYPTO, "Private key longer than expected.");
      crypto_pk_free(output);
      output = NULL;
    }
  }

  if (slot)
    PK11_FreeSlot(slot);

  return output;
}