summaryrefslogtreecommitdiff
path: root/src/ext/tor_queue.txt
blob: f284e7192fe867229649bd7520cd16eee348d479 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
Below follows the manpage for tor_queue.h, as included with OpenBSD's
sys/queue.h.  License follows at the end of the file.

======================================================================
QUEUE(3)                  OpenBSD Programmer's Manual                 QUEUE(3)

NAME
     SLIST_ENTRY, SLIST_HEAD, SLIST_HEAD_INITIALIZER, SLIST_FIRST, SLIST_NEXT,
     SLIST_END, SLIST_EMPTY, SLIST_FOREACH, SLIST_FOREACH_SAFE, SLIST_INIT,
     SLIST_INSERT_AFTER, SLIST_INSERT_HEAD, SLIST_REMOVE_AFTER,
     SLIST_REMOVE_HEAD, SLIST_REMOVE, LIST_ENTRY, LIST_HEAD,
     LIST_HEAD_INITIALIZER, LIST_FIRST, LIST_NEXT, LIST_END, LIST_EMPTY,
     LIST_FOREACH, LIST_FOREACH_SAFE, LIST_INIT, LIST_INSERT_AFTER,
     LIST_INSERT_BEFORE, LIST_INSERT_HEAD, LIST_REMOVE, LIST_REPLACE,
     SIMPLEQ_ENTRY, SIMPLEQ_HEAD, SIMPLEQ_HEAD_INITIALIZER, SIMPLEQ_FIRST,
     SIMPLEQ_NEXT, SIMPLEQ_END, SIMPLEQ_EMPTY, SIMPLEQ_FOREACH,
     SIMPLEQ_FOREACH_SAFE, SIMPLEQ_INIT, SIMPLEQ_INSERT_AFTER,
     SIMPLEQ_INSERT_HEAD, SIMPLEQ_INSERT_TAIL, SIMPLEQ_REMOVE_AFTER,
     SIMPLEQ_REMOVE_HEAD, TAILQ_ENTRY, TAILQ_HEAD, TAILQ_HEAD_INITIALIZER,
     TAILQ_FIRST, TAILQ_NEXT, TAILQ_END, TAILQ_LAST, TAILQ_PREV, TAILQ_EMPTY,
     TAILQ_FOREACH, TAILQ_FOREACH_SAFE, TAILQ_FOREACH_REVERSE,
     TAILQ_FOREACH_REVERSE_SAFE, TAILQ_INIT, TAILQ_INSERT_AFTER,
     TAILQ_INSERT_BEFORE, TAILQ_INSERT_HEAD, TAILQ_INSERT_TAIL, TAILQ_REMOVE,
     TAILQ_REPLACE, CIRCLEQ_ENTRY, CIRCLEQ_HEAD, CIRCLEQ_HEAD_INITIALIZER,
     CIRCLEQ_FIRST, CIRCLEQ_LAST, CIRCLEQ_END, CIRCLEQ_NEXT, CIRCLEQ_PREV,
     CIRCLEQ_EMPTY, CIRCLEQ_FOREACH, CIRCLEQ_FOREACH_SAFE,
     CIRCLEQ_FOREACH_REVERSE_SAFE, CIRCLEQ_INIT, CIRCLEQ_INSERT_AFTER,
     CIRCLEQ_INSERT_BEFORE, CIRCLEQ_INSERT_HEAD, CIRCLEQ_INSERT_TAIL,
     CIRCLEQ_REMOVE, CIRCLEQ_REPLACE - implementations of singly-linked lists,
     doubly-linked lists, simple queues, tail queues, and circular queues

SYNOPSIS
     #include <sys/queue.h>

     SLIST_ENTRY(TYPE);

     SLIST_HEAD(HEADNAME, TYPE);

     SLIST_HEAD_INITIALIZER(SLIST_HEAD head);

     struct TYPE *
     SLIST_FIRST(SLIST_HEAD *head);

     struct TYPE *
     SLIST_NEXT(struct TYPE *listelm, SLIST_ENTRY NAME);

     struct TYPE *
     SLIST_END(SLIST_HEAD *head);

     int
     SLIST_EMPTY(SLIST_HEAD *head);

     SLIST_FOREACH(VARNAME, SLIST_HEAD *head, SLIST_ENTRY NAME);

