1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
|
/** libkeccak-tiny
*
* A single-file implementation of SHA-3 and SHAKE.
*
* Implementor: David Leon Gil
* License: CC0, attribution kindly requested. Blame taken too,
* but not liability.
*/
#include "keccak-tiny.h"
#include <string.h>
#include "crypto.h"
#include "byteorder.h"
/******** Endianness conversion helpers ********/
static inline uint64_t
loadu64le(const unsigned char *x) {
uint64_t r;
memcpy(&r, x, sizeof(r));
return _le64toh(r);
}
static inline void
storeu64le(uint8_t *x, uint64_t u) {
uint64_t val = _le64toh(u);
memcpy(x, &val, sizeof(u));
}
/******** The Keccak-f[1600] permutation ********/
/*** Constants. ***/
static const uint8_t rho[24] = \
{ 1, 3, 6, 10, 15, 21,
28, 36, 45, 55, 2, 14,
27, 41, 56, 8, 25, 43,
62, 18, 39, 61, 20, 44};
static const uint8_t pi[24] = \
{10, 7, 11, 17, 18, 3,
5, 16, 8, 21, 24, 4,
15, 23, 19, 13, 12, 2,
20, 14, 22, 9, 6, 1};
static const uint64_t RC[24] = \
{1ULL, 0x8082ULL, 0x800000000000808aULL, 0x8000000080008000ULL,
0x808bULL, 0x80000001ULL, 0x8000000080008081ULL, 0x8000000000008009ULL,
0x8aULL, 0x88ULL, 0x80008009ULL, 0x8000000aULL,
0x8000808bULL, 0x800000000000008bULL, 0x8000000000008089ULL, 0x8000000000008003ULL,
0x8000000000008002ULL, 0x8000000000000080ULL, 0x800aULL, 0x800000008000000aULL,
0x8000000080008081ULL, 0x8000000000008080ULL, 0x80000001ULL, 0x8000000080008008ULL};
/*** Helper macros to unroll the permutation. ***/
#define rol(x, s) (((x) << s) | ((x) >> (64 - s)))
#define REPEAT6(e) e e e e e e
#define REPEAT24(e) REPEAT6(e e e e)
#define REPEAT5(e) e e e e e
#define FOR5(v, s, e) \
v = 0; \
REPEAT5(e; v += s;)
/*** Keccak-f[1600] ***/
static inline void keccakf(void* state) {
uint64_t* a = (uint64_t*)state;
uint64_t b[5] = {0};
uint64_t t = 0;
uint8_t x, y, i = 0;
REPEAT24(
// Theta
FOR5(x, 1,
b[x] = 0;
FOR5(y, 5,
b[x] ^= a[x + y]; ))
FOR5(x, 1,
FOR5(y, 5,
a[y + x] ^= b[(x + 4) % 5] ^ rol(b[(x + 1) % 5], 1); ))
// Rho and pi
t = a[1];
x = 0;
REPEAT24(b[0] = a[pi[x]];
a[pi[x]] = rol(t, rho[x]);
t = b[0];
x++; )
// Chi
FOR5(y,
5,
FOR5(x, 1,
b[x] = a[y + x];)
FOR5(x, 1,
a[y + x] = b[x] ^ ((~b[(x + 1) % 5]) & b[(x + 2) % 5]); ))
// Iota
a[0] ^= RC[i];
i++; )
}
/******** The FIPS202-defined functions. ********/
/*** Some helper macros. ***/
// `xorin` modified to handle Big Endian systems, `buf` being unaligned on
// systems that care about such things. Assumes that len is a multiple of 8,
// which is always true for the rates we use, and the modified finalize.
static inline void
xorin8(uint8_t *dst, const uint8_t *src, size_t len) {
uint64_t* a = (uint64_t*)dst; // Always aligned.
for (size_t i = 0; i < len; i += 8) {
a[i/8] ^= loadu64le(src + i);
}
}
// `setout` likewise modified to handle Big Endian systems. Assumes that len
// is a multiple of 8, which is true for every rate we use.
static inline void
setout8(const uint8_t *src, uint8_t *dst, size_t len) {
const uint64_t *si = (const uint64_t*)src; // Always aligned.
for (size_t i = 0; i < len; i+= 8) {
storeu64le(dst+i, si[i/8]);
}
}
#define P keccakf
#define Plen KECCAK_MAX_RATE
#define KECCAK_DELIM_DIGEST 0x06
#define KECCAK_DELIM_XOF 0x1f
// Fold P*F over the full blocks of an input.
