summaryrefslogtreecommitdiff
path: root/src/lib/crypt_ops/crypto_rsa.c
blob: 6a9e2948f1bd42e6238c34287067aac7201e8088 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
/* Copyright (c) 2001, Matej Pfajfar.
 * Copyright (c) 2001-2004, Roger Dingledine.
 * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
 * Copyright (c) 2007-2018, The Tor Project, Inc. */
/* See LICENSE for licensing information */

/**
 * \file crypto_rsa.c
 * \brief Block of functions related with RSA utilities and operations.
 **/

#include "lib/crypt_ops/crypto_cipher.h"
#include "lib/crypt_ops/crypto_curve25519.h"
#include "lib/crypt_ops/crypto_digest.h"
#include "lib/crypt_ops/crypto_format.h"
#include "lib/crypt_ops/compat_openssl.h"
#include "lib/crypt_ops/crypto_rand.h"
#include "lib/crypt_ops/crypto_rsa.h"
#include "lib/crypt_ops/crypto_util.h"
#include "lib/ctime/di_ops.h"
#include "lib/log/util_bug.h"
#include "lib/fs/files.h"

#include "lib/log/log.h"
#include "lib/encoding/binascii.h"
#include "lib/encoding/pem.h"

#include <string.h>
#ifdef HAVE_SYS_STAT_H
#include <sys/stat.h>
#endif

/** Return the number of bytes added by padding method <b>padding</b>.
 */
int
crypto_get_rsa_padding_overhead(int padding)
{
  switch (padding)
    {
    case PK_PKCS1_OAEP_PADDING: return PKCS1_OAEP_PADDING_OVERHEAD;
    default: tor_assert(0); return -1; // LCOV_EXCL_LINE
    }
}

#ifdef ENABLE_OPENSSL
/** Given a padding method <b>padding</b>, return the correct OpenSSL constant.
 */
int
crypto_get_rsa_padding(int padding)
{
  switch (padding)
    {
    case PK_PKCS1_OAEP_PADDING: return RSA_PKCS1_OAEP_PADDING;
    default: tor_assert(0); return -1; // LCOV_EXCL_LINE
    }
}
#endif

/** Compare the public-key components of a and b.  Return non-zero iff
 * a==b.  A NULL key is considered to be distinct from all non-NULL
 * keys, and equal to itself.
 *
 *  Note that this may leak information about the keys through timing.
 */
int
crypto_pk_eq_keys(const crypto_pk_t *a, const crypto_pk_t *b)
{
  return (crypto_pk_cmp_keys(a, b) == 0);
}

/** Perform a hybrid (public/secret) encryption on <b>fromlen</b>
 * bytes of data from <b>from</b>, with padding type 'padding',
 * storing the results on <b>to</b>.
 *
 * Returns the number of bytes written on success, -1 on failure.
 *
 * The encrypted data consists of:
 *   - The source data, padded and encrypted with the public key, if the
 *     padded source data is no longer than the public key, and <b>force</b>
 *     is false, OR
 *   - The beginning of the source data prefixed with a 16-byte symmetric key,
 *     padded and encrypted with the public key; followed by the rest of
 *     the source data encrypted in AES-CTR mode with the symmetric key.
 *
 * NOTE that this format does not authenticate the symmetrically encrypted
 * part of the data, and SHOULD NOT BE USED for new protocols.
 */
int
crypto_pk_obsolete_public_hybrid_encrypt(crypto_pk_t *env,
                                char *to, size_t tolen,
                                const char *from,
                                size_t fromlen,
                                int padding, int force)
{
  int overhead, outlen, r;
  size_t pkeylen, symlen;
  crypto_cipher_t *cipher = NULL;
  char *buf = NULL;

  tor_assert(env);
  tor_assert(from);
  tor_assert(to);
  tor_assert(fromlen < SIZE_T_CEILING);

  overhead = crypto_get_rsa_padding_overhead(padding);
  pkeylen = crypto_pk_keysize(env);

  if (!force && fromlen+overhead <= pkeylen) {
    /* It all fits in a single encrypt. */
    return crypto_pk_public_encrypt(env,to,
                                    tolen,
                                    from,fromlen,padding);
  }
  tor_assert(tolen >= fromlen + overhead + CIPHER_KEY_LEN);
  tor_assert(tolen >= pkeylen);

  char key[CIPHER_KEY_LEN];
  crypto_rand(key, sizeof(key)); /* generate a new key. */
  cipher = crypto_cipher_new(key);

  buf = tor_malloc(pkeylen+1);
  memcpy(buf, key, CIPHER_KEY_LEN);
  memcpy(buf+CIPHER_KEY_LEN, from, pkeylen-overhead-CIPHER_KEY_LEN);