     SLIST_FOREACH_SAFE(VARNAME, SLIST_HEAD *head, SLIST_ENTRY
     NAME, TEMP_VARNAME);

     void
     SLIST_INIT(SLIST_HEAD *head);

     void
     SLIST_INSERT_AFTER(struct TYPE *listelm, struct TYPE *elm, SLIST_ENTRY
     NAME);

     void
     SLIST_INSERT_HEAD(SLIST_HEAD *head, struct TYPE *elm, SLIST_ENTRY NAME);

     void
     SLIST_REMOVE_AFTER(struct TYPE *elm, SLIST_ENTRY NAME);

     void
     SLIST_REMOVE_HEAD(SLIST_HEAD *head, SLIST_ENTRY NAME);

     void
     SLIST_REMOVE(SLIST_HEAD *head, struct TYPE *elm, TYPE, SLIST_ENTRY NAME);

     LIST_ENTRY(TYPE);

     LIST_HEAD(HEADNAME, TYPE);

     LIST_HEAD_INITIALIZER(LIST_HEAD head);

     struct TYPE *
     LIST_FIRST(LIST_HEAD *head);

     struct TYPE *
     LIST_NEXT(struct TYPE *listelm, LIST_ENTRY NAME);

     struct TYPE *
     LIST_END(LIST_HEAD *head);

     int
     LIST_EMPTY(LIST_HEAD *head);

     LIST_FOREACH(VARNAME, LIST_HEAD *head, LIST_ENTRY NAME);

     LIST_FOREACH_SAFE(VARNAME, LIST_HEAD *head, LIST_ENTRY
     NAME, TEMP_VARNAME);

     void
     LIST_INIT(LIST_HEAD *head);

     void
     LIST_INSERT_AFTER(struct TYPE *listelm, struct TYPE *elm, LIST_ENTRY
     NAME);

     void
     LIST_INSERT_BEFORE(struct TYPE *listelm, struct TYPE *elm, LIST_ENTRY
     NAME);

     void
     LIST_INSERT_HEAD(LIST_HEAD *head, struct TYPE *elm, LIST_ENTRY NAME);

     void
     LIST_REMOVE(struct TYPE *elm, LIST_ENTRY NAME);

     void
     LIST_REPLACE(struct TYPE *elm, struct TYPE *elm2, LIST_ENTRY NAME);

     SIMPLEQ_ENTRY(TYPE);

     SIMPLEQ_HEAD(HEADNAME, TYPE);

     SIMPLEQ_HEAD_INITIALIZER(SIMPLEQ_HEAD head);

     struct TYPE *
     SIMPLEQ_FIRST(SIMPLEQ_HEAD *head);

     struct TYPE *
     SIMPLEQ_NEXT(struct TYPE *listelm, SIMPLEQ_ENTRY NAME);

     struct TYPE *
     SIMPLEQ_END(SIMPLEQ_HEAD *head);

     int
     SIMPLEQ_EMPTY(SIMPLEQ_HEAD *head);

     SIMPLEQ_FOREACH(VARNAME, SIMPLEQ_HEAD *head, SIMPLEQ_ENTRY NAME);

     SIMPLEQ_FOREACH_SAFE(VARNAME, SIMPLEQ_HEAD *head, SIMPLEQ_ENTRY
     NAME, TEMP_VARNAME);

     void
     SIMPLEQ_INIT(SIMPLEQ_HEAD *head);

     void
     SIMPLEQ_INSERT_AFTER(SIMPLEQ_HEAD *head, struct TYPE *listelm, struct
     TYPE *elm, SIMPLEQ_ENTRY NAME);

     void
     SIMPLEQ_INSERT_HEAD(SIMPLEQ_HEAD *head, struct TYPE *elm, SIMPLEQ_ENTRY
     NAME);

     void
     SIMPLEQ_INSERT_TAIL(SIMPLEQ_HEAD *head, struct TYPE *elm, SIMPLEQ_ENTRY
     NAME);

     void
     SIMPLEQ_REMOVE_AFTER(SIMPLEQ_HEAD *head, struct TYPE *elm, SIMPLEQ_ENTRY
     NAME);

     void
     SIMPLEQ_REMOVE_HEAD(SIMPLEQ_HEAD *head, SIMPLEQ_ENTRY NAME);

     TAILQ_ENTRY(TYPE);

     TAILQ_HEAD(HEADNAME, TYPE);

     TAILQ_HEAD_INITIALIZER(TAILQ_HEAD head);

     struct TYPE *
     TAILQ_FIRST(TAILQ_HEAD *head);

     struct TYPE *
     TAILQ_NEXT(struct TYPE *listelm, TAILQ_ENTRY NAME);

     struct TYPE *
     TAILQ_END(TAILQ_HEAD *head);

     struct TYPE *
     TAILQ_LAST(TAILQ_HEAD *head, HEADNAME NAME);

     struct TYPE *
     TAILQ_PREV(struct TYPE *listelm, HEADNAME NAME, TAILQ_ENTRY NAME);

     int
     TAILQ_EMPTY(TAILQ_HEAD *head);