#define foldP(I, L, F) \
while (L >= s->rate) { \
F(s->a, I, s->rate); \
P(s->a); \
I += s->rate; \
L -= s->rate; \
}
static inline void
keccak_absorb_blocks(keccak_state *s, const uint8_t *buf, size_t nr_blocks)
{
size_t blen = nr_blocks * s->rate;
foldP(buf, blen, xorin8);
}
static int
keccak_update(keccak_state *s, const uint8_t *buf, size_t len)
{
if (s->finalized)
return -1;
if ((buf == NULL) && len != 0)
return -1;
size_t remaining = len;
while (remaining > 0) {
if (s->offset == 0) {
const size_t blocks = remaining / s->rate;
size_t direct_bytes = blocks * s->rate;
if (direct_bytes > 0) {
keccak_absorb_blocks(s, buf, blocks);
remaining -= direct_bytes;
buf += direct_bytes;
}
}
const size_t buf_avail = s->rate - s->offset;
const size_t buf_bytes = (buf_avail > remaining) ? remaining : buf_avail;
if (buf_bytes > 0) {
memcpy(&s->block[s->offset], buf, buf_bytes);
s->offset += buf_bytes;
remaining -= buf_bytes;
buf += buf_bytes;
}
if (s->offset == s->rate) {
keccak_absorb_blocks(s, s->block, 1);
s->offset = 0;
}
}
return 0;
}
static void
keccak_finalize(keccak_state *s)
{
// Xor in the DS and pad frame.
s->block[s->offset++] = s->delim; // DS.
for (size_t i = s->offset; i < s->rate; i++) {
s->block[i] = 0;
}
s->block[s->rate - 1] |= 0x80; // Pad frame.
// Xor in the last block.
xorin8(s->a, s->block, s->rate);
memwipe(s->block, 0, sizeof(s->block));
s->finalized = 1;
s->offset = s->rate;
}
static inline void
keccak_squeeze_blocks(keccak_state *s, uint8_t *out, size_t nr_blocks)
{
for (size_t n = 0; n < nr_blocks; n++) {
keccakf(s->a);
setout8(s->a, out, s->rate);
out += s->rate;
}
}
static int
keccak_squeeze(keccak_state *s, uint8_t *out, size_t outlen)
{
if (!s->finalized)
return -1;
size_t remaining = outlen;
while (remaining > 0) {
if (s->offset == s->rate) {
const size_t blocks = remaining / s->rate;
const size_t direct_bytes = blocks * s->rate;
if (blocks > 0) {
keccak_squeeze_blocks(s, out, blocks);
out += direct_bytes;
remaining -= direct_bytes;
}
if (remaining > 0) {
keccak_squeeze_blocks(s, s->block, 1);
s->offset = 0;
}
}
const size_t buf_bytes = s->rate - s->offset;
const size_t indirect_bytes = (buf_bytes > remaining) ? remaining : buf_bytes;
if (indirect_bytes > 0) {
memcpy(out, &s->block[s->offset], indirect_bytes);
out += indirect_bytes;
s->offset += indirect_bytes;
remaining -= indirect_bytes;
}
}
return 0;
}
int
keccak_digest_init(keccak_state *s, size_t bits)
{
if (s == NULL)
return -1;
if (bits != 224 && bits != 256 && bits != 384 && bits != 512)
return -1;
keccak_cleanse(s);
s->rate = KECCAK_RATE(bits);
s->delim = KECCAK_DELIM_DIGEST;
return 0;
}
int
keccak_digest_update(keccak_state *s, const uint8_t *buf, size_t len)
{
if (s == NULL)
return -1;
if (s->delim != KECCAK_DELIM_DIGEST)
return -1;
return keccak_update(s, buf, len);
}
int
keccak_digest_sum(const keccak_state *s, uint8_t *out, size_t outlen)
{
if (s == NULL)
return -1;
if (s->delim != KECCAK_DELIM_DIGEST)
return -1;
if (out == NULL || outlen > 4 * (KECCAK_MAX_RATE - s->rate) / 8)
return -1;
// Work in a copy so that incremental/rolling hashes are easy.
