aboutsummaryrefslogtreecommitdiff
path: root/src/lib/crypt_ops/crypto_digest.c
blob: b1aede3a835cfb0b167572deeeaf0836d3a4e517 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
/* Copyright (c) 2001, Matej Pfajfar.
 * Copyright (c) 2001-2004, Roger Dingledine.
 * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
 * Copyright (c) 2007-2018, The Tor Project, Inc. */
/* See LICENSE for licensing information */

/**
 * \file crypto_digest.c
 * \brief Block of functions related with digest and xof utilities and
 * operations.
 **/

#include "lib/container/smartlist.h"
#include "lib/crypt_ops/crypto_digest.h"
#include "lib/crypt_ops/crypto_openssl_mgt.h"
#include "lib/crypt_ops/crypto_util.h"
#include "common/torlog.h"

#include "keccak-tiny/keccak-tiny.h"

DISABLE_GCC_WARNING(redundant-decls)

#include <openssl/hmac.h>
#include <openssl/sha.h>

ENABLE_GCC_WARNING(redundant-decls)

/* Crypto digest functions */

/** Compute the SHA1 digest of the <b>len</b> bytes on data stored in
 * <b>m</b>.  Write the DIGEST_LEN byte result into <b>digest</b>.
 * Return 0 on success, -1 on failure.
 */
int
crypto_digest(char *digest, const char *m, size_t len)
{
  tor_assert(m);
  tor_assert(digest);
  if (SHA1((const unsigned char*)m,len,(unsigned char*)digest) == NULL)
    return -1;
  return 0;
}

/** Compute a 256-bit digest of <b>len</b> bytes in data stored in <b>m</b>,
 * using the algorithm <b>algorithm</b>.  Write the DIGEST_LEN256-byte result
 * into <b>digest</b>.  Return 0 on success, -1 on failure. */
int
crypto_digest256(char *digest, const char *m, size_t len,
                 digest_algorithm_t algorithm)
{
  tor_assert(m);
  tor_assert(digest);
  tor_assert(algorithm == DIGEST_SHA256 || algorithm == DIGEST_SHA3_256);

  int ret = 0;
  if (algorithm == DIGEST_SHA256)
    ret = (SHA256((const uint8_t*)m,len,(uint8_t*)digest) != NULL);
  else
    ret = (sha3_256((uint8_t *)digest, DIGEST256_LEN,(const uint8_t *)m, len)
           > -1);

  if (!ret)
    return -1;
  return 0;
}

/** Compute a 512-bit digest of <b>len</b> bytes in data stored in <b>m</b>,
 * using the algorithm <b>algorithm</b>.  Write the DIGEST_LEN512-byte result
 * into <b>digest</b>.  Return 0 on success, -1 on failure. */
int
crypto_digest512(char *digest, const char *m, size_t len,
                 digest_algorithm_t algorithm)
{
  tor_assert(m);
  tor_assert(digest);
  tor_assert(algorithm == DIGEST_SHA512 || algorithm == DIGEST_SHA3_512);

  int ret = 0;
  if (algorithm == DIGEST_SHA512)
    ret = (SHA512((const unsigned char*)m,len,(unsigned char*)digest)
           != NULL);
  else
    ret = (sha3_512((uint8_t*)digest, DIGEST512_LEN, (const uint8_t*)m, len)
           > -1);

  if (!ret)
    return -1;
  return 0;
}

/** Set the common_digests_t in <b>ds_out</b> to contain every digest on the
 * <b>len</b> bytes in <b>m</b> that we know how to compute.  Return 0 on
 * success, -1 on failure. */
int
crypto_common_digests(common_digests_t *ds_out, const char *m, size_t len)
{
  tor_assert(ds_out);
  memset(ds_out, 0, sizeof(*ds_out));
  if (crypto_digest(ds_out->d[DIGEST_SHA1], m, len) < 0)
    return -1;
  if (crypto_digest256(ds_out->d[DIGEST_SHA256], m, len, DIGEST_SHA256) < 0)
    return -1;

  return 0;
}

/** Return the name of an algorithm, as used in directory documents. */
const char *
crypto_digest_algorithm_get_name(digest_algorithm_t alg)
{
  switch (alg) {
    case DIGEST_SHA1:
      return "sha1";
    case DIGEST_SHA256:
      return "sha256";
    case DIGEST_SHA512:
      return "sha512";
    case DIGEST_SHA3_256:
      return "sha3-256";
    case DIGEST_SHA3_512:
      return "sha3-512";
      // LCOV_EXCL_START
    default:
      tor_fragile_assert();
      return "??unknown_digest??";
      // LCOV_EXCL_STOP
  }
}