     TAILQ_FOREACH(VARNAME, TAILQ_HEAD *head, TAILQ_ENTRY NAME);

     TAILQ_FOREACH_SAFE(VARNAME, TAILQ_HEAD *head, TAILQ_ENTRY
     NAME, TEMP_VARNAME);

     TAILQ_FOREACH_REVERSE(VARNAME, TAILQ_HEAD *head, HEADNAME, TAILQ_ENTRY
     NAME);

     TAILQ_FOREACH_REVERSE_SAFE(VARNAME, TAILQ_HEAD
     *head, HEADNAME, TAILQ_ENTRY NAME, TEMP_VARNAME);

     void
     TAILQ_INIT(TAILQ_HEAD *head);

     void
     TAILQ_INSERT_AFTER(TAILQ_HEAD *head, struct TYPE *listelm, struct TYPE
     *elm, TAILQ_ENTRY NAME);

     void
     TAILQ_INSERT_BEFORE(struct TYPE *listelm, struct TYPE *elm, TAILQ_ENTRY
     NAME);

     void
     TAILQ_INSERT_HEAD(TAILQ_HEAD *head, struct TYPE *elm, TAILQ_ENTRY NAME);

     void
     TAILQ_INSERT_TAIL(TAILQ_HEAD *head, struct TYPE *elm, TAILQ_ENTRY NAME);

     void
     TAILQ_REMOVE(TAILQ_HEAD *head, struct TYPE *elm, TAILQ_ENTRY NAME);

     void
     TAILQ_REPLACE(TAILQ_HEAD *head, struct TYPE *elm, struct TYPE
     *elm2, TAILQ_ENTRY NAME);

     CIRCLEQ_ENTRY(TYPE);

     CIRCLEQ_HEAD(HEADNAME, TYPE);

     CIRCLEQ_HEAD_INITIALIZER(CIRCLEQ_HEAD head);

     struct TYPE *
     CIRCLEQ_FIRST(CIRCLEQ_HEAD *head);

     struct TYPE *
     CIRCLEQ_LAST(CIRCLEQ_HEAD *head);

     struct TYPE *
     CIRCLEQ_END(CIRCLEQ_HEAD *head);

     struct TYPE *
     CIRCLEQ_NEXT(struct TYPE *listelm, CIRCLEQ_ENTRY NAME);

     struct TYPE *
     CIRCLEQ_PREV(struct TYPE *listelm, CIRCLEQ_ENTRY NAME);

     int
     CIRCLEQ_EMPTY(CIRCLEQ_HEAD *head);

     CIRCLEQ_FOREACH(VARNAME, CIRCLEQ_HEAD *head, CIRCLEQ_ENTRY NAME);

     CIRCLEQ_FOREACH_SAFE(VARNAME, CIRCLEQ_HEAD *head, CIRCLEQ_ENTRY
     NAME, TEMP_VARNAME);

     CIRCLEQ_FOREACH_REVERSE(VARNAME, CIRCLEQ_HEAD *head, CIRCLEQ_ENTRY NAME);

     CIRCLEQ_FOREACH_REVERSE_SAFE(VARNAME, CIRCLEQ_HEAD *head, CIRCLEQ_ENTRY
     NAME, TEMP_VARNAME);

     void
     CIRCLEQ_INIT(CIRCLEQ_HEAD *head);

     void
     CIRCLEQ_INSERT_AFTER(CIRCLEQ_HEAD *head, struct TYPE *listelm, struct
     TYPE *elm, CIRCLEQ_ENTRY NAME);

     void
     CIRCLEQ_INSERT_BEFORE(CIRCLEQ_HEAD *head, struct TYPE *listelm, struct
     TYPE *elm, CIRCLEQ_ENTRY NAME);

     void
     CIRCLEQ_INSERT_HEAD(CIRCLEQ_HEAD *head, struct TYPE *elm, CIRCLEQ_ENTRY
     NAME);

     void
     CIRCLEQ_INSERT_TAIL(CIRCLEQ_HEAD *head, struct TYPE *elm, CIRCLEQ_ENTRY
     NAME);

     void
     CIRCLEQ_REMOVE(CIRCLEQ_HEAD *head, struct TYPE *elm, CIRCLEQ_ENTRY NAME);

     void
     CIRCLEQ_REPLACE(CIRCLEQ_HEAD *head, struct TYPE *elm, struct TYPE
     *elm2, CIRCLEQ_ENTRY NAME);

DESCRIPTION
     These macros define and operate on five types of data structures: singly-
     linked lists, simple queues, lists, tail queues, and circular queues.
     All five structures support the following functionality:

           1.   Insertion of a new entry at the head of the list.
           2.   Insertion of a new entry after any element in the list.
           3.   Removal of an entry from the head of the list.
           4.   Forward traversal through the list.