keccak_state s_tmp;
keccak_clone(&s_tmp, s);
keccak_finalize(&s_tmp);
int ret = keccak_squeeze(&s_tmp, out, outlen);
keccak_cleanse(&s_tmp);
return ret;
}
int
keccak_xof_init(keccak_state *s, size_t bits)
{
if (s == NULL)
return -1;
if (bits != 128 && bits != 256)
return -1;
keccak_cleanse(s);
s->rate = KECCAK_RATE(bits);
s->delim = KECCAK_DELIM_XOF;
return 0;
}
int
keccak_xof_absorb(keccak_state *s, const uint8_t *buf, size_t len)
{
if (s == NULL)
return -1;
if (s->delim != KECCAK_DELIM_XOF)
return -1;
return keccak_update(s, buf, len);
}
int
keccak_xof_squeeze(keccak_state *s, uint8_t *out, size_t outlen)
{
if (s == NULL)
return -1;
if (s->delim != KECCAK_DELIM_XOF)
return -1;
if (!s->finalized)
keccak_finalize(s);
return keccak_squeeze(s, out, outlen);
}
void
keccak_clone(keccak_state *out, const keccak_state *in)
{
memcpy(out, in, sizeof(keccak_state));
}
void
keccak_cleanse(keccak_state *s)
{
memwipe(s, 0, sizeof(keccak_state));
}
/** The sponge-based hash construction. **/
static inline int hash(uint8_t* out, size_t outlen,
const uint8_t* in, size_t inlen,
size_t bits, uint8_t delim) {
if ((out == NULL) || ((in == NULL) && inlen != 0)) {
return -1;
}
int ret = 0;
keccak_state s;
keccak_cleanse(&s);
switch (delim) {
case KECCAK_DELIM_DIGEST:
ret |= keccak_digest_init(&s, bits);
ret |= keccak_digest_update(&s, in, inlen);
// Use the internal API instead of sum to avoid the memcpy.
keccak_finalize(&s);
ret |= keccak_squeeze(&s, out, outlen);
break;
case KECCAK_DELIM_XOF:
ret |= keccak_xof_init(&s, bits);
ret |= keccak_xof_absorb(&s, in, inlen);
ret |= keccak_xof_squeeze(&s, out, outlen);
break;
default:
return -1;
}
keccak_cleanse(&s);
return ret;
}
/*** Helper macros to define SHA3 and SHAKE instances. ***/
#define defshake(bits) \
int shake##bits(uint8_t* out, size_t outlen, \
const uint8_t* in, size_t inlen) { \
return hash(out, outlen, in, inlen, bits, KECCAK_DELIM_XOF); \
}
#define defsha3(bits) \
int sha3_##bits(uint8_t* out, size_t outlen, \
const uint8_t* in, size_t inlen) { \
if (outlen > (bits/8)) { \
return -1; \
} \
return hash(out, outlen, in, inlen, bits, KECCAK_DELIM_DIGEST); \
}
/*** FIPS202 SHAKE VOFs ***/
defshake(128)
defshake(256)
/*** FIPS202 SHA3 FOFs ***/
defsha3(224)
defsha3(256)
defsha3(384)
defsha3(512)
|