  /* Length of symmetrically encrypted data. */
  symlen = fromlen-(pkeylen-overhead-CIPHER_KEY_LEN);

  outlen = crypto_pk_public_encrypt(env,to,tolen,buf,pkeylen-overhead,padding);
  if (outlen!=(int)pkeylen) {
    goto err;
  }
  r = crypto_cipher_encrypt(cipher, to+outlen,
                            from+pkeylen-overhead-CIPHER_KEY_LEN, symlen);

  if (r<0) goto err;
  memwipe(buf, 0, pkeylen);
  memwipe(key, 0, sizeof(key));
  tor_free(buf);
  crypto_cipher_free(cipher);
  tor_assert(outlen+symlen < INT_MAX);
  return (int)(outlen + symlen);
 err:

  memwipe(buf, 0, pkeylen);
  memwipe(key, 0, sizeof(key));
  tor_free(buf);
  crypto_cipher_free(cipher);
  return -1;
}

/** Invert crypto_pk_obsolete_public_hybrid_encrypt. Returns the number of
 * bytes written on success, -1 on failure.
 *
 * NOTE that this format does not authenticate the symmetrically encrypted
 * part of the data, and SHOULD NOT BE USED for new protocols.
 */
int
crypto_pk_obsolete_private_hybrid_decrypt(crypto_pk_t *env,
                                 char *to,
                                 size_t tolen,
                                 const char *from,
                                 size_t fromlen,
                                 int padding, int warnOnFailure)
{
  int outlen, r;
  size_t pkeylen;
  crypto_cipher_t *cipher = NULL;
  char *buf = NULL;

  tor_assert(fromlen < SIZE_T_CEILING);
  pkeylen = crypto_pk_keysize(env);

  if (fromlen <= pkeylen) {
    return crypto_pk_private_decrypt(env,to,tolen,from,fromlen,padding,
                                     warnOnFailure);
  }

  buf = tor_malloc(pkeylen);
  outlen = crypto_pk_private_decrypt(env,buf,pkeylen,from,pkeylen,padding,
                                     warnOnFailure);
  if (outlen<0) {
    log_fn(warnOnFailure?LOG_WARN:LOG_DEBUG, LD_CRYPTO,
           "Error decrypting public-key data");
    goto err;
  }
  if (outlen < CIPHER_KEY_LEN) {
    log_fn(warnOnFailure?LOG_WARN:LOG_INFO, LD_CRYPTO,
           "No room for a symmetric key");
    goto err;
  }
  cipher = crypto_cipher_new(buf);
  if (!cipher) {
    goto err;
  }
  memcpy(to,buf+CIPHER_KEY_LEN,outlen-CIPHER_KEY_LEN);
  outlen -= CIPHER_KEY_LEN;
  tor_assert(tolen - outlen >= fromlen - pkeylen);
  r = crypto_cipher_decrypt(cipher, to+outlen, from+pkeylen, fromlen-pkeylen);
  if (r<0)
    goto err;
  memwipe(buf,0,pkeylen);
  tor_free(buf);
  crypto_cipher_free(cipher);
  tor_assert(outlen + fromlen < INT_MAX);
  return (int)(outlen + (fromlen-pkeylen));
 err:
  memwipe(buf,0,pkeylen);
  tor_free(buf);
  crypto_cipher_free(cipher);
  return -1;
}

/** Given a private or public key <b>pk</b>, put a fingerprint of the
 * public key into <b>fp_out</b> (must have at least FINGERPRINT_LEN+1 bytes of
 * space).  Return 0 on success, -1 on failure.
 *
 * Fingerprints are computed as the SHA1 digest of the ASN.1 encoding
 * of the public key, converted to hexadecimal, in upper case, with a
 * space after every four digits.
 *
 * If <b>add_space</b> is false, omit the spaces.
 */
int
crypto_pk_get_fingerprint(crypto_pk_t *pk, char *fp_out, int add_space)
{
  char digest[DIGEST_LEN];
  char hexdigest[HEX_DIGEST_LEN+1];
  if (crypto_pk_get_digest(pk, digest)) {
    return -1;
  }
  base16_encode(hexdigest,sizeof(hexdigest),digest,DIGEST_LEN);
  if (add_space) {
    crypto_add_spaces_to_fp(fp_out, FINGERPRINT_LEN+1, hexdigest);
  } else {
    strncpy(fp_out, hexdigest, HEX_DIGEST_LEN+1);
  }
  return 0;
}