     Singly-linked lists are the simplest of the five data structures and
     support only the above functionality.  Singly-linked lists are ideal for
     applications with large datasets and few or no removals, or for
     implementing a LIFO queue.

     Simple queues add the following functionality:

           1.   Entries can be added at the end of a list.

     However:

           1.   All list insertions must specify the head of the list.
           2.   Each head entry requires two pointers rather than one.
           3.   Code size is about 15% greater and operations run about 20%
                slower than singly-linked lists.

     Simple queues are ideal for applications with large datasets and few or
     no removals, or for implementing a FIFO queue.

     All doubly linked types of data structures (lists, tail queues, and
     circle queues) additionally allow:

           1.   Insertion of a new entry before any element in the list.
           2.   Removal of any entry in the list.

     However:

           1.   Each element requires two pointers rather than one.
           2.   Code size and execution time of operations (except for
                removal) is about twice that of the singly-linked data-
                structures.

     Lists are the simplest of the doubly linked data structures and support
     only the above functionality over singly-linked lists.

     Tail queues add the following functionality:

           1.   Entries can be added at the end of a list.
           2.   They may be traversed backwards, at a cost.

     However:

           1.   All list insertions and removals must specify the head of the
                list.
           2.   Each head entry requires two pointers rather than one.
           3.   Code size is about 15% greater and operations run about 20%
                slower than singly-linked lists.

     Circular queues add the following functionality:

           1.   Entries can be added at the end of a list.
           2.   They may be traversed backwards, from tail to head.

     However:

           1.   All list insertions and removals must specify the head of the
                list.
           2.   Each head entry requires two pointers rather than one.
           3.   The termination condition for traversal is more complex.
           4.   Code size is about 40% greater and operations run about 45%
                slower than lists.

     In the macro definitions, TYPE is the name tag of a user defined
     structure that must contain a field of type SLIST_ENTRY, LIST_ENTRY,
     SIMPLEQ_ENTRY, TAILQ_ENTRY, or CIRCLEQ_ENTRY, named NAME.  The argument
     HEADNAME is the name tag of a user defined structure that must be
     declared using the macros SLIST_HEAD(), LIST_HEAD(), SIMPLEQ_HEAD(),
     TAILQ_HEAD(), or CIRCLEQ_HEAD().  See the examples below for further
     explanation of how these macros are used.

SINGLY-LINKED LISTS
     A singly-linked list is headed by a structure defined by the SLIST_HEAD()
     macro.  This structure contains a single pointer to the first element on
     the list.  The elements are singly linked for minimum space and pointer
     manipulation overhead at the expense of O(n) removal for arbitrary
     elements.  New elements can be added to the list after an existing
     element or at the head of the list.  A SLIST_HEAD structure is declared
     as follows:

           SLIST_HEAD(HEADNAME, TYPE) head;

     where HEADNAME is the name of the structure to be defined, and struct
     TYPE is the type of the elements to be linked into the list.  A pointer
     to the head of the list can later be declared as:

           struct HEADNAME *headp;

     (The names head and headp are user selectable.)

     The HEADNAME facility is often not used, leading to the following bizarre
     code:

           SLIST_HEAD(, TYPE) head, *headp;

     The SLIST_ENTRY() macro declares a structure that connects the elements
     in the list.

     The SLIST_INIT() macro initializes the list referenced by head.

     The list can also be initialized statically by using the
     SLIST_HEAD_INITIALIZER() macro like this:

           SLIST_HEAD(HEADNAME, TYPE) head = SLIST_HEAD_INITIALIZER(head);

     The SLIST_INSERT_HEAD() macro inserts the new element elm at the head of
     the list.

     The SLIST_INSERT_AFTER() macro inserts the new element elm after the
     element listelm.

     The SLIST_REMOVE_HEAD() macro removes the first element of the list
     pointed by head.

     The SLIST_REMOVE_AFTER() macro removes the list element immediately
     following elm.

     The SLIST_REMOVE() macro removes the element elm of the list pointed by
     head.

