1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
|
/* Copyright (c) 2001, Matej Pfajfar.
* Copyright (c) 2001-2004, Roger Dingledine.
* Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
* Copyright (c) 2007-2020, The Tor Project, Inc. */
/* See LICENSE for licensing information */
/**
* \file crypto_digest.c
* \brief Block of functions related with digest and xof utilities and
* operations.
**/
#include "lib/container/smartlist.h"
#include "lib/crypt_ops/crypto_digest.h"
#include "lib/crypt_ops/crypto_util.h"
#include "lib/log/log.h"
#include "lib/log/util_bug.h"
#include "keccak-tiny/keccak-tiny.h"
#include <stdlib.h>
#include <string.h>
#include "lib/arch/bytes.h"
/** Set the common_digests_t in <b>ds_out</b> to contain every digest on the
* <b>len</b> bytes in <b>m</b> that we know how to compute. Return 0 on
* success, -1 on failure. */
int
crypto_common_digests(common_digests_t *ds_out, const char *m, size_t len)
{
tor_assert(ds_out);
memset(ds_out, 0, sizeof(*ds_out));
if (crypto_digest(ds_out->d[DIGEST_SHA1], m, len) < 0)
return -1;
if (crypto_digest256(ds_out->d[DIGEST_SHA256], m, len, DIGEST_SHA256) < 0)
return -1;
return 0;
}
/** Return the name of an algorithm, as used in directory documents. */
const char *
crypto_digest_algorithm_get_name(digest_algorithm_t alg)
{
switch (alg) {
case DIGEST_SHA1:
return "sha1";
case DIGEST_SHA256:
return "sha256";
case DIGEST_SHA512:
return "sha512";
case DIGEST_SHA3_256:
return "sha3-256";
case DIGEST_SHA3_512:
return "sha3-512";
// LCOV_EXCL_START
default:
tor_fragile_assert();
return "??unknown_digest??";
// LCOV_EXCL_STOP
}
}
/** Given the name of a digest algorithm, return its integer value, or -1 if
* the name is not recognized. */
int
crypto_digest_algorithm_parse_name(const char *name)
{
if (!strcmp(name, "sha1"))
return DIGEST_SHA1;
else if (!strcmp(name, "sha256"))
return DIGEST_SHA256;
else if (!strcmp(name, "sha512"))
return DIGEST_SHA512;
else if (!strcmp(name, "sha3-256"))
return DIGEST_SHA3_256;
else if (!strcmp(name, "sha3-512"))
return DIGEST_SHA3_512;
else
return -1;
}
/** Given an algorithm, return the digest length in bytes. */
size_t
crypto_digest_algorithm_get_length(digest_algorithm_t alg)
{
switch (alg) {
case DIGEST_SHA1:
return DIGEST_LEN;
case DIGEST_SHA256:
return DIGEST256_LEN;
case DIGEST_SHA512:
return DIGEST512_LEN;
case DIGEST_SHA3_256:
return DIGEST256_LEN;
case DIGEST_SHA3_512:
return DIGEST512_LEN;
default:
tor_assert(0); // LCOV_EXCL_LINE
return 0; /* Unreachable */ // LCOV_EXCL_LINE
}
}
/** Compute a MAC using SHA3-256 of <b>msg_len</b> bytes in <b>msg</b> using a
* <b>key</b> of length <b>key_len</b> and a <b>salt</b> of length
* <b>salt_len</b>. Store the result of <b>len_out</b> bytes in in
* <b>mac_out</b>. This function can't fail. */
void
crypto_mac_sha3_256(uint8_t *mac_out, size_t len_out,
const uint8_t *key, size_t key_len,
const uint8_t *msg, size_t msg_len)
{
crypto_digest_t *digest;
const uint64_t key_len_netorder = tor_htonll(key_len);
tor_assert(mac_out);
tor_assert(key);
tor_assert(msg);
digest = crypto_digest256_new(DIGEST_SHA3_256);
/* Order matters here that is any subsystem using this function should
* expect this very precise ordering in the MAC construction. */
crypto_digest_add_bytes(digest, (const char *) &key_len_netorder,
sizeof(key_len_netorder));
crypto_digest_add_bytes(digest, (const char *) key, key_len);
crypto_digest_add_bytes(digest, (const char *) msg, msg_len);
crypto_digest_get_digest(digest, (char *) mac_out, len_out);
crypto_digest_free(digest);
}
/* xof functions */
/** Internal state for a eXtendable-Output Function (XOF). */
struct crypto_xof_t {
#ifdef OPENSSL_HAS_SHAKE3_EVP
/* XXXX We can't enable this yet, because OpenSSL's
* DigestFinalXOF function can't be called repeatedly on the same
* XOF.