/** Given the name of a digest algorithm, return its integer value, or -1 if
 * the name is not recognized. */
int
crypto_digest_algorithm_parse_name(const char *name)
{
  if (!strcmp(name, "sha1"))
    return DIGEST_SHA1;
  else if (!strcmp(name, "sha256"))
    return DIGEST_SHA256;
  else if (!strcmp(name, "sha512"))
    return DIGEST_SHA512;
  else if (!strcmp(name, "sha3-256"))
    return DIGEST_SHA3_256;
  else if (!strcmp(name, "sha3-512"))
    return DIGEST_SHA3_512;
  else
    return -1;
}

/** Given an algorithm, return the digest length in bytes. */
size_t
crypto_digest_algorithm_get_length(digest_algorithm_t alg)
{
  switch (alg) {
    case DIGEST_SHA1:
      return DIGEST_LEN;
    case DIGEST_SHA256:
      return DIGEST256_LEN;
    case DIGEST_SHA512:
      return DIGEST512_LEN;
    case DIGEST_SHA3_256:
      return DIGEST256_LEN;
    case DIGEST_SHA3_512:
      return DIGEST512_LEN;
    default:
      tor_assert(0);              // LCOV_EXCL_LINE
      return 0; /* Unreachable */ // LCOV_EXCL_LINE
  }
}

/** Intermediate information about the digest of a stream of data. */
struct crypto_digest_t {
  digest_algorithm_t algorithm; /**< Which algorithm is in use? */
   /** State for the digest we're using.  Only one member of the
    * union is usable, depending on the value of <b>algorithm</b>. Note also
    * that space for other members might not even be allocated!
    */
  union {
    SHA_CTX sha1; /**< state for SHA1 */
    SHA256_CTX sha2; /**< state for SHA256 */
    SHA512_CTX sha512; /**< state for SHA512 */
    keccak_state sha3; /**< state for SHA3-[256,512] */
  } d;
};

#ifdef TOR_UNIT_TESTS

digest_algorithm_t
crypto_digest_get_algorithm(crypto_digest_t *digest)
{
  tor_assert(digest);

  return digest->algorithm;
}

#endif /* defined(TOR_UNIT_TESTS) */

/**
 * Return the number of bytes we need to malloc in order to get a
 * crypto_digest_t for <b>alg</b>, or the number of bytes we need to wipe
 * when we free one.
 */
static size_t
crypto_digest_alloc_bytes(digest_algorithm_t alg)
{
  /* Helper: returns the number of bytes in the 'f' field of 'st' */
#define STRUCT_FIELD_SIZE(st, f) (sizeof( ((st*)0)->f ))
  /* Gives the length of crypto_digest_t through the end of the field 'd' */
#define END_OF_FIELD(f) (offsetof(crypto_digest_t, f) + \
                         STRUCT_FIELD_SIZE(crypto_digest_t, f))
  switch (alg) {
    case DIGEST_SHA1:
      return END_OF_FIELD(d.sha1);
    case DIGEST_SHA256:
      return END_OF_FIELD(d.sha2);
    case DIGEST_SHA512:
      return END_OF_FIELD(d.sha512);
    case DIGEST_SHA3_256:
    case DIGEST_SHA3_512:
      return END_OF_FIELD(d.sha3);
    default:
      tor_assert(0); // LCOV_EXCL_LINE
      return 0;      // LCOV_EXCL_LINE
  }
#undef END_OF_FIELD
#undef STRUCT_FIELD_SIZE
}