     The SLIST_FIRST() and SLIST_NEXT() macros can be used to traverse the
     list:

           for (np = SLIST_FIRST(&head); np != NULL; np = SLIST_NEXT(np, NAME))

     Or, for simplicity, one can use the SLIST_FOREACH() macro:

           SLIST_FOREACH(np, head, NAME)

     The macro SLIST_FOREACH_SAFE() traverses the list referenced by head in a
     forward direction, assigning each element in turn to var.  However,
     unlike SLIST_FOREACH() it is permitted to remove var as well as free it
     from within the loop safely without interfering with the traversal.

     The SLIST_EMPTY() macro should be used to check whether a simple list is
     empty.

SINGLY-LINKED LIST EXAMPLE
     SLIST_HEAD(listhead, entry) head;
     struct entry {
             ...
             SLIST_ENTRY(entry) entries;     /* Simple list. */
             ...
     } *n1, *n2, *np;

     SLIST_INIT(&head);                      /* Initialize simple list. */

     n1 = malloc(sizeof(struct entry));      /* Insert at the head. */
     SLIST_INSERT_HEAD(&head, n1, entries);

     n2 = malloc(sizeof(struct entry));      /* Insert after. */
     SLIST_INSERT_AFTER(n1, n2, entries);

     SLIST_FOREACH(np, &head, entries)       /* Forward traversal. */
             np-> ...

     while (!SLIST_EMPTY(&head)) {           /* Delete. */
             n1 = SLIST_FIRST(&head);
             SLIST_REMOVE_HEAD(&head, entries);
             free(n1);
     }


LISTS
     A list is headed by a structure defined by the LIST_HEAD() macro.  This
     structure contains a single pointer to the first element on the list.
     The elements are doubly linked so that an arbitrary element can be
     removed without traversing the list.  New elements can be added to the
     list after an existing element, before an existing element, or at the
     head of the list.  A LIST_HEAD structure is declared as follows:

           LIST_HEAD(HEADNAME, TYPE) head;

     where HEADNAME is the name of the structure to be defined, and struct
     TYPE is the type of the elements to be linked into the list.  A pointer
     to the head of the list can later be declared as:

           struct HEADNAME *headp;

     (The names head and headp are user selectable.)

     The HEADNAME facility is often not used, leading to the following bizarre
     code:

           LIST_HEAD(, TYPE) head, *headp;

     The LIST_ENTRY() macro declares a structure that connects the elements in
     the list.

     The LIST_INIT() macro initializes the list referenced by head.

     The list can also be initialized statically by using the
     LIST_HEAD_INITIALIZER() macro like this:

           LIST_HEAD(HEADNAME, TYPE) head = LIST_HEAD_INITIALIZER(head);

     The LIST_INSERT_HEAD() macro inserts the new element elm at the head of
     the list.

     The LIST_INSERT_AFTER() macro inserts the new element elm after the
     element listelm.

     The LIST_INSERT_BEFORE() macro inserts the new element elm before the
     element listelm.

     The LIST_REMOVE() macro removes the element elm from the list.

     The LIST_REPLACE() macro replaces the list element elm with the new
     element elm2.

     The LIST_FIRST() and LIST_NEXT() macros can be used to traverse the list:

           for (np = LIST_FIRST(&head); np != NULL; np = LIST_NEXT(np, NAME))

     Or, for simplicity, one can use the LIST_FOREACH() macro:

           LIST_FOREACH(np, head, NAME)

     The macro LIST_FOREACH_SAFE() traverses the list referenced by head in a
     forward direction, assigning each element in turn to var.  However,
     unlike LIST_FOREACH() it is permitted to remove var as well as free it
     from within the loop safely without interfering with the traversal.

     The LIST_EMPTY() macro should be used to check whether a list is empty.

LIST EXAMPLE
     LIST_HEAD(listhead, entry) head;
     struct entry {
             ...
             LIST_ENTRY(entry) entries;      /* List. */
             ...
     } *n1, *n2, *np;

     LIST_INIT(&head);                       /* Initialize list. */

     n1 = malloc(sizeof(struct entry));      /* Insert at the head. */
     LIST_INSERT_HEAD(&head, n1, entries);

     n2 = malloc(sizeof(struct entry));      /* Insert after. */
     LIST_INSERT_AFTER(n1, n2, entries);

     n2 = malloc(sizeof(struct entry));      /* Insert before. */
     LIST_INSERT_BEFORE(n1, n2, entries);
                                             /* Forward traversal. */
     LIST_FOREACH(np, &head, entries)
             np-> ...