/** Given a private or public key <b>pk</b>, put a hashed fingerprint of
 * the public key into <b>fp_out</b> (must have at least FINGERPRINT_LEN+1
 * bytes of space).  Return 0 on success, -1 on failure.
 *
 * Hashed fingerprints are computed as the SHA1 digest of the SHA1 digest
 * of the ASN.1 encoding of the public key, converted to hexadecimal, in
 * upper case.
 */
int
crypto_pk_get_hashed_fingerprint(crypto_pk_t *pk, char *fp_out)
{
  char digest[DIGEST_LEN], hashed_digest[DIGEST_LEN];
  if (crypto_pk_get_digest(pk, digest)) {
    return -1;
  }
  if (crypto_digest(hashed_digest, digest, DIGEST_LEN) < 0) {
    return -1;
  }
  base16_encode(fp_out, FINGERPRINT_LEN + 1, hashed_digest, DIGEST_LEN);
  return 0;
}

/** Copy <b>in</b> to the <b>outlen</b>-byte buffer <b>out</b>, adding spaces
 * every four characters. */
void
crypto_add_spaces_to_fp(char *out, size_t outlen, const char *in)
{
  int n = 0;
  char *end = out+outlen;
  tor_assert(outlen < SIZE_T_CEILING);

  while (*in && out<end) {
    *out++ = *in++;
    if (++n == 4 && *in && out<end) {
      n = 0;
      *out++ = ' ';
    }
  }
  tor_assert(out<end);
  *out = '\0';
}

/** Check a siglen-byte long signature at <b>sig</b> against
 * <b>datalen</b> bytes of data at <b>data</b>, using the public key
 * in <b>env</b>. Return 0 if <b>sig</b> is a correct signature for
 * SHA1(data).  Else return -1.
 */
MOCK_IMPL(int,
crypto_pk_public_checksig_digest,(crypto_pk_t *env, const char *data,
                                  size_t datalen, const char *sig,
                                  size_t siglen))
{
  char digest[DIGEST_LEN];
  char *buf;
  size_t buflen;
  int r;

  tor_assert(env);
  tor_assert(data);
  tor_assert(sig);
  tor_assert(datalen < SIZE_T_CEILING);
  tor_assert(siglen < SIZE_T_CEILING);

  if (crypto_digest(digest,data,datalen)<0) {
    log_warn(LD_BUG, "couldn't compute digest");
    return -1;
  }
  buflen = crypto_pk_keysize(env);
  buf = tor_malloc(buflen);
  r = crypto_pk_public_checksig(env,buf,buflen,sig,siglen);
  if (r != DIGEST_LEN) {
    log_warn(LD_CRYPTO, "Invalid signature");
    tor_free(buf);
    return -1;
  }
  if (tor_memneq(buf, digest, DIGEST_LEN)) {
    log_warn(LD_CRYPTO, "Signature mismatched with digest.");
    tor_free(buf);
    return -1;
  }
  tor_free(buf);

  return 0;
}

/** Compute a SHA1 digest of <b>fromlen</b> bytes of data stored at
 * <b>from</b>; sign the data with the private key in <b>env</b>, and
 * store it in <b>to</b>.  Return the number of bytes written on
 * success, and -1 on failure.
 *
 * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
 * at least the length of the modulus of <b>env</b>.
 */
int
crypto_pk_private_sign_digest(crypto_pk_t *env, char *to, size_t tolen,
                              const char *from, size_t fromlen)
{
  int r;
  char digest[DIGEST_LEN];
  if (crypto_digest(digest,from,fromlen)<0)
    return -1;
  r = crypto_pk_private_sign(env,to,tolen,digest,DIGEST_LEN);
  memwipe(digest, 0, sizeof(digest));
  return r;
}