/**
 * Internal function: create and return a new digest object for 'algorithm'.
 * Does not typecheck the algorithm.
 */
static crypto_digest_t *
crypto_digest_new_internal(digest_algorithm_t algorithm)
{
  crypto_digest_t *r = tor_malloc(crypto_digest_alloc_bytes(algorithm));
  r->algorithm = algorithm;

  switch (algorithm)
    {
    case DIGEST_SHA1:
      SHA1_Init(&r->d.sha1);
      break;
    case DIGEST_SHA256:
      SHA256_Init(&r->d.sha2);
      break;
    case DIGEST_SHA512:
      SHA512_Init(&r->d.sha512);
      break;
    case DIGEST_SHA3_256:
      keccak_digest_init(&r->d.sha3, 256);
      break;
    case DIGEST_SHA3_512:
      keccak_digest_init(&r->d.sha3, 512);
      break;
    default:
      tor_assert_unreached();
    }

  return r;
}

/** Allocate and return a new digest object to compute SHA1 digests.
 */
crypto_digest_t *
crypto_digest_new(void)
{
  return crypto_digest_new_internal(DIGEST_SHA1);
}

/** Allocate and return a new digest object to compute 256-bit digests
 * using <b>algorithm</b>.
 *
 * C_RUST_COUPLED: `external::crypto_digest::crypto_digest256_new`
 * C_RUST_COUPLED: `crypto::digest::Sha256::default`
 */
crypto_digest_t *
crypto_digest256_new(digest_algorithm_t algorithm)
{
  tor_assert(algorithm == DIGEST_SHA256 || algorithm == DIGEST_SHA3_256);
  return crypto_digest_new_internal(algorithm);
}

/** Allocate and return a new digest object to compute 512-bit digests
 * using <b>algorithm</b>. */
crypto_digest_t *
crypto_digest512_new(digest_algorithm_t algorithm)
{
  tor_assert(algorithm == DIGEST_SHA512 || algorithm == DIGEST_SHA3_512);
  return crypto_digest_new_internal(algorithm);
}

/** Deallocate a digest object.
 */
void
crypto_digest_free_(crypto_digest_t *digest)
{
  if (!digest)
    return;
  size_t bytes = crypto_digest_alloc_bytes(digest->algorithm);
  memwipe(digest, 0, bytes);
  tor_free(digest);
}

/** Add <b>len</b> bytes from <b>data</b> to the digest object.
 *
 * C_RUST_COUPLED: `external::crypto_digest::crypto_digest_add_bytess`
 * C_RUST_COUPLED: `crypto::digest::Sha256::process`
 */
void
crypto_digest_add_bytes(crypto_digest_t *digest, const char *data,
                        size_t len)
{
  tor_assert(digest);
  tor_assert(data);
  /* Using the SHA*_*() calls directly means we don't support doing
   * SHA in hardware. But so far the delay of getting the question
   * to the hardware, and hearing the answer, is likely higher than
   * just doing it ourselves. Hashes are fast.
   */
  switch (digest->algorithm) {
    case DIGEST_SHA1:
      SHA1_Update(&digest->d.sha1, (void*)data, len);
      break;
    case DIGEST_SHA256:
      SHA256_Update(&digest->d.sha2, (void*)data, len);
      break;
    case DIGEST_SHA512:
      SHA512_Update(&digest->d.sha512, (void*)data, len);
      break;
    case DIGEST_SHA3_256: /* FALLSTHROUGH */
    case DIGEST_SHA3_512:
      keccak_digest_update(&digest->d.sha3, (const uint8_t *)data, len);
      break;
    default:
      /* LCOV_EXCL_START */
      tor_fragile_assert();
      break;
      /* LCOV_EXCL_STOP */
  }
}

/** Compute the hash of the data that has been passed to the digest
 * object; write the first out_len bytes of the result to <b>out</b>.
 * <b>out_len</b> must be \<= DIGEST512_LEN.
 *
 * C_RUST_COUPLED: `external::crypto_digest::crypto_digest_get_digest`
 * C_RUST_COUPLED: `impl digest::FixedOutput for Sha256`
 */
void
crypto_digest_get_digest(crypto_digest_t *digest,
                         char *out, size_t out_len)
{
  unsigned char r[DIGEST512_LEN];
  crypto_digest_t tmpenv;
  tor_assert(digest);
  tor_assert(out);
  tor_assert(out_len <= crypto_digest_algorithm_get_length(digest->algorithm));