     while (!LIST_EMPTY(&head))              /* Delete. */
             n1 = LIST_FIRST(&head);
             LIST_REMOVE(n1, entries);
             free(n1);
     }

SIMPLE QUEUES
     A simple queue is headed by a structure defined by the SIMPLEQ_HEAD()
     macro.  This structure contains a pair of pointers, one to the first
     element in the simple queue and the other to the last element in the
     simple queue.  The elements are singly linked.  New elements can be added
     to the queue after an existing element, at the head of the queue or at
     the tail of the queue.  A SIMPLEQ_HEAD structure is declared as follows:

           SIMPLEQ_HEAD(HEADNAME, TYPE) head;

     where HEADNAME is the name of the structure to be defined, and struct
     TYPE is the type of the elements to be linked into the queue.  A pointer
     to the head of the queue can later be declared as:

           struct HEADNAME *headp;

     (The names head and headp are user selectable.)

     The SIMPLEQ_ENTRY() macro declares a structure that connects the elements
     in the queue.

     The SIMPLEQ_INIT() macro initializes the queue referenced by head.

     The queue can also be initialized statically by using the
     SIMPLEQ_HEAD_INITIALIZER() macro like this:

           SIMPLEQ_HEAD(HEADNAME, TYPE) head = SIMPLEQ_HEAD_INITIALIZER(head);

     The SIMPLEQ_INSERT_AFTER() macro inserts the new element elm after the
     element listelm.

     The SIMPLEQ_INSERT_HEAD() macro inserts the new element elm at the head
     of the queue.

     The SIMPLEQ_INSERT_TAIL() macro inserts the new element elm at the end of
     the queue.

     The SIMPLEQ_REMOVE_AFTER() macro removes the queue element immediately
     following elm.

     The SIMPLEQ_REMOVE_HEAD() macro removes the first element from the queue.

     The SIMPLEQ_FIRST() and SIMPLEQ_NEXT() macros can be used to traverse the
     queue.  The SIMPLEQ_FOREACH() is used for queue traversal:

           SIMPLEQ_FOREACH(np, head, NAME)

     The macro SIMPLEQ_FOREACH_SAFE() traverses the queue referenced by head
     in a forward direction, assigning each element in turn to var.  However,
     unlike SIMPLEQ_FOREACH() it is permitted to remove var as well as free it
     from within the loop safely without interfering with the traversal.

     The SIMPLEQ_EMPTY() macro should be used to check whether a list is
     empty.

SIMPLE QUEUE EXAMPLE
     SIMPLEQ_HEAD(listhead, entry) head = SIMPLEQ_HEAD_INITIALIZER(head);
     struct entry {
             ...
             SIMPLEQ_ENTRY(entry) entries;   /* Simple queue. */
             ...
     } *n1, *n2, *np;

     n1 = malloc(sizeof(struct entry));      /* Insert at the head. */
     SIMPLEQ_INSERT_HEAD(&head, n1, entries);

     n2 = malloc(sizeof(struct entry));      /* Insert after. */
     SIMPLEQ_INSERT_AFTER(&head, n1, n2, entries);

     n2 = malloc(sizeof(struct entry));      /* Insert at the tail. */
     SIMPLEQ_INSERT_TAIL(&head, n2, entries);
                                             /* Forward traversal. */
     SIMPLEQ_FOREACH(np, &head, entries)
             np-> ...
                                             /* Delete. */
     while (!SIMPLEQ_EMPTY(&head)) {
             n1 = SIMPLEQ_FIRST(&head);
             SIMPLEQ_REMOVE_HEAD(&head, entries);
             free(n1);
     }

TAIL QUEUES
     A tail queue is headed by a structure defined by the TAILQ_HEAD() macro.
     This structure contains a pair of pointers, one to the first element in
     the tail queue and the other to the last element in the tail queue.  The
     elements are doubly linked so that an arbitrary element can be removed
     without traversing the tail queue.  New elements can be added to the
     queue after an existing element, before an existing element, at the head
     of the queue, or at the end of the queue.  A TAILQ_HEAD structure is
     declared as follows:

           TAILQ_HEAD(HEADNAME, TYPE) head;

     where HEADNAME is the name of the structure to be defined, and struct
     TYPE is the type of the elements to be linked into the tail queue.  A
     pointer to the head of the tail queue can later be declared as:

           struct HEADNAME *headp;

     (The names head and headp are user selectable.)

     The TAILQ_ENTRY() macro declares a structure that connects the elements
     in the tail queue.

     The TAILQ_INIT() macro initializes the tail queue referenced by head.

     The tail queue can also be initialized statically by using the
     TAILQ_HEAD_INITIALIZER() macro.