/** Given a private or public key <b>pk</b>, put a SHA1 hash of the
 * public key into <b>digest_out</b> (must have DIGEST_LEN bytes of space).
 * Return 0 on success, -1 on failure.
 */
int
crypto_pk_get_digest(const crypto_pk_t *pk, char *digest_out)
{
  char *buf;
  size_t buflen;
  int len;
  int rv = -1;

  buflen = crypto_pk_keysize(pk)*2;
  buf = tor_malloc(buflen);
  len = crypto_pk_asn1_encode(pk, buf, buflen);
  if (len < 0)
    goto done;

  if (crypto_digest(digest_out, buf, len) < 0)
    goto done;

  rv = 0;
  done:
  tor_free(buf);
  return rv;
}

/** Compute all digests of the DER encoding of <b>pk</b>, and store them
 * in <b>digests_out</b>.  Return 0 on success, -1 on failure. */
int
crypto_pk_get_common_digests(crypto_pk_t *pk, common_digests_t *digests_out)
{
  char *buf;
  size_t buflen;
  int len;
  int rv = -1;

  buflen = crypto_pk_keysize(pk)*2;
  buf = tor_malloc(buflen);
  len = crypto_pk_asn1_encode(pk, buf, buflen);
  if (len < 0)
    goto done;

  if (crypto_common_digests(digests_out, (char*)buf, len) < 0)
    goto done;

  rv = 0;
 done:
  tor_free(buf);
  return rv;
}

static const char RSA_PUBLIC_TAG[] = "RSA PUBLIC KEY";
static const char RSA_PRIVATE_TAG[] = "RSA PRIVATE KEY";

/* These are overestimates for how many extra bytes we might need to encode
 * a key in DER */
#define PRIVATE_ASN_MAX_OVERHEAD_FACTOR 16
#define PUBLIC_ASN_MAX_OVERHEAD_FACTOR 3

/** Helper: PEM-encode <b>env</b> and write it to a newly allocated string.
 * If <b>private_key</b>, write the private part of <b>env</b>; otherwise
 * write only the public portion. On success, set *<b>dest</b> to the new
 * string, *<b>len</b> to the string's length, and return 0.  On failure,
 * return -1.
 */
static int
crypto_pk_write_to_string_generic(crypto_pk_t *env,
                                  char **dest, size_t *len,
                                  bool private_key)
{
  const int factor =
    private_key ? PRIVATE_ASN_MAX_OVERHEAD_FACTOR
                : PUBLIC_ASN_MAX_OVERHEAD_FACTOR;
  size_t buflen = crypto_pk_keysize(env) * factor;
  const char *tag =
    private_key ? RSA_PRIVATE_TAG : RSA_PUBLIC_TAG;
  char *buf = tor_malloc(buflen);
  char *result = NULL;
  size_t resultlen = 0;
  int rv = -1;

  int n = private_key
    ? crypto_pk_asn1_encode_private(env, buf, buflen)
    : crypto_pk_asn1_encode(env, buf, buflen);
  if (n < 0)
    goto done;

  resultlen = pem_encoded_size(n, tag);
  result = tor_malloc(resultlen);
  if (pem_encode(result, resultlen,
                 (const unsigned char *)buf, n, tag) < 0) {
    goto done;
  }

  *dest = result;
  *len = resultlen;
  rv = 0;

 done:
  if (rv < 0 && result) {
    memwipe(result, 0, resultlen);
    tor_free(result);
  }
  memwipe(buf, 0, buflen);
  tor_free(buf);
  return rv;
}

/** PEM-encode the public key portion of <b>env</b> and write it to a
 * newly allocated string.  On success, set *<b>dest</b> to the new
 * string, *<b>len</b> to the string's length, and return 0.  On
 * failure, return -1.
 */
int
crypto_pk_write_public_key_to_string(crypto_pk_t *env,
                                     char **dest, size_t *len)
{
  return crypto_pk_write_to_string_generic(env, dest, len, false);
}

/** PEM-encode the private key portion of <b>env</b> and write it to a
 * newly allocated string.  On success, set *<b>dest</b> to the new
 * string, *<b>len</b> to the string's length, and return 0.  On
 * failure, return -1.
 */
int
crypto_pk_write_private_key_to_string(crypto_pk_t *env,
                                          char **dest, size_t *len)
{
  return crypto_pk_write_to_string_generic(env, dest, len, true);
}

/**
 * Helper. Read a PEM-encoded RSA from the first <b>len</b> characters of
 * <b>src</b>, and store the result in <b>env</b>.  If <b>private_key</b>,
 * expect a private key; otherwise expect a public key. Return 0 on success,
 * -1 on failure.  If len is -1, the string is nul-terminated.
 */
static int
crypto_pk_read_from_string_generic(crypto_pk_t *env, const char *src,
                                   size_t len, bool private_key)
{
  if (len == (size_t)-1) // "-1" indicates "use the length of the string."
    len = strlen(src);

  const char *tag =
    private_key ? RSA_PRIVATE_TAG : RSA_PUBLIC_TAG;
  size_t buflen = len;
  uint8_t *buf = tor_malloc(buflen);
  int rv = -1;

