summaryrefslogtreecommitdiff
path: root/src/lib/crypt_ops/crypto_ope.c
blob: ed832d852e95602fe5a0b5eb3a6635eb816edd51 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
/* Copyright (c) 2018-2019, The Tor Project, Inc. */
/* See LICENSE for licensing information */

/**
 * A rudimentary order-preserving encryption scheme.
 *
 * To compute the encryption of N, this scheme uses an AES-CTR stream to
 * generate M-byte values, and adds the first N of them together. (+1 each to
 * insure that the ciphertexts are strictly decreasing.)
 *
 * We use this for generating onion service revision counters based on the
 * current time, without leaking the amount of skew in our view of the current
 * time.  MUCH more analysis would be needed before using it for anything
 * else!
 */

#include "orconfig.h"

#define CRYPTO_OPE_PRIVATE
#include "lib/crypt_ops/crypto_ope.h"
#include "lib/crypt_ops/crypto_util.h"
#include "lib/crypt_ops/crypto_cipher.h"
#include "lib/log/util_bug.h"
#include "lib/malloc/malloc.h"
#include "lib/arch/bytes.h"

#include <string.h>

/**
 * How infrequent should the precomputed values be for this encryption?
 * The choice of this value creates a space/time tradeoff.
 *
 * Note that this value must be a multiple of 16; see
 * ope_get_cipher()
 */
#define SAMPLE_INTERVAL 1024
/** Number of precomputed samples to make for each OPE key. */
#define N_SAMPLES (OPE_INPUT_MAX / SAMPLE_INTERVAL)

struct crypto_ope_t {
  /** An AES key for use with this object. */
  uint8_t key[OPE_KEY_LEN];
  /** Cached intermediate encryption values at SAMPLE_INTERVAL,
   * SAMPLE_INTERVAL*2,...SAMPLE_INTERVAL*N_SAMPLES */
  uint64_t samples[N_SAMPLES];
};

/** The type to add up in order to produce our OPE ciphertexts */
typedef uint16_t ope_val_t;

#ifdef WORDS_BIGENDIAN
/** Convert an OPE value from little-endian. */
static inline ope_val_t
ope_val_from_le(ope_val_t x)
{
  return
    ((x) >> 8) |
    (((x)&0xff) << 8);
}
#else /* !defined(WORDS_BIGENDIAN) */
#define ope_val_from_le(x) (x)
#endif /* defined(WORDS_BIGENDIAN) */

/**
 * Return a new AES256-CTR stream cipher object for <b>ope</b>, ready to yield
 * bytes from the stream at position <b>initial_idx</b>.
 *
 * Note that because the index is converted directly to an IV, it must be a
 * multiple of the AES block size (16).
 */
STATIC crypto_cipher_t *
ope_get_cipher(const crypto_ope_t *ope, uint32_t initial_idx)
{
  uint8_t iv[CIPHER_IV_LEN];
  tor_assert((initial_idx & 0xf) == 0);
  uint32_t n = tor_htonl(initial_idx >> 4);
  memset(iv, 0, sizeof(iv));
  memcpy(iv + CIPHER_IV_LEN - sizeof(n), &n, sizeof(n));

  return crypto_cipher_new_with_iv_and_bits(ope->key,
                                            iv,
                                            OPE_KEY_LEN * 8);
}

/**
 * Retrieve and add the next <b>n</b> values from the stream cipher <b>c</b>,
 * and return their sum.
 *
 * Note that values are taken in little-endian order (for performance on
 * prevalent hardware), and are mapped from range 0..2^n-1 to range 1..2^n (so
 * that each input encrypts to a different output).
 *
 * NOTE: this function is not constant-time.
 */
STATIC uint64_t
sum_values_from_cipher(crypto_cipher_t *c, size_t n)
{
#define BUFSZ 256
  ope_val_t buf[BUFSZ];
  uint64_t total = 0;
  unsigned i;
  while (n >= BUFSZ) {
    memset(buf, 0, sizeof(buf));
    crypto_cipher_crypt_inplace(c, (char*)buf, BUFSZ*sizeof(ope_val_t));

    for (i = 0; i < BUFSZ; ++i) {
      total += ope_val_from_le(buf[i]);
      total += 1;
    }
    n -= BUFSZ;
  }

  memset(buf, 0, n*sizeof(ope_val_t));
  crypto_cipher_crypt_inplace(c, (char*)buf, n*sizeof(ope_val_t));
  for (i = 0; i < n; ++i) {
    total += ope_val_from_le(buf[i]);
    total += 1;
  }

  memset(buf, 0, sizeof(buf));
  return total;
}

/**
 * Return a new crypto_ope_t object, using the provided 256-bit key.
 */
crypto_ope_t *
crypto_ope_new(const uint8_t *key)
{
  crypto_ope_t *ope = tor_malloc_zero(sizeof(crypto_ope_t));
  memcpy(ope->key, key, OPE_KEY_LEN);

  crypto_cipher_t *cipher = ope_get_cipher(ope, 0);

  uint64_t v = 0;
  int i;
  for (i = 0; i < N_SAMPLES; ++i) {
    v += sum_values_from_cipher(cipher, SAMPLE_INTERVAL);
    ope->samples[i] = v;
  }

  crypto_cipher_free(cipher);
  return ope;
}

/** Free all storage held in <>ope</b>. */
void
crypto_ope_free_(crypto_ope_t *ope)
{
  if (!ope)
    return;
  memwipe(ope, 0, sizeof(*ope));
  tor_free(ope);
}

/**
 * Return the encrypted value corresponding to <b>input</b>.  The input value
 * must be in range 1..OPE_INPUT_MAX.  Returns CRYPTO_OPE_ERROR on an invalid
 * input.
 *
 * NOTE: this function is not constant-time.
 */
uint64_t
crypto_ope_encrypt(const crypto_ope_t *ope, int plaintext)
{
  if (plaintext <= 0 || plaintext > OPE_INPUT_MAX)
    return CRYPTO_OPE_ERROR;

  const int sample_idx = (plaintext / SAMPLE_INTERVAL);
  const int starting_iv = sample_idx * SAMPLE_INTERVAL;
  const int remaining_values =  plaintext - starting_iv;
  uint64_t v;
  if (sample_idx == 0) {
    v = 0;
  } else {
    v = ope->samples[sample_idx - 1];
  }
  crypto_cipher_t *cipher = ope_get_cipher(ope, starting_iv*sizeof(ope_val_t));

  v += sum_values_from_cipher(cipher, remaining_values);

  crypto_cipher_free(cipher);

  return v;
}