     The TAILQ_INSERT_HEAD() macro inserts the new element elm at the head of
     the tail queue.

     The TAILQ_INSERT_TAIL() macro inserts the new element elm at the end of
     the tail queue.

     The TAILQ_INSERT_AFTER() macro inserts the new element elm after the
     element listelm.

     The TAILQ_INSERT_BEFORE() macro inserts the new element elm before the
     element listelm.

     The TAILQ_REMOVE() macro removes the element elm from the tail queue.

     The TAILQ_REPLACE() macro replaces the list element elm with the new
     element elm2.

     TAILQ_FOREACH() and TAILQ_FOREACH_REVERSE() are used for traversing a
     tail queue.  TAILQ_FOREACH() starts at the first element and proceeds
     towards the last.  TAILQ_FOREACH_REVERSE() starts at the last element and
     proceeds towards the first.

           TAILQ_FOREACH(np, &head, NAME)
           TAILQ_FOREACH_REVERSE(np, &head, HEADNAME, NAME)

     The macros TAILQ_FOREACH_SAFE() and TAILQ_FOREACH_REVERSE_SAFE() traverse
     the list referenced by head in a forward or reverse direction
     respectively, assigning each element in turn to var.  However, unlike
     their unsafe counterparts, they permit both the removal of var as well as
     freeing it from within the loop safely without interfering with the
     traversal.

     The TAILQ_FIRST(), TAILQ_NEXT(), TAILQ_LAST() and TAILQ_PREV() macros can
     be used to manually traverse a tail queue or an arbitrary part of one.

     The TAILQ_EMPTY() macro should be used to check whether a tail queue is
     empty.

TAIL QUEUE EXAMPLE
     TAILQ_HEAD(tailhead, entry) head;
     struct entry {
             ...
             TAILQ_ENTRY(entry) entries;     /* Tail queue. */
             ...
     } *n1, *n2, *np;

     TAILQ_INIT(&head);                      /* Initialize queue. */

     n1 = malloc(sizeof(struct entry));      /* Insert at the head. */
     TAILQ_INSERT_HEAD(&head, n1, entries);

     n1 = malloc(sizeof(struct entry));      /* Insert at the tail. */
     TAILQ_INSERT_TAIL(&head, n1, entries);

     n2 = malloc(sizeof(struct entry));      /* Insert after. */
     TAILQ_INSERT_AFTER(&head, n1, n2, entries);

     n2 = malloc(sizeof(struct entry));      /* Insert before. */
     TAILQ_INSERT_BEFORE(n1, n2, entries);
                                             /* Forward traversal. */
     TAILQ_FOREACH(np, &head, entries)
             np-> ...
                                             /* Manual forward traversal. */
     for (np = n2; np != NULL; np = TAILQ_NEXT(np, entries))
             np-> ...
                                             /* Delete. */
     while ((np = TAILQ_FIRST(&head))) {
             TAILQ_REMOVE(&head, np, entries);
             free(np);
     }


CIRCULAR QUEUES
     A circular queue is headed by a structure defined by the CIRCLEQ_HEAD()
     macro.  This structure contains a pair of pointers, one to the first
     element in the circular queue and the other to the last element in the
     circular queue.  The elements are doubly linked so that an arbitrary
     element can be removed without traversing the queue.  New elements can be
     added to the queue after an existing element, before an existing element,
     at the head of the queue, or at the end of the queue.  A CIRCLEQ_HEAD
     structure is declared as follows:

           CIRCLEQ_HEAD(HEADNAME, TYPE) head;

     where HEADNAME is the name of the structure to be defined, and struct
     TYPE is the type of the elements to be linked into the circular queue.  A
     pointer to the head of the circular queue can later be declared as:

           struct HEADNAME *headp;

     (The names head and headp are user selectable.)

     The CIRCLEQ_ENTRY() macro declares a structure that connects the elements
     in the circular queue.

     The CIRCLEQ_INIT() macro initializes the circular queue referenced by
     head.

     The circular queue can also be initialized statically by using the
     CIRCLEQ_HEAD_INITIALIZER() macro.

     The CIRCLEQ_INSERT_HEAD() macro inserts the new element elm at the head
     of the circular queue.

     The CIRCLEQ_INSERT_TAIL() macro inserts the new element elm at the end of
     the circular queue.

     The CIRCLEQ_INSERT_AFTER() macro inserts the new element elm after the
     element listelm.

     The CIRCLEQ_INSERT_BEFORE() macro inserts the new element elm before the
     element listelm.