  int n = pem_decode(buf, buflen, src, len, tag);
  if (n < 0)
    goto done;

  crypto_pk_t *pk = private_key
    ? crypto_pk_asn1_decode_private((const char*)buf, n)
    : crypto_pk_asn1_decode((const char*)buf, n);
  if (! pk)
    goto done;

  if (private_key)
    crypto_pk_assign_private(env, pk);
  else
    crypto_pk_assign_public(env, pk);
  crypto_pk_free(pk);
  rv = 0;

 done:
  memwipe(buf, 0, buflen);
  tor_free(buf);
  return rv;
}

/** Read a PEM-encoded public key from the first <b>len</b> characters of
 * <b>src</b>, and store the result in <b>env</b>.  Return 0 on success, -1 on
 * failure.  If len is -1, the string is nul-terminated.
 */
int
crypto_pk_read_public_key_from_string(crypto_pk_t *env,
                                      const char *src, size_t len)
{
  return crypto_pk_read_from_string_generic(env, src, len, false);
}

/** Read a PEM-encoded private key from the <b>len</b>-byte string <b>src</b>
 * into <b>env</b>.  Return 0 on success, -1 on failure.  If len is -1,
 * the string is nul-terminated.
 */
int
crypto_pk_read_private_key_from_string(crypto_pk_t *env,
                                       const char *src, ssize_t len)
{
  return crypto_pk_read_from_string_generic(env, src, len, true);
}

/** Read a PEM-encoded private key from the file named by
 * <b>keyfile</b> into <b>env</b>.  Return 0 on success, -1 on failure.
 */
int
crypto_pk_read_private_key_from_filename(crypto_pk_t *env,
                                         const char *keyfile)
{
  struct stat st;
  char *buf = read_file_to_str(keyfile, 0, &st);
  if (!buf)
    return -1;

  int rv = crypto_pk_read_private_key_from_string(env, buf, st.st_size);
  memwipe(buf, 0, st.st_size);
  tor_free(buf);
  return rv;
}

/** Write the private key from <b>env</b> into the file named by <b>fname</b>,
 * PEM-encoded.  Return 0 on success, -1 on failure.
 */
int
crypto_pk_write_private_key_to_filename(crypto_pk_t *env,
                                        const char *fname)
{
  char *s = NULL;
  size_t n = 0;

  if (crypto_pk_write_private_key_to_string(env, &s, &n) < 0)
    return -1;

  int rv = write_bytes_to_file(fname, s, n, 0);
  memwipe(s, 0, n);
  tor_free(s);
  return rv;
}

/** Given a crypto_pk_t <b>pk</b>, allocate a new buffer containing the
 * Base64 encoding of the DER representation of the private key as a NUL
 * terminated string, and return it via <b>priv_out</b>.  Return 0 on
 * success, -1 on failure.
 *
 * It is the caller's responsibility to sanitize and free the resulting buffer.
 */
int
crypto_pk_base64_encode_private(const crypto_pk_t *pk, char **priv_out)
{
  size_t buflen = crypto_pk_keysize(pk)*16;
  char *buf = tor_malloc(buflen);
  char *result = NULL;
  size_t reslen = 0;
  bool ok = false;

  int n = crypto_pk_asn1_encode_private(pk, buf, buflen);

  if (n < 0)
    goto done;

  reslen = base64_encode_size(n, 0)+1;
  result = tor_malloc(reslen);
  if (base64_encode(result, reslen, buf, n, 0) < 0)
    goto done;

  ok = true;

 done:
  memwipe(buf, 0, buflen);
  tor_free(buf);
  if (result && ! ok) {
    memwipe(result, 0, reslen);
    tor_free(result);
  }
  *priv_out = result;
  return ok ? 0 : -1;
}

/** Given a string containing the Base64 encoded DER representation of the
 * private key <b>str</b>, decode and return the result on success, or NULL
 * on failure.
 */
crypto_pk_t *
crypto_pk_base64_decode_private(const char *str, size_t len)
{
  crypto_pk_t *pk = NULL;

  char *der = tor_malloc_zero(len + 1);
  int der_len = base64_decode(der, len, str, len);
  if (der_len <= 0) {
    log_warn(LD_CRYPTO, "Stored RSA private key seems corrupted (base64).");
    goto out;
  }

  pk = crypto_pk_asn1_decode_private(der, der_len);

 out:
  memwipe(der, 0, len+1);
  tor_free(der);

  return pk;
}