*
* We could in theory use the undocumented SHA3_absorb and SHA3_squeeze
* functions, but let's not mess with undocumented OpenSSL internals any
* more than we have to.
*
* We could also revise our XOF code so that it only allows a single
* squeeze operation; we don't require streaming squeeze operations
* outside the tests yet.
*/
EVP_MD_CTX *ctx;
#else /* !defined(OPENSSL_HAS_SHAKE3_EVP) */
/**
* State of the Keccak sponge for the SHAKE-256 computation.
**/
keccak_state s;
#endif /* defined(OPENSSL_HAS_SHAKE3_EVP) */
};
/** Allocate a new XOF object backed by SHAKE-256. The security level
* provided is a function of the length of the output used. Read and
* understand FIPS-202 A.2 "Additional Consideration for Extendable-Output
* Functions" before using this construct.
*/
crypto_xof_t *
crypto_xof_new(void)
{
crypto_xof_t *xof;
xof = tor_malloc(sizeof(crypto_xof_t));
#ifdef OPENSSL_HAS_SHAKE256
xof->ctx = EVP_MD_CTX_new();
tor_assert(xof->ctx);
int r = EVP_DigestInit(xof->ctx, EVP_shake256());
tor_assert(r == 1);
#else /* !defined(OPENSSL_HAS_SHAKE256) */
keccak_xof_init(&xof->s, 256);
#endif /* defined(OPENSSL_HAS_SHAKE256) */
return xof;
}
/** Absorb bytes into a XOF object. Must not be called after a call to
* crypto_xof_squeeze_bytes() for the same instance, and will assert
* if attempted.
*/
void
crypto_xof_add_bytes(crypto_xof_t *xof, const uint8_t *data, size_t len)
{
#ifdef OPENSSL_HAS_SHAKE256
int r = EVP_DigestUpdate(xof->ctx, data, len);
tor_assert(r == 1);
#else
int i = keccak_xof_absorb(&xof->s, data, len);
tor_assert(i == 0);
#endif /* defined(OPENSSL_HAS_SHAKE256) */
}
/** Squeeze bytes out of a XOF object. Calling this routine will render
* the XOF instance ineligible to absorb further data.
*/
void
crypto_xof_squeeze_bytes(crypto_xof_t *xof, uint8_t *out, size_t len)
{
#ifdef OPENSSL_HAS_SHAKE256
int r = EVP_DigestFinalXOF(xof->ctx, out, len);
tor_assert(r == 1);
#else
int i = keccak_xof_squeeze(&xof->s, out, len);
tor_assert(i == 0);
#endif /* defined(OPENSSL_HAS_SHAKE256) */
}
/** Cleanse and deallocate a XOF object. */
void
crypto_xof_free_(crypto_xof_t *xof)
{
if (!xof)
return;
#ifdef OPENSSL_HAS_SHAKE256
if (xof->ctx)
EVP_MD_CTX_free(xof->ctx);
#endif
memwipe(xof, 0, sizeof(crypto_xof_t));
tor_free(xof);
}
/** Compute the XOF (SHAKE256) of a <b>input_len</b> bytes at <b>input</b>,
* putting <b>output_len</b> bytes at <b>output</b>. */
void
crypto_xof(uint8_t *output, size_t output_len,
const uint8_t *input, size_t input_len)
{
#ifdef OPENSSL_HAS_SHA3
EVP_MD_CTX *ctx = EVP_MD_CTX_new();
tor_assert(ctx);
int r = EVP_DigestInit(ctx, EVP_shake256());
tor_assert(r == 1);
r = EVP_DigestUpdate(ctx, input, input_len);
tor_assert(r == 1);
r = EVP_DigestFinalXOF(ctx, output, output_len);
tor_assert(r == 1);
EVP_MD_CTX_free(ctx);
#else /* !defined(OPENSSL_HAS_SHA3) */
crypto_xof_t *xof = crypto_xof_new();
crypto_xof_add_bytes(xof, input, input_len);
crypto_xof_squeeze_bytes(xof, output, output_len);
crypto_xof_free(xof);
#endif /* defined(OPENSSL_HAS_SHA3) */
}
|