     The CIRCLEQ_REMOVE() macro removes the element elm from the circular
     queue.

     The CIRCLEQ_REPLACE() macro replaces the list element elm with the new
     element elm2.

     The CIRCLEQ_FIRST(), CIRCLEQ_LAST(), CIRCLEQ_END(), CIRCLEQ_NEXT() and
     CIRCLEQ_PREV() macros can be used to traverse a circular queue.  The
     CIRCLEQ_FOREACH() is used for circular queue forward traversal:

           CIRCLEQ_FOREACH(np, head, NAME)

     The CIRCLEQ_FOREACH_REVERSE() macro acts like CIRCLEQ_FOREACH() but
     traverses the circular queue backwards.

     The macros CIRCLEQ_FOREACH_SAFE() and CIRCLEQ_FOREACH_REVERSE_SAFE()
     traverse the list referenced by head in a forward or reverse direction
     respectively, assigning each element in turn to var.  However, unlike
     their unsafe counterparts, they permit both the removal of var as well as
     freeing it from within the loop safely without interfering with the
     traversal.

     The CIRCLEQ_EMPTY() macro should be used to check whether a circular
     queue is empty.

CIRCULAR QUEUE EXAMPLE
     CIRCLEQ_HEAD(circleq, entry) head;
     struct entry {
             ...
             CIRCLEQ_ENTRY(entry) entries;   /* Circular queue. */
             ...
     } *n1, *n2, *np;

     CIRCLEQ_INIT(&head);                    /* Initialize circular queue. */

     n1 = malloc(sizeof(struct entry));      /* Insert at the head. */
     CIRCLEQ_INSERT_HEAD(&head, n1, entries);

     n1 = malloc(sizeof(struct entry));      /* Insert at the tail. */
     CIRCLEQ_INSERT_TAIL(&head, n1, entries);

     n2 = malloc(sizeof(struct entry));      /* Insert after. */
     CIRCLEQ_INSERT_AFTER(&head, n1, n2, entries);

     n2 = malloc(sizeof(struct entry));      /* Insert before. */
     CIRCLEQ_INSERT_BEFORE(&head, n1, n2, entries);
                                             /* Forward traversal. */
     CIRCLEQ_FOREACH(np, &head, entries)
             np-> ...
                                             /* Reverse traversal. */
     CIRCLEQ_FOREACH_REVERSE(np, &head, entries)
             np-> ...
                                             /* Delete. */
     while (!CIRCLEQ_EMPTY(&head)) {
             n1 = CIRCLEQ_FIRST(&head);
             CIRCLEQ_REMOVE(&head, n1, entries);
             free(n1);
     }

NOTES
     It is an error to assume the next and previous fields are preserved after
     an element has been removed from a list or queue.  Using any macro
     (except the various forms of insertion) on an element removed from a list
     or queue is incorrect.  An example of erroneous usage is removing the
     same element twice.

     The SLIST_END(), LIST_END(), SIMPLEQ_END() and TAILQ_END() macros are
     provided for symmetry with CIRCLEQ_END().  They expand to NULL and don't
     serve any useful purpose.

     Trying to free a list in the following way is a common error:

           LIST_FOREACH(var, head, entry)
                   free(var);
           free(head);

     Since var is free'd, the FOREACH macros refer to a pointer that may have
     been reallocated already.  A similar situation occurs when the current
     element is deleted from the list.  In cases like these the data
     structure's FOREACH_SAFE macros should be used instead.

HISTORY
     The queue functions first appeared in 4.4BSD.

OpenBSD 5.0                     April 11, 2012                     OpenBSD 5.0
======================================================================
.\"	$OpenBSD: queue.3,v 1.56 2012/04/11 13:29:14 naddy Exp $
.\"	$NetBSD: queue.3,v 1.4 1995/07/03 00:25:36 mycroft Exp $
.\"
.\" Copyright (c) 1993 The Regents of the University of California.
.\" All rights reserved.
.\"
.\" Redistribution and use in source and binary forms, with or without
.\" modification, are permitted provided that the following conditions
.\" are met:
.\" 1. Redistributions of source code must retain the above copyright
.\"    notice, this list of conditions and the following disclaimer.
.\" 2. Redistributions in binary form must reproduce the above copyright
.\"    notice, this list of conditions and the following disclaimer in the
.\"    documentation and/or other materials provided with the distribution.
.\" 3. Neither the name of the University nor the names of its contributors
.\"    may be used to endorse or promote products derived from this software
.\"    without specific prior written permission.
.\"
.\" THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
.\" ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
.\" SUCH DAMAGE.