  /* The SHA-3 code handles copying into a temporary ctx, and also can handle
   * short output buffers by truncating appropriately. */
  if (digest->algorithm == DIGEST_SHA3_256 ||
      digest->algorithm == DIGEST_SHA3_512) {
    keccak_digest_sum(&digest->d.sha3, (uint8_t *)out, out_len);
    return;
  }

  const size_t alloc_bytes = crypto_digest_alloc_bytes(digest->algorithm);
  /* memcpy into a temporary ctx, since SHA*_Final clears the context */
  memcpy(&tmpenv, digest, alloc_bytes);
  switch (digest->algorithm) {
    case DIGEST_SHA1:
      SHA1_Final(r, &tmpenv.d.sha1);
      break;
    case DIGEST_SHA256:
      SHA256_Final(r, &tmpenv.d.sha2);
      break;
    case DIGEST_SHA512:
      SHA512_Final(r, &tmpenv.d.sha512);
      break;
//LCOV_EXCL_START
    case DIGEST_SHA3_256: /* FALLSTHROUGH */
    case DIGEST_SHA3_512:
    default:
      log_warn(LD_BUG, "Handling unexpected algorithm %d", digest->algorithm);
      /* This is fatal, because it should never happen. */
      tor_assert_unreached();
      break;
//LCOV_EXCL_STOP
  }
  memcpy(out, r, out_len);
  memwipe(r, 0, sizeof(r));
}

/** Allocate and return a new digest object with the same state as
 * <b>digest</b>
 *
 * C_RUST_COUPLED: `external::crypto_digest::crypto_digest_dup`
 * C_RUST_COUPLED: `impl Clone for crypto::digest::Sha256`
 */
crypto_digest_t *
crypto_digest_dup(const crypto_digest_t *digest)
{
  tor_assert(digest);
  const size_t alloc_bytes = crypto_digest_alloc_bytes(digest->algorithm);
  return tor_memdup(digest, alloc_bytes);
}

/** Temporarily save the state of <b>digest</b> in <b>checkpoint</b>.
 * Asserts that <b>digest</b> is a SHA1 digest object.
 */
void
crypto_digest_checkpoint(crypto_digest_checkpoint_t *checkpoint,
                         const crypto_digest_t *digest)
{
  const size_t bytes = crypto_digest_alloc_bytes(digest->algorithm);
  tor_assert(bytes <= sizeof(checkpoint->mem));
  memcpy(checkpoint->mem, digest, bytes);
}

/** Restore the state of  <b>digest</b> from <b>checkpoint</b>.
 * Asserts that <b>digest</b> is a SHA1 digest object. Requires that the
 * state was previously stored with crypto_digest_checkpoint() */
void
crypto_digest_restore(crypto_digest_t *digest,
                      const crypto_digest_checkpoint_t *checkpoint)
{
  const size_t bytes = crypto_digest_alloc_bytes(digest->algorithm);
  memcpy(digest, checkpoint->mem, bytes);
}

/** Replace the state of the digest object <b>into</b> with the state
 * of the digest object <b>from</b>.  Requires that 'into' and 'from'
 * have the same digest type.
 */
void
crypto_digest_assign(crypto_digest_t *into,
                     const crypto_digest_t *from)
{
  tor_assert(into);
  tor_assert(from);
  tor_assert(into->algorithm == from->algorithm);
  const size_t alloc_bytes = crypto_digest_alloc_bytes(from->algorithm);
  memcpy(into,from,alloc_bytes);
}

/** Given a list of strings in <b>lst</b>, set the <b>len_out</b>-byte digest
 * at <b>digest_out</b> to the hash of the concatenation of those strings,
 * plus the optional string <b>append</b>, computed with the algorithm
 * <b>alg</b>.
 * <b>out_len</b> must be \<= DIGEST512_LEN. */
void
crypto_digest_smartlist(char *digest_out, size_t len_out,
                        const smartlist_t *lst,
                        const char *append,
                        digest_algorithm_t alg)
{
  crypto_digest_smartlist_prefix(digest_out, len_out, NULL, lst, append, alg);
}

/** Given a list of strings in <b>lst</b>, set the <b>len_out</b>-byte digest
 * at <b>digest_out</b> to the hash of the concatenation of: the
 * optional string <b>prepend</b>, those strings,
 * and the optional string <b>append</b>, computed with the algorithm
 * <b>alg</b>.
 * <b>len_out</b> must be \<= DIGEST512_LEN. */
void
crypto_digest_smartlist_prefix(char *digest_out, size_t len_out,
                        const char *prepend,
                        const smartlist_t *lst,
                        const char *append,
                        digest_algorithm_t alg)
{
  crypto_digest_t *d = crypto_digest_new_internal(alg);
  if (prepend)
    crypto_digest_add_bytes(d, prepend, strlen(prepend));
  SMARTLIST_FOREACH(lst, const char *, cp,
                    crypto_digest_add_bytes(d, cp, strlen(cp)));
  if (append)
    crypto_digest_add_bytes(d, append, strlen(append));
  crypto_digest_get_digest(d, digest_out, len_out);
  crypto_digest_free(d);
}

/** Compute the HMAC-SHA-256 of the <b>msg_len</b> bytes in <b>msg</b>, using
 * the <b>key</b> of length <b>key_len</b>.  Store the DIGEST256_LEN-byte
 * result in <b>hmac_out</b>. Asserts on failure.
 */
void
crypto_hmac_sha256(char *hmac_out,
                   const char *key, size_t key_len,
                   const char *msg, size_t msg_len)
{
  unsigned char *rv = NULL;
  /* If we've got OpenSSL >=0.9.8 we can use its hmac implementation. */
  tor_assert(key_len < INT_MAX);
  tor_assert(msg_len < INT_MAX);
  tor_assert(hmac_out);
  rv = HMAC(EVP_sha256(), key, (int)key_len, (unsigned char*)msg, (int)msg_len,
            (unsigned char*)hmac_out, NULL);
  tor_assert(rv);
}

/** Compute a MAC using SHA3-256 of <b>msg_len</b> bytes in <b>msg</b> using a
 * <b>key</b> of length <b>key_len</b> and a <b>salt</b> of length
 * <b>salt_len</b>. Store the result of <b>len_out</b> bytes in in
 * <b>mac_out</b>. This function can't fail. */
void
crypto_mac_sha3_256(uint8_t *mac_out, size_t len_out,
                    const uint8_t *key, size_t key_len,
                    const uint8_t *msg, size_t msg_len)
{
  crypto_digest_t *digest;

  const uint64_t key_len_netorder = tor_htonll(key_len);

  tor_assert(mac_out);
  tor_assert(key);
  tor_assert(msg);

  digest = crypto_digest256_new(DIGEST_SHA3_256);

  /* Order matters here that is any subsystem using this function should
   * expect this very precise ordering in the MAC construction. */
  crypto_digest_add_bytes(digest, (const char *) &key_len_netorder,
                          sizeof(key_len_netorder));
  crypto_digest_add_bytes(digest, (const char *) key, key_len);
  crypto_digest_add_bytes(digest, (const char *) msg, msg_len);
  crypto_digest_get_digest(digest, (char *) mac_out, len_out);
  crypto_digest_free(digest);
}

/* xof functions  */

/** Internal state for a eXtendable-Output Function (XOF). */
struct crypto_xof_t {
  keccak_state s;
};

/** Allocate a new XOF object backed by SHAKE-256.  The security level
 * provided is a function of the length of the output used.  Read and
 * understand FIPS-202 A.2 "Additional Consideration for Extendable-Output
 * Functions" before using this construct.
 */
crypto_xof_t *
crypto_xof_new(void)
{
  crypto_xof_t *xof;
  xof = tor_malloc(sizeof(crypto_xof_t));
  keccak_xof_init(&xof->s, 256);
  return xof;
}

/** Absorb bytes into a XOF object.  Must not be called after a call to
 * crypto_xof_squeeze_bytes() for the same instance, and will assert
 * if attempted.
 */
void
crypto_xof_add_bytes(crypto_xof_t *xof, const uint8_t *data, size_t len)
{
  int i = keccak_xof_absorb(&xof->s, data, len);
  tor_assert(i == 0);
}

/** Squeeze bytes out of a XOF object.  Calling this routine will render
 * the XOF instance ineligible to absorb further data.
 */
void
crypto_xof_squeeze_bytes(crypto_xof_t *xof, uint8_t *out, size_t len)
{
  int i = keccak_xof_squeeze(&xof->s, out, len);
  tor_assert(i == 0);
}

/** Cleanse and deallocate a XOF object. */
void
crypto_xof_free_(crypto_xof_t *xof)
{
  if (!xof)
    return;
  memwipe(xof, 0, sizeof(crypto_xof_t));
  tor_free(xof);
}